Computer Graphics

Bing-Yu Chen
National Taiwan University

Viewing in 3D

\square 3D Viewing Process
\square Classical Viewing and Projections
\square 3D Synthetic Camera Model
\square Specification of an Arbitrary 3D View

- Parallel Projection
\square Perspective Projection
\square 3D Clipping for Canonical View Volume

3D Viewing Process

Classical Viewing

\square Viewing requires three basic elements

- One or more objects
- A viewer with a projection surface
- Projectors that go from the object(s) to the projection surface
\square Classical views are based on the relationship among these elements
- The viewer picks up the object and orients it how she would like to see it
\square Each object is assumed to constructed from flat principal faces
- Buildings, polyhedra, manufactured objects

Classical Projections

3D Synthetic Camera Model

\square The synthetic camera model involves two components, specified independently:

- objects (a.k.a geometry)
- viewer (a.k.a camera)

Imaging with the Synthetic Camera

projector

\square The image is rendered onto an image plane or project plane (usually in front of the camera).
\square Projectors emanate from the center of projection (COP) at the center of the lens (or pinhole).
\square The image of an object point \mathbf{P} is at the intersection of the projector through \mathbf{P} and the image plane.

Specifying a Viewer

ㅁ Camera specification requires four kinds of parameters:

- Position: the COP.
- Orientation: rotations about axes with origin at the COP.
- Focal length: determines the size of the image on the film plane, or the field of view.
- Film plane: its width and height, and possibly orientation.

Projections

\square Projections transform points in n-space to m-space, where $\mathrm{m}<\mathrm{n}$.
$\square \quad$ In 3D, we map points from 3-space to the projection plane (PP) along projectors emanating from the center of projection (COP).

Perspective vs. Parallel Projections

\square Computer graphics treats all projections the same and implements them with a single pipeline
\square Classical viewing developed different techniques for drawing each type of projection

- Fundamental distinction is between parallel and perspective viewing even though mathematically parallel viewing is the limit of perspective viewing

Perspective vs. Parallel Projections

Taxonomy of Planar Geometric Projections

planar geometric projections

multiview axonometric oblique orthographic

isometric dimetric trimetric

Orthographic Projection

Projectors are orthogonal to projection surface

Multiview Orthographic Projection

\square Projection plane parallel to principal face
\square Usually form front ton side views
isometric (not multiview orthographic view)

in CAD and architecture, we often display three multiviews plus isometric top

Advantages and Disadvantages

\square Preserves both distances and angles - Shapes preserved

- Can be used for measurements
\square Building plans
\square Manuals
\square Cannot see what object really looks like because many surfaces hidden from view
- Often we add the isometric

Axonometric Projections

Allow projection plane to move relative to object
classify by how many angles of a corner of a projected cube are the same
none: trimetric two: dimetric three: isometric

Types of Axonometric Projections

Advantages and Disadvantages

\square Lines are scaled (foreshortened) but can find scaling factors
\square Lines preserved but angles are not - Projection of a circle in a plane not parallel to the projection plane is an ellipse
\square Can see three principal faces of a box-like object
\square Some optical illusions possible - Parallel lines appear to diverge
\square Does not look real because far objects are scaled the same as near objects
\square Used in CAD applications

Oblique Projection

Arbitrary relationship between projectors and projection plane

Advantages and Disadvantages

\square Can pick the angles to emphasize a particular face - Architecture: plan oblique, elevation oblique
\square Angles in faces parallel to projection plane are preserved while we can still see "around" side

\square In physical world, cannot create with simple camera; possible with bellows camera or special lens (architectural)

Specification of an Arbitrary 3D View

\square VRP: view reference point
\square VPN: view-plane normal
\square VUP: view-up vector

VRC: the viewing-reference coordinate system

ㅁ CW: center of the window

Infinite Parallelepiped View Volume

\square DOP: direction of projection
\square PRP: projection reference point

Truncated View Volume for an Orthographic Parallel Projection

The Mathematics of Orthographic Parallel Projection

View along y axis
View along x axis

$$
\begin{aligned}
& x_{p}=x ; y_{p}=y ; z_{p}=0 \\
& M_{\text {ort }}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

The Steps of Implementation of Orthographic Parallel Projection

\square Translate the VRP to the origin
\square Rotate VRC such that the VPN becomes the z axis
\square Shear such that the DOP becomes parallel to the z axis
\square Translate and scale into the parallel-projection canonical view volume

$$
N_{p a r}=S_{p a r} \bullet T_{p a r} \bullet S H_{p a r} \bullet R \bullet T(-V R P)
$$

Perspective Projection

Projectors converge at center of projection

Truncated View Volume for an Perspective Projection

Perspective Projection (Pinhole Camera)

View along y axis
View along x axis

$$
\begin{aligned}
& \frac{x_{p}}{d}=\frac{x}{z} ; \frac{y_{p}}{d}=\frac{y}{z} \\
& x_{p}=\frac{x}{z / d} ; y_{p}=\frac{y}{z / d} \\
& M_{p e r}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 / d & 0
\end{array}\right]
\end{aligned}
$$

Perspective Division

$$
\left[\begin{array}{c}
x_{p} \\
y_{p} \\
z_{p} \\
1
\end{array}\right]=\left[\begin{array}{c}
X \\
Y \\
Z \\
W
\end{array}\right]=M_{p e r} \bullet P=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 / d & 0
\end{array}\right] \bullet\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
z \\
z \\
d
\end{array}\right]
$$

However $W \neq 1$, so we must divide by W to return from homogeneous coordinates

$$
\left(x_{p}, y_{p}, z_{p}\right)=\left(\frac{X}{W}, \frac{Y}{W}, \frac{Z}{W}\right)=\left(\frac{x}{z / d}, \frac{y}{z / d}, d\right)
$$

The Steps of Implementation of Perspective Projection

\square Translate the VRP to the origin
\square Rotate VRC such that the VPN becomes the z axis
\square Translate such that the PRP is at the origin
\square Shear such that the DOP becomes parallel to the z axis
\square Scale such that the view volume becomes the canonical perspective view volume

$$
N_{p e r}=S_{p e r} \bullet S H_{p e r} \bullet T(-P R P) \bullet R \bullet T(-V R P)
$$

Alternative Perspective Projection

Vanishing Points

\square Parallel lines (not parallel to the projection plan) on the object converge at a single point in the projection (the vanishing point)
\square Drawing simple perspectives by hand uses these vanishing point(s)
vanishing point

Three-Point Perspective

\square No principal face parallel to projection plane
\square Three vanishing points for cube

Two-Point Perspective

\square On principal direction parallel to projection plane
\square Two vanishing points for cube

One-Point Perspective

\square One principal face parallel to projection plane
\square One vanishing point for cube

Advantages and Disadvantages

\square Objects further from viewer are projected smaller than the same sized objects closer to the viewer (diminuition)

- Looks realistic
\square Equal distances along a line are not projected into equal distances (nonuniform foreshortening)
\square Angles preserved only in planes parallel to the projection plane
\square More difficult to construct by hand than parallel projections (but not more difficult by computer)

Canonical View Volume for Orthographic Parallel Projection

$\square x=-1, y=-1, z=0$
$\square x=1, y=1, z=-1$

The Extension of the Cohen-Sutherland Algorithm

\square bit 1 - point is above view volume $\quad y>1$
\square bit 2 - point is below view volume $\quad y<-1$
\square bit 3 - point is right of view volume $\quad x>1$
\square bit 4 - point is left of view volume $\quad x<-1$
\square bit 5 - point is behind view volume $\quad z<-1$
\square bit 6 - point is in front of view volume $z>0$

Intersection of a 3D Line

\square a line from $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ to $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ can be represented as $x=x_{0}+t\left(x_{1}-x_{0}\right)$

$$
\begin{aligned}
& y=y_{0}+t\left(y_{1}-y_{0}\right) \\
& z=z_{0}+t\left(z_{1}-z_{0}\right) \quad 0 \leq t \leq 1
\end{aligned}
$$

\square so when $\mathrm{y}=1$

$$
\begin{aligned}
& x=x_{0}+\frac{\left(1-y_{0}\right)\left(x_{1}-x_{0}\right)}{y_{1}-y_{0}} \\
& z=z_{0}+\frac{\left(1-y_{0}\right)\left(z_{1}-z_{0}\right)}{y_{1}-y_{0}}
\end{aligned}
$$

Canonical View Volume for Perspective Projection

$\square x=z, y=z, z=-z_{\text {min }}$
$\square x=-z, y=-z, z=-1$

The Extension of the Cohen-Sutherland Algorithm

\square bit 1 - point is above view volume
$y>-z$
\square bit 2 - point is below view volume
$y<z$
\square bit 3 - point is right of view volume
$x>-Z$
\square bit 4 - point is left of view volume $\quad x<z$
\square bit 5 - point is behind view volume $\quad z<-1$
\square bit 6 - point is in front of view volume $z>z_{\text {min }}$

Intersection of a 3D Line

\square so when $\mathrm{y}=\mathrm{z}$

$$
\begin{aligned}
& x=x_{0}+\frac{\left(x_{1}-x_{0}\right)\left(z_{0}-y_{0}\right)}{\left(y_{1}-y_{0}\right)-\left(z_{1}-z_{0}\right)} \\
& y=y_{0}+\frac{\left(y_{1}-y_{0}\right)\left(z_{0}-y_{0}\right)}{\left(y_{1}-y_{0}\right)-\left(z_{1}-z_{0}\right)} \\
& z=y
\end{aligned}
$$

Clipping in Homogeneous Coordinates

\square Why clip in homogeneous coordinates ?

- it is possible to transform the perspective-projection canonical view volume into the parallel-projection canonical view volume

$$
M=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \frac{1}{1+z_{\min }} & \frac{-z_{\min }}{1+z_{\min }} \\
0 & 0 & -1 & 0
\end{array}\right], z_{\min } \neq-1
$$

Clipping in Homogeneous Coordinates

\square The corresponding plane equations are

- $X=-W$
- $X=W$
- $Y=-W$
- $Y=W$
- $Z=-W$
- $Z=0$

