
Computer Graphics

Bing-Yu Chen
National Taiwan University

Visible-Surface Determination

Back-Face Culling
The Depth-Sort Algorithm
Binary Space-Partitioning Trees
The z-Buffer Algorithm
Scan-Line Algorithm
Visible-Surface Ray Tracing
(Ray Casting)
Warnock’s Algorithm

Visible-Surface Determination
= Hidden Surface Removal

Determining what to render at each pixel.
A point is visible if there exists a direct line-of-sight to
it, unobstructed by another other objects (visible
surface determination).
Moreover, some objects may be invisible because
there are behind the camera, outside of the field-of-
view, too far away (clipping) or back faced (back-
face culling).

Hidden Surfaces: why care?

Occlusion: Closer (opaque) objects
along same viewing ray obscure more
distant ones.
Reasons for removal

Efficiency: As with clipping, avoid
wasting work on invisible objects.
Correctness: The image will look wrong if
we don’t model occlusion properly.

Back-Face Culling = Front Facing
x

z G

H

E

C

B

A

D

F

Back-Face Culling = Front Facing

use cross-product to get the normal
of the face (not the actual normal)
use inner-product to check the facing

2 1 3 1() ()N v v v v= − × −
v1

v2

v3

N

V

Clipping (View Frustum Culling)

eye

view frustum

occlusion
back
face

view frustum

List-Priority Algorithms

The Painter’s Algorithm
The Depth-Sort Algorithm
Binary Space-Partitioning Trees

The Painter’s Algorithm

Draw primitives
from back to front
need for depth
comparisons.

The Painter’s Algorithm

for the planes with constant z
not for real 3D, just for 2½D

sort all polygons according to the smallest
(farthest) z coordinate of each
scan convert each polygon in ascending
order of smallest z coordinate (i.e., back to
front)

The Depth-Sort Algorithm
sort all polygons according to the smallest
(farthest) z coordinate of each
resolve any ambiguities that sorting may
cause when the polygons’ z extents
overlap, splitting polygons if necessary
scan convert each polygon in ascending
order of smallest z coordinate (i.e., back to
front)

Overlap Cases

x

x

z

P
Q

y

P
Q

x

y

P Q

R

Overlap Detection

Do the polygons’x not overlap?
Do the polygons’y not overlap?
Is P entirely on the opposite side of
Q’s plane from the viewpoint?
Is Q entirely on the same side of P’s
plane as the viewpoint?
Do the projections of the polygons
onto the (x,y) plane not overlap?

Binary Space-Partitioning Trees
An improved painter’s algorithm
Key observation:

T1

T2

Ax+By+Cz+D=0
f(p): n(p-a)=0

f(p)>0
f(p)<0

T3

T4

T5

Binary Space-Partitioning Trees

T1

T2

T2 T3

T1 +-

T3

Binary Space-Partitioning Trees

T1

T2
T3

T3

T1 +-

T2 +-

Splitting triangles
a

b

c

A

B

a

b

c

A

B

BSP Tree Construction
BSPtree makeBSP(L: list of polygons) {

if (L is empty) {
return the empty tree;

}
Choose a polygon P from L to serve as root;
Split all polygons in L according to P
return new TreeNode (

P,
makeBSP(polygons on negative side of P),
makeBSP(polygons on positive side of P))

}
Splitting polygons is expensive! It helps to choose P wisely
at each step.

Example: choose five candidates, keep the one that splits
the fewest polygons.

BSP Tree Display
void showBSP(v: Viewer, T: BSPtree) {

if (T is empty) return;
P = root of T;
if (viewer is in front of P) {

showBSP(back subtree of T);
draw P;
showBSP(front subtree of T);

} else {
showBSP(front subtree of T);
draw P;
showBSP(back subtree of T);

}
} 2D BSP demo

http://symbolcraft.com/graphics/bsp/
http://symbolcraft.com/graphics/bsp/

Binary Space-Partitioning Trees

P1
P2A

B

C

D

1

2

3

P1

P2 P2

A BCD
3,1,2 3,2,1 1,2,3 2,1,3

front

front front

back

back
back

extremely efficient for static objects

Binary Space-Partitioning Trees

Same BSP tree can be used for any
eye position, constructed only once if
the scene if static.
It does not matter whether the tree is
balanced. However, splitting triangles
is expensive and try to avoid it by
picking up different partition planes.

3

4

1

2

56

7

9

8

11

10

BSP Tree

3

4

1

2

56

7

1

inside
ones

outside
ones

9

8

11

10

BSP Tree

3

4

1

2

56

7

1

2
3
4

5
6
7
8
9
10
11

9

8

11

10

BSP Tree

3

4

1

2

9

8

11

10

56

7

9b

9a

1

5

6
7
9a
10
11a11a

11b
8
9b
11b

BSP Tree

3

4

1

2

9

8

11

10

56

7

9b

11a

2

3

4

1

5

6

7

9a

10

11a

8

9b

11b

9a
11b

BSP Tree

3

4

1

2

9

8

11

10

56

7

9b

point

11a

2

3

4

1

5

6

7

9a

10

11a

8

9b

11b

9a
11b

BSP Tree

3

4

1

2

9

8

11

10

56

7

9b

point

11a

2

3

4

1

5

6

7

9a

10

11a

8

9b

11b

9a
11b

BSP Tree Traversal

1

2

9

8

11

10

56

7

9b

point

11a

2

3

4

1

5

6

7

9a

10

11a

8

9b

11b

9a
11b

3

4

BSP Tree Traversal

The z-Buffer Algorithm

Resolve depths at the pixel level
Idea: add Z to frame buffer, when a
pixel is drawn, check whether it is
closer than what’s already in the
frame buffer

The z-Buffer Algorithm

+

+ =

=

The z-Buffer Algorithm
void zBuffer() {

int pz;
for (each polygon) {

for (each pixel in polygon’s projection) {
pz=polygon’s z-value at (x,y);
if (pz>=ReadZ(x,y)) {

WriteZ(x,y,pz);
WritePixel(x,y,color);

}
}

}
}

The z-Buffer Algorithm

y

y1

y2

y3

ys

z1

z2

z3

za
zp zb Scan line

ab

pb
abbp

s
b

s
a

xx
xx

zzzz

yy
yyzzzz

yy
yyzzzz

−

−
−−=

−
−

−−=

−
−

−−=

)(

)(

)(

31

1
311

21

1
211

z-Buffer: Example

color buffer depth buffer

http://www.dam-ent.com/manuals/cookbook/depthalpha/z_vs_a_zcolor.avi
http://www.dam-ent.com/manuals/cookbook/depthalpha/z_vs_a_zbuf.avi

The z-Buffer Algorithm
Benefits

Easy to implement
Works for any geometric primitive
Parallel operation in hardware

independent of order of polygon drawn

Limitations
Memory required for depth buffer
Quantization and aliasing artifacts
Overfill
Transparency does not work well

Scan-Line Algorithm

x

y

A

B

C

D

E

α

β

γ

γ+2
γ+1

F

Scan-Line Algorithm

ET = edge table
PT = polygon table
AET = active-edge table

ET entry x ymax Δx ID

PT entry ID Plane eq. Shading info In-out

AET contents

Scan line Entries

AB

AB

AB

AB

AC

AC

DE

CB

FD

CB

DE

FE

FE

FE

α

β

γ,γ+1

γ+2

General Scan-Line Algorithm
add surfaces to polygon table (PT);
initialize active-edge table (AET);

for (each scan line) {
update AET;

for (each pixel on scan line) {
determine surfaces in AET that project to pixel;
find closest such surface;
determine closest surface’s shade at pixel;

}
}

Ray Tracing = Ray Casting
select center of projection and window on viewplane;
for (each scan line in image) {

for (each pixel in scan line) {
determine ray from center of projection through pixel;
for (each object in scene) {

if (object is intersected and is closest considered thus far)
record intersection and object name;

}
set pixel’s color to that at closest object intersection;

}
}

Ray Casting

Window

Center of
projection

Ray Casting (Appel, 1968)

Ray Casting (Appel, 1968)

Ray Casting (Appel, 1968)

Ray Casting (Appel, 1968)

() ()()∑
=

⋅+⋅+
nls

i

n
isidiaa VRkNLkIIk

1

Ray Casting (Appel, 1968)

direct illumination

Spatial Partitioning

Spatial Partitioning

R

A B

C

Spatial Partitioning

1

23

A

B

Space Subdivision Approaches

Uniform grid K-d tree

Space Subdivision Approaches

Quadtree (2D)
Octree (3D)

BSP tree

Uniform Grid

Preprocess scene
1. Find bounding box

Uniform Grid

Preprocess scene
1. Find bounding box
2. Determine grid resolution

Uniform Grid

Uniform Grid

Preprocess scene
1. Find bounding box
2. Determine grid resolution
3. Place object in cell if its

bounding box overlaps the
cell

Uniform Grid

Preprocess scene
1. Find bounding box
2. Determine grid resolution
3. Place object in cell if its

bounding box overlaps
the cell

4. Check that object
overlaps cell (expensive!)

Uniform Grid Traversal

Preprocess scene
Traverse grid

3D line = 3D-DDA

From Uniform Grid to Quadtree

Quadtree (Octrees)

subdivide the space adaptively

Quadtree Data Structure

Quadrant Numbering

Quadtree Data Structure

Quadrant Numbering

Quadtree Data Structure

Quadrant Numbering

Quadtree Data Structure

Quadrant Numbering

From Quadtree to Octree

x

y

z

A

A

Leaf nodes correspond to unique regions in space

K-d Tree

Leaf nodes correspond to unique regions in space

A

A

B

K-d Tree

Leaf nodes correspond to unique regions in space

A

B

A

B

K-d Tree

A

B

A

B

C

K-d Tree

A

B

C A

B

C

K-d Tree

A

B

C A

B

C

D

K-d Tree

A

B

C

D

A

B

C

D

K-d Tree

A

B C

D

A

B

C

D

Leaf nodes correspond to unique regions in space

K-d Tree

A

B C

D

A

B

C

D

Leaf nodes correspond to unique regions in space

K-d Tree Traversal

Warnock’s Algorithm

an area-subdivision algorithm

Warnock’s Algorithm
1. all the polygons are disjoint from the area
2. there is only one intersecting or only one

contained polygon
3. there is a single surrounding polygon, but

no intersecting or contained polygons
4. more than one polygon is intersecting,

contained in, or surrounding the area, but
one is a surrounding polygon that is in
front of all the other polygons

Warnock’s Algorithm

surrounding intersecting contained disjoint

Warnock’s Algorithm

x

z

x

z
Surrounding
polygon

Surrounding
polygon

Intersecting
polygon

Intersecting
polygon

Contained
polygon

Performance of Four Algorithms
for Visible-Surface Determination

Algorithm
Number of Polygons

100 2,500 60,000

Depth sort 1 10 507

z-buffer 54 54 54

Scan line 5 21 100

Warnock area subdivision 11 64 307

	Computer Graphics
	Visible-Surface Determination
	Visible-Surface Determination = Hidden Surface Removal
	Hidden Surfaces: why care?
	Back-Face Culling = Front Facing
	Back-Face Culling = Front Facing
	Clipping (View Frustum Culling)
	List-Priority Algorithms
	The Painter’s Algorithm
	The Painter’s Algorithm
	The Depth-Sort Algorithm
	Overlap Cases
	Overlap Detection
	Binary Space-Partitioning Trees
	Binary Space-Partitioning Trees
	Binary Space-Partitioning Trees
	Splitting triangles
	BSP Tree Construction
	BSP Tree Display
	Binary Space-Partitioning Trees
	Binary Space-Partitioning Trees
	BSP Tree
	BSP Tree
	BSP Tree
	BSP Tree
	BSP Tree
	BSP Tree
	BSP Tree Traversal
	BSP Tree Traversal
	The z-Buffer Algorithm
	The z-Buffer Algorithm
	The z-Buffer Algorithm
	The z-Buffer Algorithm
	z-Buffer: Example
	The z-Buffer Algorithm
	Scan-Line Algorithm
	Scan-Line Algorithm
	General Scan-Line Algorithm
	Ray Tracing = Ray Casting
	Ray Casting
	Ray Casting (Appel, 1968)
	Ray Casting (Appel, 1968)
	Ray Casting (Appel, 1968)
	Ray Casting (Appel, 1968)
	Ray Casting (Appel, 1968)
	Spatial Partitioning
	Spatial Partitioning
	Spatial Partitioning
	Space Subdivision Approaches
	Space Subdivision Approaches
	Uniform Grid
	Uniform Grid
	Uniform Grid
	Uniform Grid
	Uniform Grid
	Uniform Grid Traversal
	From Uniform Grid to Quadtree
	Quadtree (Octrees)
	Quadtree Data Structure
	Quadtree Data Structure
	Quadtree Data Structure
	Quadtree Data Structure
	From Quadtree to Octree
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	K-d Tree
	K-d Tree Traversal
	Warnock’s Algorithm
	Warnock’s Algorithm
	Warnock’s Algorithm
	Warnock’s Algorithm
	Performance of Four Algorithms�for Visible-Surface Determination

