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Visible-Surface Determination

Back-Face Culling
The Depth-Sort Algorithm
Binary Space-Partitioning Trees
The z-Buffer Algorithm
Scan-Line Algorithm
Visible-Surface Ray Tracing
(Ray Casting)
Warnock’s Algorithm



Visible-Surface Determination 
= Hidden Surface Removal

Determining what to render at each pixel.
A point is visible if there exists a direct line-of-sight to 
it, unobstructed by another other objects (visible 
surface determination).
Moreover, some objects may be invisible because 
there are behind the camera, outside of the field-of-
view, too far away (clipping) or back faced (back-
face culling).



Hidden Surfaces: why care?

Occlusion: Closer (opaque) objects 
along same viewing ray obscure more 
distant ones.
Reasons for removal

Efficiency: As with clipping, avoid 
wasting work on invisible objects.
Correctness: The image will look wrong if 
we don’t model occlusion properly.



Back-Face Culling = Front Facing
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Back-Face Culling = Front Facing

use cross-product to get the normal 
of the face (not the actual normal)
use inner-product to check the facing
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Clipping (View Frustum Culling)
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view frustum

occlusion
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List-Priority Algorithms

The Painter’s Algorithm
The Depth-Sort Algorithm
Binary Space-Partitioning Trees



The Painter’s Algorithm

Draw primitives 
from back to front 
need for depth 
comparisons.



The Painter’s Algorithm

for the planes with constant z
not for real 3D, just for 2½D

sort all polygons according to the smallest 
(farthest) z coordinate of each
scan convert each polygon in ascending 
order of smallest z coordinate (i.e., back to 
front)



The Depth-Sort Algorithm
sort all polygons according to the smallest 
(farthest) z coordinate of each
resolve any ambiguities that sorting may 
cause when the polygons’ z extents 
overlap, splitting polygons if necessary
scan convert each polygon in ascending 
order of smallest z coordinate (i.e., back to 
front)



Overlap Cases
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Overlap Detection

Do the polygons’x not overlap?
Do the polygons’y not overlap?
Is P entirely on the opposite side of 
Q’s plane from the viewpoint?
Is Q entirely on the same side of P’s 
plane as the viewpoint?
Do the projections of the polygons 
onto the (x,y) plane not overlap?



Binary Space-Partitioning Trees
An improved painter’s algorithm
Key observation: 
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Binary Space-Partitioning Trees
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Binary Space-Partitioning Trees
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Splitting triangles
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BSP Tree Construction
BSPtree makeBSP(L: list of polygons) {

if (L is empty) {
return the empty tree;

} 
Choose a polygon P from L to serve as root;
Split all polygons in L according to P
return new TreeNode (

P,
makeBSP(polygons on negative side of P),
makeBSP(polygons on positive side of P))

}
Splitting polygons is expensive! It helps to choose P wisely 
at each step.

Example: choose five candidates, keep the one that splits 
the fewest polygons.



BSP Tree Display
void showBSP(v: Viewer, T: BSPtree) {

if (T is empty) return;
P = root of T;
if (viewer is in front of P) {

showBSP(back subtree of T);
draw P;
showBSP(front subtree of T);

} else {
showBSP(front subtree of T);
draw P;
showBSP(back subtree of T);

}
} 2D BSP demo

http://symbolcraft.com/graphics/bsp/
http://symbolcraft.com/graphics/bsp/


Binary Space-Partitioning Trees
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Binary Space-Partitioning Trees

Same BSP tree can be used for any 
eye position, constructed only once if 
the scene if static.
It does not matter whether the tree is 
balanced. However, splitting triangles 
is expensive and try to avoid it by 
picking up different partition planes.



3

4

1

2

56

7

9

8

11

10

BSP Tree



3

4

1

2

56

7

1

inside
ones

outside
ones

9

8

11

10

BSP Tree



3

4

1

2

56

7

1

2
3
4

5
6
7
8
9
10
11

9

8

11

10

BSP Tree



3

4

1

2

9

8

11

10

56

7

9b

9a

1

5

6
7
9a
10
11a11a

11b
8
9b
11b

BSP Tree



3

4

1

2

9

8

11

10

56

7

9b

11a

2

3

4

1

5

6

7

9a

10

11a

8

9b

11b

9a
11b

BSP Tree



3

4

1

2

9

8

11

10

56

7

9b

point

11a

2

3

4

1

5

6

7

9a

10

11a

8

9b

11b

9a
11b

BSP Tree



3

4

1

2

9

8

11

10

56

7

9b

point

11a

2

3

4

1

5

6

7

9a

10

11a

8

9b

11b

9a
11b

BSP Tree Traversal



1

2

9

8

11

10

56

7

9b

point

11a

2

3

4

1

5

6

7

9a

10

11a

8

9b

11b

9a
11b

3

4

BSP Tree Traversal



The z-Buffer Algorithm

Resolve depths at the pixel level
Idea: add Z to frame buffer, when a 
pixel is drawn, check whether it is 
closer than what’s already in the 
frame buffer



The z-Buffer Algorithm
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The z-Buffer Algorithm
void zBuffer() {

int pz;
for (each polygon) {

for (each pixel in polygon’s projection) {
pz=polygon’s z-value at (x,y);
if (pz>=ReadZ(x,y)) {

WriteZ(x,y,pz);
WritePixel(x,y,color);

}
}

}
}



The z-Buffer Algorithm
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z-Buffer: Example

color buffer depth buffer

http://www.dam-ent.com/manuals/cookbook/depthalpha/z_vs_a_zcolor.avi
http://www.dam-ent.com/manuals/cookbook/depthalpha/z_vs_a_zbuf.avi


The z-Buffer Algorithm
Benefits

Easy to implement
Works for any geometric primitive
Parallel operation in hardware

independent of order of polygon drawn

Limitations
Memory required for depth buffer
Quantization and aliasing artifacts
Overfill
Transparency does not work well



Scan-Line Algorithm
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Scan-Line Algorithm

ET = edge table
PT = polygon table
AET = active-edge table

ET entry x ymax Δx ID

PT entry ID Plane eq. Shading info In-out

AET contents

Scan line Entries
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General Scan-Line Algorithm
add surfaces to polygon table (PT);
initialize active-edge table (AET);

for (each scan line) {
update AET;

for (each pixel on scan line) {
determine surfaces in AET that project to pixel;
find closest such surface;
determine closest surface’s shade at pixel;

}
}



Ray Tracing = Ray Casting
select center of projection and window on viewplane;
for (each scan line in image) {

for (each pixel in scan line) {
determine ray from center of projection through pixel;
for (each object in scene) {

if (object is intersected and is closest considered thus far)
record intersection and object name;

}
set pixel’s color to that at closest object intersection;

}
}



Ray Casting

Window

Center of
projection



Ray Casting (Appel, 1968)



Ray Casting (Appel, 1968)



Ray Casting (Appel, 1968)



Ray Casting (Appel, 1968)
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Ray Casting (Appel, 1968)

direct illumination



Spatial Partitioning



Spatial Partitioning
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Space Subdivision Approaches

Uniform grid K-d tree



Space Subdivision Approaches

Quadtree (2D)
Octree (3D)

BSP tree



Uniform Grid



Preprocess scene
1. Find bounding box

Uniform Grid



Preprocess scene
1. Find bounding box
2. Determine grid resolution

Uniform Grid



Uniform Grid

Preprocess scene
1. Find bounding box
2. Determine grid resolution
3. Place object in cell if its 

bounding box overlaps the 
cell



Uniform Grid

Preprocess scene
1. Find bounding box
2. Determine grid resolution
3. Place object in cell if its 

bounding box overlaps 
the cell

4. Check that object 
overlaps cell (expensive!)



Uniform Grid Traversal

Preprocess scene
Traverse grid

3D line = 3D-DDA



From Uniform Grid to Quadtree



Quadtree (Octrees)

subdivide the space adaptively



Quadtree Data Structure

Quadrant Numbering



Quadtree Data Structure
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Quadtree Data Structure

Quadrant Numbering



Quadtree Data Structure

Quadrant Numbering



From Quadtree to Octree
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Leaf nodes correspond to unique regions in space

K-d Tree



Leaf nodes correspond to unique regions in space
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Leaf nodes correspond to unique regions in space
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Warnock’s Algorithm

an area-subdivision algorithm



Warnock’s Algorithm
1. all the polygons are disjoint from the area
2. there is only one intersecting or only one 

contained polygon
3. there is a single surrounding polygon, but 

no intersecting or contained polygons
4. more than one polygon is intersecting, 

contained in, or surrounding the area, but 
one is a surrounding polygon that is in 
front of all the other polygons



Warnock’s Algorithm

surrounding intersecting contained disjoint



Warnock’s Algorithm
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Performance of Four Algorithms
for Visible-Surface Determination

Algorithm
Number of Polygons

100 2,500 60,000

Depth sort 1 10 507

z-buffer 54 54 54

Scan line 5 21 100

Warnock area subdivision 11 64 307
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