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Why We Need Shading ?

Suppose we build a model of a sphere 
using many polygons and color it with 
only one color. We get something like

But we want



Shading
Why does the image of a real sphere look 
like

Light-material interactions cause each point 
to have a different color or shade
Need to consider 

Light sources
Material properties
Location of viewer
Surface orientation



Light Sources

General light sources are difficult to 
work with because we must integrate 
light coming from all points on the 
source



Simple Light Sources
Point source

Model with position and color
Distant source = infinite distance away (parallel)

Spotlight
Restrict light from ideal point source

Ambient light
Same amount of light everywhere in scene
Can model contribution of many sources and 
reflecting surfaces



Surface Types
The smoother a surface, the more reflected 
light is concentrated in the direction a 
perfect mirror would reflected the light
A very rough surface scatters light in all 
directions

smooth surface rough surface



What is Normal?



Plane

Normalize

Note that
right-hand rule determines outward face

Recall: Normal for Triangle
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Using Average Normals

N = true (geometric) normal



Using Average Normals
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Using Average Normals
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Using Average Normals
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It can also be area-weighted.



Definitions of Triangle Meshes

{v2,f1} : (nx,ny,nz) (u,v)
{v2,f2} : (nx,ny,nz) (u,v)
…

corner attributes

{f1} : { v1 , v2 , v3 }
{f2} : { v3 , v2 , v4 }
…

connectivity

geometry{v1} : (x,y,z)
{v2} : (x,y,z)
…

face attributes{f1} : “skin material”
{f2} : “brown hair”
…

Copyright©1998, Microsoft



Illumination (Shading) Models
Interaction between light sources and 
objects in scene that results in perception 
of intensity and color at eye
Local vs. global models

Local: perception of a particular primitive only 
depends on light sources directly affecting that 
one primitive

Geometry
Material properties
Shadows cast (global?)

Global: also take into account indirect effects 
on light of other objects in the scene

Light reflected/refracted
Indirect lighting



Local vs. Global Models

direct lighting indirect lighting



The Phong Illumination Model
A simple model that can be computed 
rapidly
Has three components

Diffuse
Specular
Ambient

Uses four vectors 
To source
To viewer
Normal
Perfect reflector



Basics of Local Shading
Diffuse reflection

light goes everywhere; colored by object color
Specular reflection

happens only near mirror configuration; usually 
white

Ambient reflection
constant accounted for other source of illumination

ambient diffuse specular



Ambient Shading

add constant color to account for 
disregarded illumination and fill in 
black shadows; a cheap hack. 



Diffuse Shading

Assume light reflects equally in all 
directions

Therefore surface looks same color from 
all views; “view independent”



Diffuse shading

Illumination on an oblique surface is 
less than on a normal one 
(Lambertian cosine law)

Generally, illumination falls off as cosθ



Illumination Models

Ambient Light:
: intensity of the ambient light
: ambient-reflection coefficient: 0 ~ 1

Diffuse Reflection:
: point light source’s intensity
: diffuse-reflection coefficient: 0 ~ 1
: angle: 0°~ 90°
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Diffuse Reflection

)(dp LNkII •=

direction to the
light source

surface
normal
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Examples

0.4 0.55 0.7 0.85 1.0
diffuse-reflection model with different dk

0.0 0.15 0.3 0.45 0.6
ambient and diffuse-reflection model with different ak

and 4.0,0.1 dpa === kII



Light-Source Attenuation

: light-source attenuation factor
if the light is a point source

where     is the distance the light travels 
from the point source to the surface
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Colored Lights and Surfaces

If an object’s diffuse color is
then

where for the red component

however, it should be

where   is the wavelength
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Diffuse Shading

For color objects, 
apply the 
formula for each 
color channel 
separately



Specular Shading
Some surfaces have highlights, mirror like 
reflection; view direction dependent; 
especially for smooth shinny surfaces



Specular Surfaces
Most surfaces are neither ideal diffusers nor 
perfectly specular (ideal refectors)
Smooth surfaces show specular highlights 
due to incoming light being reflected in 
directions concentrated close to the direction 
of a perfect reflection 

specular
highlight



Specular Reflection
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direction to
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reflection



The Phong Illumination Model

: specular-reflection coefficient:0~1

so, the Eq. can be rewritten as

consider the object’s specular color

: specular color
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The Phong Illumination Model
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Examples

0.3=n 0.5=n 0.10=n 0.27=n 0.200=n

1.0

25.0

5.0

sk



Specular Shading

diffuse diffuse + specular



Calculating the Reflection Vector

Fall off gradually from the perfect 
reflection direction
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The Halfway Vector (Blinn-Phong)

Rather than computing reflection 
directly; just compare to normal 
bisection property.
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Multiple Light Sources

If there are light sources, then

λ aλ a dλ att pλ d dλ s sλ
1

aλ a dλ att pλ d dλ s sλ
1

aλ a dλ att pλ d dλ s sλ
1

[ ( ) cos ]

[ ( ) ( ) ]

[ ( ) ( ) ]

i i

i i

i i

n
i i

i m
n

i i
i m

n
i i

i m

I I k O f I k O N L k O

I k O f I k O N L k O R V

I k O f I k O N L k O N H

α
≤ ≤

≤ ≤

≤ ≤

= + • +

≈ + • + •

≈ + • + •

∑

∑

∑

m



Computing Lighting
at Each Pixel

Most accurate approach: Compute 
component illumination at each pixel with 
individual positions, light directions, and 
viewing directions
But this could be expensive...
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Shading Models for Polygons

Flat Shading
Faceted Shading
Constant Shading

Gouraud Shading
Intensity Interpolation Shading
Color Interpolation Shading

Phong Shading
Normal-Vector Interpolation Shading



Flat Shading

Assumptions
The light source is at infinity
The viewer is at infinity
The polygon represents the actual 
surface being modeled and is not an 
approximation to a curved surface



Flat Shading
Compute constant shading function, over each polygon
Same normal and light vector across whole polygon
Constant shading for polygon
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Intensity Interpolation (Gouraud)
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Normal Interpolation (Phong)
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Normal Interpolation (Phong)
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Normal Interpolation (Phong)
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Gouraud v.s. Phong Shading

Gouraud Phong Gouraud Phong



Flat Shading



Gouraud Shading



Phong Shading



Shadows
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Scan-Line Generation of Shadows

Viewer

Light

Current
scan line
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Shadow Volumes
Light

Object

A

B

C

shadow polygons



Shadow Volumes
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Transparency
interpolated transparency

: transparency: 0 ~ 1

filtered transparency

: transparency color

Line of sight
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Scattering
Light strikes A 

Some scattered
Some absorbed

Some of scattered light strikes B
Some scattered
Some absorbed

Some of this scattered
light strikes A
and so on



Global Effects

translucent surface

shadow

multiple reflection



Global Illumination
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The Rendering Equation

: intensity passing from   to
: emitted light intensity from   to

: intensity of light reflected from
to   from the surface at

: the distance between   and
: all surfaces
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Recursive Ray Tracing

surface normal

reflected ray

shadow ray

transmitted ray

Viewpoint
Point
light source
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Reflection



Refraction



The Ray Tree
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Ray Tracing Results



Ray Tracing Results



Ray Tracing Results



Ray Tracing Results



Ray Tracing Results



The Radiosity Equation

: radiosity of patch
: rate at which light is emitted from patch
: reflectivity of patch
: form factor (configuration factor)

: area of patch

since
thus 
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The Radiosity Equation

rearranging terms
therefore

progressive refinement 
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Computing Form Factors
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Hemisphere
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Hemicube
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The Rendering Pipeline

Local Illumination Pipelines
z-buffer and Gouraud shading
z-buffer and Phong shading
list-priority algorithm and Phong shading

Global Illumination Pipelines
radiosity
ray tracing



Rendering Pipeline for
z-buffer & Gouraud shading

Viewing
transformation

db traversal Modeling
transformation

Trivial
accept / reject

Lighting Clipping

Divide by W,
map to

3D viewport
Rasterization Display



Rendering Pipeline for
z-buffer & Phong shading

Viewing
transformation

db traversal Modeling
transformation

Trivial
accept / reject

Clipping

Divide by W,
map to

3D viewport

Rasterization
(with lighting) Display



Rendering Pipeline for
list-priority algorithm & Phong shading

Viewing
transformation

db traversal Modeling
transformation

Trivial
accept / reject Clipping

Divide by W,
map to

3D viewport

Rasterization
(with lighting) Display

Preliminary
visible-surface
determination

New db New
db traversal



Rendering Pipeline for
radiosity & Gouraud shading

Viewing
transformation

db traversal Modeling
transformation

Trivial
accept / reject Clipping

Divide by W,
map to

3D viewport
Rasterization Display

Vertex intensity
calculation using
radiosity method

New db New
db traversal



Rendering Pipeline for
ray tracing

db traversal Modeling
transformation

Ray tracing Display
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