Game Programming

Robin Bing-Yu Chen
National Taiwan University

Game Mathematics

Vectors

Matrices

Transformations
Homogeneous Coordinates
3D Viewing

Triangle Mathematics
Intersection Issues
Fixed-point Real Numbers
Quaternions

Parametric Curves

Vectors

A vector is an entity that possesses
magnitude and direction.

A ray (directed line segment), that
possesses position, magnitude, and
direction.

(X5, 552,)

%xpyzyl’ZZZl)

(X, 1152,)

2

Vectors

[0 an n-tuple of real numbers (scalars)
0 two operations: addition & multiplication
0 Commutative Laws
m a+b=b+a
B aga*b=b-a
[0 Identities
B a+0=a
m a-l1=32
[0 Associative Laws
B (ga+b)+c=a+ (b+ 0
B (g*b)c=a-+*(b-*0)
[0 Distributive Laws
m ag(b+c)=a-b
M (a+b)ec=a-c
[0 Inverse
B a+b=0 —b=-a

+ a-c
+ becC

Addition of Vectors

parallelogram rule
Y

V+W

The Vector Dot (Inner) Product

X Vi

X Yo

=>uev=xy +...+xy,

length = |/, ey = [uf

Properties of the Dot Product

symmetric
H Vew=wey

nondegenerate

B vey=0 only when v=0
bilinear

B ve(utaw)=veu+a(vew)
unit vector (normalizing)
O v'=v/HvH

angle between the vectors
= cos ' (vew/Mw])

Projection

HuH = |lw||cos @

, View
V = (W ,
v wH

:V’.W

Cross Product of Vectors

Definition
X=VXW

= (v, W, —v,w,)i + (v;w, —vwy)i + (vw, —v,w,)k
B wherei=(1,0,0), 7 =(0,1,0),k =(0,0,1) are

standard unit vectors N N =v, xv,
Application b
B A normal vector to a polygon is

calculated from 3 (non-collinear) vertices
of the polygon.

Vector in Unity

Vector2

B Representation of 2D vectors and points
(e.g., texture coordinates in a Mesh or
texture offsets in Material).

B In the majority of other cases a Vector3
IS used.

Vector2Int
B using integers.

Vector in Unity

Vector3
B Representation of 3D vectors and points.

B this structure is used throughout Unity to
pass 3D positions and directions around.

Vector3Int
B using integers.
Vector4d

B Representation of four-dimensional
vectors. (e.g., mesh tangents,
parameters for shaders)

10

Vector3 in Unity

Static Properties

Shorthand for writing Vector3(0, 0, -1).
Shorthand for writing Vector3(0, -1, 0).
Shorthand for writing Vector3(0, 0, 1).
Shorthand for writing Vector3(-1, 0, 0).
Shorthand for writing Vector3(1, 1, 1).
Shorthand for writing Vector3(1, 0, 0).
Shorthand for writing Vector3(0, 1, 0).
Shorthand for writing Vector3(0, 0, 0).

11

https://docs.unity3d.com/ScriptReference/Vector3-back.html
https://docs.unity3d.com/ScriptReference/Vector3-down.html
https://docs.unity3d.com/ScriptReference/Vector3-forward.html
https://docs.unity3d.com/ScriptReference/Vector3-left.html
https://docs.unity3d.com/ScriptReference/Vector3-one.html
https://docs.unity3d.com/ScriptReference/Vector3-right.html
https://docs.unity3d.com/ScriptReference/Vector3-up.html
https://docs.unity3d.com/ScriptReference/Vector3-zero.html

Vector3 in Unity

magnitude

normalized

sgrMagnitude

this[int]

IN X

Properties

Returns the length of this vector (Read Only).
Returns this vector with a magnitude of 1 (Read Only).

Returns the squared length of this vector (Read Only).

Access the x, y, z components using [0], [1], [2]
respectively.

X component of the vector.
Y component of the vector.
Z component of the vector.

12

https://docs.unity3d.com/ScriptReference/Vector3-magnitude.html
https://docs.unity3d.com/ScriptReference/Vector3-normalized.html
https://docs.unity3d.com/ScriptReference/Vector3-sqrMagnitude.html
https://docs.unity3d.com/ScriptReference/Vector3.Index_operator.html
https://docs.unity3d.com/ScriptReference/Vector3-x.html
https://docs.unity3d.com/ScriptReference/Vector3-y.html
https://docs.unity3d.com/ScriptReference/Vector3-z.html

Vector3 in Unity

Angle
ClampMagnitude

Cross
Distance
Dot

Lerp
MoveTowards

Normalize

OrthoNormalize

Static Methods

Returns the angle in degrees between from and to.

Returns a copy of vector with its magnitude clamped to
maxLength.

Cross Product of two vectors.

Returns the distance between a and b.

Dot Product of two vectors.

Linearly interpolates between two vectors.

Moves a point current in a straight line towards a target point.
Makes this vector have a magnitude of 1.

Makes vectors normalized and orthogonal to each other.

13

https://docs.unity3d.com/ScriptReference/Vector3.Angle.html
https://docs.unity3d.com/ScriptReference/Vector3.ClampMagnitude.html
https://docs.unity3d.com/ScriptReference/Vector3.Cross.html
https://docs.unity3d.com/ScriptReference/Vector3.Distance.html
https://docs.unity3d.com/ScriptReference/Vector3.Dot.html
https://docs.unity3d.com/ScriptReference/Vector3.Lerp.html
https://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
https://docs.unity3d.com/ScriptReference/Vector3.Normalize.html
https://docs.unity3d.com/ScriptReference/Vector3.OrthoNormalize.html

Vector3 in Unity

Static Methods

Project Projects a vector onto another vector.

Projects a vector onto a plane defined by a normal orthogonal
to the plane.

ProjectOnPlane

Reflect Reflects a vector off the plane defined by a normal.

RotateTowards Rotates a vector current towards target.

Slerp Spherically interpolates between two vectors.

14

https://docs.unity3d.com/ScriptReference/Vector3.Project.html
https://docs.unity3d.com/ScriptReference/Vector3.ProjectOnPlane.html
https://docs.unity3d.com/ScriptReference/Vector3.Reflect.html
https://docs.unity3d.com/ScriptReference/Vector3.RotateTowards.html
https://docs.unity3d.com/ScriptReference/Vector3.Slerp.html

Matrix Basics

Definition a, ... a,
A=(a,)=
aml amn
[ranspose ul
C=A' c,=a,=>C=| :
_alm
Addition

C=A+B ¢ =al.j+bl.j

nl

nm

16

Matrix Basics

Scalar-matrix multiplication
C=cA c, =aa;

Matrix-matrix multiplication

C=AB ¢, =) a,b,
k=1

Matrix multiplication are
not commutative

AB = BA

17

Matrix in Unity

Matrix4x4

B You rarely use matrices in scripts; most
often using Vector3s, Quaternions and
functionality of Transform class is more
straightforward.

B Setting up nonstandard camera projection.

B In Unity, Matrix4x4 is used by
several Transform, Camera, Material and GL
functions.

Transform.localToWorldMatrix
Transform.worldToLocalMatrix
Camera.projectionMatrix

Camera.worldToCameraMatrix

O0O000 0O

18

General Transformations

A transformation maps points to
other points and/or vectors to other
vectors

P

19

Pipeline Implementation

T (from application program)

Ve

u
vertices

» transformation

I'(u)

r(v)

r'(v)e

"T(u)

rasterizer

frame
_buffer

I'(v)

T'(u) ./

vertices

> pixels

20

Representation

We can represent a point, p=(x,))
in the plane

X
B as a column vector { }
Y

B as a row vector [x]

21

2D

N N NN

Transformations

D Translation
D Scaling

D Reflection
D Shearing

D Rotation

22

Translation

Move (translate, displace) a point to a new
location

QP

Po

Displacement determined by a vector d
B Three degrees of freedom
B P'=P+d

23

2D Translation

Y,

A

(4,5) (7,5)

> X

2D Scaling

7 7

A

(4,5) (7,5)

- O, (7/2,5/4)

[)) I _lflllllllllllll
= / P=SePpP
(2,5/4)_ L_=02°¢
' s. 0O
V[0 s,

2D Reflection

y y

O 0

(415) (715) (_715) (_415)

I [B I [[) S
- X - X
P'=RE_ eP

e

26

2D Shearing

7 7

A

(4,5) (7,5)

/7

(9,5) (12,5)

]) [S))
- X - X

P'=SH oP

AR

27

2D Rotation

y y

Q E (4.9,7.8)

(4,5 (7,5) (2.1,4.9)

]) [S))
- X - X

P'=ReP

x' cos@ -—smnf| |x
= o
' sinfd cosf y

28

2D Rotation

Consider rotation about the origin by 0
degrees

B radius stays the same, angle increases
by @ x’=1cos (¢ +0)
/y’zrsin((l)+6)

(x', ¥

Ll

Xx’=X cos O —y sin 0
y’=xsinO+ycosH

\ X =T1CO0S

X y=rsin ¢

(x, y)

29

Limitations of a 2X2 matrix

Scaling
Rotation
Reflection
Shearing

What do we miss?

30

Homogeneous Coordinates

Why & What is
homogeneous coordinates ?

B if points are expressed in homogeneous
coordinates, all three transformations
can be treated as multiplications.

(x, 1) = (x, y,W)

|

usually 1
can not be 0

31

Homogeneous Coordinates

/ W=1 plane

32

Homogeneous Coordinates for
2D Translation

P'=T(d .d)eP
P=P+T ———
! = _dx_ X' 1 O dx
HME] S e e

y Y

1| 100 1

P'=T(d,,d,)eP
P'=T(d,,,d,)eP

Homogeneous Coordinates for

2D Translation

P”:T(dx29dy2).(T(dxl?dyl).P)

= (T(dxzadyz)'T(dxlady1))'P
1 0 d,] |1
rd,,.d,)eld,.d,)=|0 1 d, |0
00 1|10
1 0 d, +d_,
=10 1 d,+d,

0 0 1

34

Homogeneous Coordinates for

2D Scaling

S(Sx2’Sy2).S(le’Syl)

1

y:

A)

0
0
0

S

y
0
=
0
1_

P'=5(s,,s,)eP
_ —n

0

1

35

Homogeneous Coordinates for
2D Rotation

P'=ReP P'=R(0)eP

i -

cos@® —sind X X ' cos@ —sind O
Liné’ COSQ:|.|:y:|j>l y'|=|sind cosf O
1 0 0 1

Properties of Transformations

rigid-body transformations
B rotation & translation
B preserving angles and lengths

affine transformations
B rotation & translation & scaling
B preserving parallelism of lines

37

Composition of 2D Transformations

P4

» X

Original

Pl :(xlayl)

After translati'on
of P; to origin

T(_xla_yl)

/W » X M:X

After rotation

R(6)

V

P4

> X
After translation
to original P,

T (x,,»)

38

Composition of 2D Transformations

T(x,y)oR(O)eT(—x,—y)=

0 0

sin @

0

1 0 x|
0 1 y

1

0

sin &
0

0

1

(cos® —sinf 0O
cos@ O

1

' cos@ —sin@ x,(1-cos@)+y,sin@
cos@ y,(1-cos@)—x,sinb

1 0 —x |
0 1
0 0

=)
1

39

Right-handed Coordinate System

1

o

Z

42

3D Translation & 3D Scaling

1 0 0 d,

T(d_,d_ ,d.)= v 1 0 4
B 0 0 1 d,
00 0 1

s 0 0 0

S(s_,8.,8.)= o s, 00
= 0 0 s, O
0 0 0 1

43

mu_0001
i S o — o
% e H ot e
L
— o o o
M i
™ =
o
cl o oo ~
O anlf -t b
._a ittt
Q
O TR st e
%_ I
Ex
0 R
™

44

3D Rotations

 cos
sin @
0

0
rYy

R.(0) =

—sin@ 0 O
cosd 0 O
0 1 O

0 0 1

(

VR, (0)
R, (0)

TR

X

R.(0) =

R.(0) =

1 0

0 cosé
0
0

sin &
0

- cos@
0

—sin @

0 0
—smé@ 0
cosd O
0 1

0

sin@ 0]

1 0 0
0 cos@d O
0 0 1

R. («9%/

45
Euler Angles

Rotation About a Fixed Point
other than the Origin

Move fixed point to origin
Rotate

Move fixed point back

M =T(P,)eR(O)eT(-PF,)

Y Y

‘ Py I {
.
- X X ﬁ—x X
z/ z/ z
46

-~
-

General Rotation About the Origin

A rotation by gabout an arbitrary axis can
be decomposed into the concatenation of
rotations about the x, y, and z axes

m 0o 0,0 are called the Euler angles

O v
R(O)=R.(0.)*R (0,)*R (0,) /@/
/

Z
Note that rotations do not commute

B \We can use rotations in another order but with
different angles.

47

Transform in Unity

Transform

B Every object in a Scene has a Transform.
B Position, rotation and scale of an object.
B Hierarchically structure

using UnityEngine;
public class Example : MonoBehaviour {

// Moves all transform children 10 units upwards!
void Start() {

foreach (Transform child in transform) {
child.position += Vector3.up * 10.0f;
}

48

Transform in Unity

Properties
forward The blue axis of the transform in world space.
right The red axis of the transform in world space.
up The green axis of the transform in world space.
position The position of the transform in world space.
rotation The rota_tion of the transform in world space stored as a
R Quaternion.
lossyScale The global scale of the object (Read Only).
localPosition Position of the transform relative to the parent transform.

localRotation

localScale

The rotation of the transform relative to the transform rotation
of the parent.

The scale of the transform relative to the parent.

49

https://docs.unity3d.com/ScriptReference/Transform-forward.html
https://docs.unity3d.com/ScriptReference/Transform-right.html
https://docs.unity3d.com/ScriptReference/Transform-up.html
https://docs.unity3d.com/ScriptReference/Transform-position.html
https://docs.unity3d.com/ScriptReference/Transform-rotation.html
https://docs.unity3d.com/ScriptReference/Transform-lossyScale.html
https://docs.unity3d.com/ScriptReference/Transform-localPosition.html
https://docs.unity3d.com/ScriptReference/Transform-localRotation.html
https://docs.unity3d.com/ScriptReference/Transform-localScale.html

Transform in Unity

Properties
root Returns the topmost transform in the hierarchy.
parent The parent of the transform.
childCount The number of children the parent Transform has.

Matrix that transforms a point from local space into world
space (Read Only).
Matrix that transforms a point from world space into local
space (Read Only).

localToWorldMatrix

worldTolLocalMatrix

50

https://docs.unity3d.com/ScriptReference/Transform-root.html
https://docs.unity3d.com/ScriptReference/Transform-parent.html
https://docs.unity3d.com/ScriptReference/Transform-childCount.html
https://docs.unity3d.com/ScriptReference/Transform-localToWorldMatrix.html
https://docs.unity3d.com/ScriptReference/Transform-worldToLocalMatrix.html

Transform in Unity

Translate

Rotate

RotateAround

LookAt

Public Methods

Moves the transform in the direction and distance of
translation.

Applies a rotation of eulerAngles.z degrees around the z axis,
eulerAngles.x degrees around the x axis, and eulerAngles.y
degrees around the y axis (in that order).

Rotates the transform about axis passing through point in
world coordinates by angle degrees.

Rotates the transform so the forward vector points at
/target/'s current position.

51

https://docs.unity3d.com/ScriptReference/Transform.Translate.html
https://docs.unity3d.com/ScriptReference/Transform.Rotate.html
https://docs.unity3d.com/ScriptReference/Transform.RotateAround.html
https://docs.unity3d.com/ScriptReference/Transform.LookAt.html

Transform in Unity

InverseTransformVector

SetPositionAndRotation

TransformDirection

TransformPoint

TransformVector

Public Methods

Transforms a vector from world space to local space.
The opposite of Transform.TransformVector.

Sets the world space position and rotation of the
Transform component.

Transforms direction from local space to world space.
Transforms position from local space to world space.

Transforms vector from local space to world space.

52

https://docs.unity3d.com/ScriptReference/Transform.InverseTransformVector.html
https://docs.unity3d.com/ScriptReference/Transform.SetPositionAndRotation.html
https://docs.unity3d.com/ScriptReference/Transform.TransformDirection.html
https://docs.unity3d.com/ScriptReference/Transform.TransformPoint.html
https://docs.unity3d.com/ScriptReference/Transform.TransformVector.html

Transform in Unity

DetachChildren
Find

GetChild
GetSiblingIndex
IsChildOf

SetAsFirstSibling

SetAslLastSibling

SetParent

SetSiblingIndex

Public Methods

Unparents all children.

Finds a child by n and returns it.
Returns a transform child by index.
Gets the sibling index.

Is this transform a child of parent?

Move the transform to the start of the local transform
list.

Move the transform to the end of the local transform
list.

Set the parent of the transform.
Sets the sibling index.

53

https://docs.unity3d.com/ScriptReference/Transform.DetachChildren.html
https://docs.unity3d.com/ScriptReference/Transform.Find.html
https://docs.unity3d.com/ScriptReference/Transform.GetChild.html
https://docs.unity3d.com/ScriptReference/Transform.GetSiblingIndex.html
https://docs.unity3d.com/ScriptReference/Transform.IsChildOf.html
https://docs.unity3d.com/ScriptReference/Transform.SetAsFirstSibling.html
https://docs.unity3d.com/ScriptReference/Transform.SetAsLastSibling.html
https://docs.unity3d.com/ScriptReference/Transform.SetParent.html
https://docs.unity3d.com/ScriptReference/Transform.SetSiblingIndex.html

Vanishing Points

Parallel lines (not parallel to the projection
nlan) on the object converge at a single
point in the projection (the vanishing point)

Drawing simple perspectives by hand uses

these vanishing point(s) \

vanishing point

69

Triangular Coordinate System

A A A
h="%h +—2h +—<h
hb P a y b 4 c
where A=A4 + A4, + A4,

C

if (4 <0/ 4, <0]| 4, <0) than
the point is outside the triangle

70

Triangular Coordinate System -
Application

Terrain following

B Interpolating the height of arbitrary point
within the triangle

Hit test

B Intersection of a ray from camera to a
screen position with a triangle

Ray cast
B Intersection of a ray with a triangle

Collision detection
B Intersection

72

Intersection

Ray cast
Containment test

73

Ray Cast — The Ray

[0 Cast a ray to calculate the intersection of the ray
with models

[0 Use parametric equation for a ray

(x = X, +(x, — X,)t,

Y=Y+ = Yt
z=z,+(z,—z))f, t=20

N

O When ¢ =0, the ray is on the start point (x,,y,,z,)
0 Only thet >0 is the answer candidate
[0 The smallest positive t is the answer

74

Ray Cast — The Plane

Each triangle in the 3D models has its plane
equation.

Use Ax+ By+Cz+ D =0 as the plane equation.
(4,B,C)is the plane normal vector.

| D|is the distance of the plane to origin.
Substitute the ray equation into the plane.
Solve the ¢ to find the intersect point.

Check the intersect point within the triangle
or not by using “Triangle Area Test”.

75

2D Containment Test

N Intersection = 1, inside
Intersection = 2, outside w

Intersection = 0, outside

>

if the no. of intersection is odd, the
point is inside, otherwise, is outside

76

3D Containment Test

Y

Y

if the no. of intersection is odd, the
point is inside, otherwise, is outside

77

Ray Cast in Unity

to the closest object

?#meﬁ S | | REFHEP
ALY 13 4k 5
RaycastHit hitInfo = new RaycastHit();
Vector3 dir = new Vector3(-1,0,0);

if(Physics.Raycast(this.transform.position, dir, out hitInfo)) {
if (hitInfo.collider.gameObject.name == "CubeA") {
print("shoot");

¥

78

Ray Cast in Unity

to all objects

Vector3 dir = new Vector3(-1,0,0);

RaycastHit[| hitInfos =

Physics.RaycastAll(this.transform.position, dir);

foreach (RaycastHit hitInfo in hitInfos) {
print(hitInfo.collider.gameObject.name);

}

79

Tagging Objects for
Ray Cast in Unity

fagiEfR = AZRBAF I EMHERI A EZ —
#£Ray Castﬁﬁm IR LBl D 1

R E Tagi AL InspectorfiE R/ Tag
h2EEEAdd Tag.. Z1§ "EE.
TagManager, = B

i TTagszi [i:::?;
TLEEMIAFTRT B8 oo
Tag « I

80

Ray Cast for a Tag
in Unity

Vector3 dir = new Vector3(-1,0,0);
RaycastHit[| hitInfos =
Physics.RaycastAll(this.transform.position, dir);
foreach (RaycastHit hitInfo in hitInfos) {
if (hitInfo.collider.gameObject.tag !'= "Boom")
print(hitInfo.collider.gameObject.name);

81

Ray Cast from Camera’s view
in Unity

RaycastHit hit = new RaycastHit();
Vector3 pos = Input.mousePosition;
Ray mouseray = Camera.main.ScreenPointToRay(pos);
if (Input.GetMouseButton(0)) {
if (Physics.Raycast(mouseray,out hit)) {

82

Fixed Point Arithmetic

Fixed point arithmetic: n bits (signed)
integer
B Example : n = 16 gives range
—32768 < a <32767
B We can use fixed scale to get the decimals.

8 integer bits

11 | 1 a=ae2"
8 fractional bits

a=1600 > a =6.25

83

Fixed Point Arithmetic

Multiplication requires rescaling

~ ~N-8 ~ ~A-8 ~ A—
e =qeC =qe2 SeCe2 $=3e27"

= & =(asc)e2”"

Addition just like normal

e=a+c=a2"+¢2° =(G+¢)2"°
c

—Se=q+

84

Fixed Point Arithmetic -
Application

Compression for floating-point real
numbers

B 4 bytes reduced to 2 bytes
B Lost some accuracy but affordable

Network data transfer

Software 3D rendering
(without hardware-assistant)

85

Euler Angles

An Euler angle is a rotation
about a single axis.

A rotation is described as a
sequence of rotations
about three mutually
orthogonal coordinates
axes fixed in space

B X-roll, Y-roll, Z-roll

There are 6 possible ways
to define a rotation.
m 3

86

Interpolating Euler Angles

[0 Natural orientation representation:
B 3 angles for 3 degrees of freedom

[0 Unnatural interpolation:

B A rotation of 90° first around Z and then around Y
= 120° around (1, 1, 1).
B But 30° around Z then Y differs from 40° around (1, 1, 1).

L] e S
P

88

Incremental Rotation

Consider the two approaches

B For a sequence of rotation matrices
R,, R,...,R , find the Euler angles for each
and use R, =R R R,

iz7 iy X

Not very efficient

B Use the final positions to determine the
axis and angle of rotation, then increment

only the angle
Quaternions can be more efficient than either

90

Solution:
Quaternion Interpolation

Interpolate orientation on the unit
sphere

By analogy: 1-, 2-, 3-DOF rotations
as constrained points on 1-, 2-, 3-
spheres

D &

twist

1-DOF 2-DOF 3-DOF o

1D-Sphere and Complex Plane

Interpolate orientation in 2D

1 angle
B but messy because modulo 2z

Use interpolation in
(complex) 2D plane

Orientation = complex
argument of the number

92

\Y
6
Quaternions Q/

Quaternions are unit vectors on 3{
sphere (in 4D)

Right-hand rotation of 8 radians about v
IS g =[cos(6/2),sin(6/2)e V]

B often noted [w, V]

Requires one real and three imaginary
components i, j,k

B =9, tqi+q,j+qgk=[W,Viw=¢,,v=(49,,9,,9;)
B wherei’=j =k’ =ijk=-1

B wis called scalar and vis called vector

93

Basic Operations Using Quaternions

Addition g+q =[W+w,v+V]
Multiplication geg' =[wew'—vev vxv +wev' +wev]
Conjugate 4 =[w,—v]

Length gl= (W] v
Norm N(@)=[g['=w+|v[
Inverse g =q /1q’=q /N(q)

Unit Quaternion

B ¢ is a unit quaternion if |¢g|=1and theng™' =¢
Identity

m [1, (0, 0, 0)] (when involving multiplication)
m [0, (O, 0, 0)] (when involving addition)

95

SLERP-Spherical Linear intERPolation

Interpolate between two quaternion rotations
along the shortest arc.

SLERP(p,q.1) < 2250 =0)e0) +gesin(te0)
sin(6) D

B where cos(f)=w ew +v ev q

If two orientations are too close, use linear
interpolation to avoid any divisions by zero.

99

Quaternion in Unity

They are compact, don't suffer from gimbal

lock and can easily be interpolated. Unity
internally uses Quaternions to represent all
rotations.

never access or modify individual

Quaternion components (Xx,y,z,w)

999% of the time are:

Quaternion.LookRotation
Quaternion.Angle
Quaternion.Euler
Quaternion.Slerp
Quaternion.FromToRotation
Quaternion.identity

100

Parametric Polynomial Curves

We will use parametric curves where
the functions are all polynomials in
the parameter.

x(u) = Zakuk

y(u) = Zbk”k
Advantages:

B easy (and efficient) to compute
B infinitely differentiable

101

Parametric Cubic Curves

Fix n=3

'he cubic polynomials that define a
curve segment 0 =[x(t) y() z(H)] are
of the form

x()=at’ +bt’+ct+d.,
= 3 2
yt)y=at +bt" +ct+d,

z(t)=at’ +bt’ +ct+d, 0<t<l.

102

Parametric Cubic Curves

he curve segment can be rewrite as

Ot)=[x(t) y(t) z(t)] =CeT

where 7= ¢ ¢ 1]

ax bx Cx dx
C = a, by c, d ’
_az bz CZ dz N

103

Tangent Vector

4

d T
g y(t) Ez(f)}

d =2
EQ(t)=Q(f)—{ 0

:%CoTzCO[%z 2t 1 O]T

= [3axt2 +2bt+c, 3at +2bt+c, 3at’+2bt+c,]T

104

Three Types of
Parametric Cubic Curves

Hermite Curves

B defined by two endpoints and two
endpoint tangent vectors

Bézier Curves

B defined by two endpoints and two
control points which control the
endpoint’ tangent vectors

Splines
B defined by four control points

105

Parametric Cubic Curves

Qt)=CeT

rewrite the coefficient matrix as c=GeM

B where M is a 4x4 basis matrix, G is
called the geometry matrix

B SO .
- s my, My My My |t
x(0) m., Mm,, M., M,y ||t
12 22 32 42
on =yt =G, G, G, G,]

My; My NMyy My | L
z(1)
B B my, My, My my, |l

4 endpoints or tangent vectors —

Parametric Cubic Curves

Ot)=GeMel =GeB

where B=MeTis called the blending

functions Bt
1.

107

- R
Hermite Curves

Rl
Given the endpoints pand P, and

tangent vectors at them R, and R,
What is
B Hermite basis matrix M,
B Hermite geometry vector G,
B Hermite blending functions B,
by definition

Gy :[Pl F, R R4]

108

o(?) £y
- R
Hermite Curves

since Q(0)=B =G, oM, [0 0 0 1]TR1
O)=P,=GyeMye[l 1 1 1]
Q'(0)=R =G,eM_ [0 0 1 0O
OM)=R,=G,eM,*[3 2 1 0]

GH:[Pl P, R R4]:GH.MH.

ot 1 e 1 e
L ELLA ek
e ||| e 11
S = N W

109

Hermite Curves

SO 01 0 3 [2 -3 0 I
010 2 2 3 0 0
M, = _
01 1 1 1 -2 1 0
1100/ |1 -1200

and 0)=G,,eM eT =G, B,

B, = -3 +1 —28+3 F-20+1t £

110

Computing a point

o)
P

[

SO R

Q(t):[Pl F, R R4]

Given two endpointsp andp, and two
tangent vectors at them R, and R,

111

Bézier Curves

Given the endpoints pand p and two
control points P, and1D which
determine the endpomts tangent

vectors, such that g =g'0)=32-P)
R, =0'D)=3(F,-PF)

What is

B Bézier basis matrix M,

B Bézier geometry vector G,

B Bézier blending functions B,

112

Bézier Curves

by definition G,=[Pp P P, P]
thenG,=[r A R R]

1 0 -3 0
0O 0 3 0

:[Pl P, P3 P4]‘O 0 0 —3 :GB.MHB
0 1 O 3

SO O9()=G oM, T =(G, oM)eM, eT
=Gpo(MyzoMy)eT =GyoMyeT

113

Bézier Curves

and -1 3 -3 1
oy |3 "6 30
° TR 13 3 0 0
B, 1 0 0 O
! O£ (1-1)°P +3t(1—1)* P, +3>(1-1)P, +°P,

B, [(l—t)3 3t(1-1)° 3t°(1-1) t3]T

A Bernstein polynomials
O >

1 t 114

Bernstein Polynomials

[he coefficients of the control points
are a set of functions called the
Bernstein polynomials: 0()= Zb(t)P

For degree 3, we have: , 4 —(- t)

. b (1) =3t(1—1)
b,(t)=3t"(1-1)

}& o
0 >

| [115

Bernstein Polynomials

Useful properties on the interval [0,1]:
B each is between 0 and 1

B sum of all four is exact 1
[0 a.k.a., a “partition of unity”

[hese together imply that the curve
lines within the convex hull of its
control points.

116

Convex Hull

Ps
o
/I O
/ =—
/ N
N
/ ~N
/ RS
/
/ P4

/===

‘—- — — — —
P>

—
S

117

Subdividing Bezier Curves

Ot)=(1-1) P +3t(1-1)’P, +3t>’(1-1)P, +°P,
How to draw the curve ?

How to convert it to be line-
segments ?

118

Subdividing Bezier Curves
(de Casteljau’s algorithm)

Ot)=(1-1) P +3t(1-1)’P, +3t>’(1-1)P, +°P,
How to draw the curve ?

How to convert it to be line-
segments ?

1. 1 3 3 1
)=—P+>P+>-P+-P

:l(l(l(P+P)+;(P +P))+— ((B+F)+- (P+P)))

2 22

119

Display Bezier Curves

DisplayBezier(P1,P2,P3,P4)
begin
if (FlatEnough(P1,P2,P3,P4))
Line(P1,P4);
else P
Subdivide(P[])=>L[],R[] 2
DisplayBezier(L1,L2,L3,L4);
DisplayBezier(R1,R2,R3,R4);

end;

Testing for Flatness

Compare total length of control

polygon to length of line connecting
endpoints

P,
B=B|+|5-B|+B-F]
R-P,

<l+¢

1§

121

What do we want for a curve?

Local control
Interpolation
Continuity

122

Local Control

One problem with Bézier curve is that every
control points affect every point on the
curve (except for endpoints). Moving a
single control point affects the whole curve.
We'd like to have
ocal control, that is,
nave each control
noint affect some
well-defined
neighborhood
around that point.

123

Interpolation

Bézier curves are approximating. The curve
does not necessarily pass through all the
control points. We’d like to have a curve
that is interpolating, that is, that always
passes through every control points.

124

Continuity
between Curve Segments

y(t)
{1
|
ol | ., |
2 1 0 11 x(t)
|
1—
/
I
\
N
2 e

125

Continuity
between Curve Segments

G° geometric continuity
B two curve segments join together

Gl geometric continuity

B the directions (but not necessarily the
magnitudes) of the two segments’
tangent vectors are equal at a join point

126

Continuity
between Curve Segments

C! continuous

B the tangent vectors of the two cubic
curve segments are equal (both
directions and magnitudes) at the
segments’ join point

Bt
t
t

C" continuous

he direction and magnitude of d"/dt"[O(1)]
nrough the nth derivative are equal at

ne join point

127

Continuity
between Curve Segments

y(t) join point

\

Co C,

> x(t)

128

Continuity
between Curve Segments

y(t) TV;

» X (1)

129

Bézier Curves — Splines

Bézier curves have C-infinity continuity on
their interiors, but we saw that they do not
exhibit local control or interpolate their
control points.

It is possible to define points that we want
to interpolate, and then solve for the Bézier
control points that will do the job.

But, you will need as many control points
as interpolated points -> high order
polynomials -> wiggly curves. (And you still
won’t have local control.)

130

Bézier Curves — Splines

We will splice together a curve from
individual Bezier segments. We call
these curves splines.

When splicing Bézier together, we
need to worry about continuity.

131

Ensuring C° continuity

Suppose we have a cubic Beézier
defined by (V,V,.7,,V,), and we want to
attach another curve W, Ww,,W,,W,) to it,
so that there is C° continuity at the

joint.
C":0,()=0,(0)

What constraint(s) does this place on
(W, W, , Wy, W) 2

OD=0,0)=V, =W

133

Ensuring C! continuity

Suppose we have a cubic Beézier
defined by (V,V,.7,,V,), and we want to
attach another curve W, Ww,,W,,W,) to it,
so that there is C! continuity at the

joint. C":0,(1) = 0,(0)
C 0, (1) =0, (0)
What constraint(s) does this place on
(W, W, W, W) 2
OD=0,0)=V,=W

0,()=0, ()= V,~V,=W,~W, =

The C! Bézier Spline

How then could we construct a curve
passing through a set of points p...P?

5

P
P 4
B Weé can specify the Bézier control points directly,

or we can devise a scheme for placing them
automatically...

135

Catmull-Rom Spline

If we set each derivative to be one half of
the vector between the previous and next
controls, we mull-Rom Splihe.

This leads

136

Catmull-Rom Basis Matrix

O(t)=GpeMyeT

:GB.

o o o =

0
—1

6
0

1 0 0
110
6
1, 2
6 6
0 1 0

137

e iitiae it il

Ensuring C2 continuity

Suppose we have a cubic Beézier
defined by (V,V,.7,,V,), and we want to
attach another curve W, Ww,,W,,W,) to it,
so that there is C2 continuity at the
joint.

O,D=0,0)=V, =W

O)=0,)=V, -V, =W,-W,

O, (D=0, 0)=V, =2V, +V, =W, =2W, +W,

U

W, =V, -4V, +47,

B-Spline

O Instead of specifying the Bézier control points
themselves, let’s specify the corners of the A-frames
in order to build a C2 continuous spline.

139

B-Spline

W, =V, 4V, +47,
=202V, =V;) =2V, =T1,)
=2W, - B,

140

B-Spline

O Instead of specifying the Bézier control points

themselves, let’s specify the corners of the A-frames
in order to build a C2 continuous spline.

141

B-Spline

O Instead of specifying the Bézier control points
themselves, let’s specify the corners of the A-frames
in order to build a C2 continuous spline.

% 1 2 1
4 ZE(Bl +§(B2 _B1)+B2 +§(B3 _Bz)j

= 1 142
% B, V=B +3(B-B)

B-Spline

O Instead of specifying the Bézier control points

themselves, let’s specify the corners of the A-frames
in order to build a C2 continuous spline.

& [0 These are called B-

Splines. The starting

v set of points are galled
B, B, de Boor points.

Uniform NonRational B-Splines

cubic B-Spline
B hasm+1control points p pP,...P ,m>3
B has m—2cubic polynomial curve segments

5, 045-.,0,
uniform

B the knots are spaced at equal intervals
of the parameter ¢

non-rational
B not rational cubic polynomial curves

145

Uniform NonRational B-Splines

curve segment ¢ is defined by points
b, b,, P, F, thus

B-Spline geometry matrix

Gle. :[Pi—3 P, B, E]’ 3<ism

if Ti:[(t_ti)3 (t-t) (t-t) lr

then 0.(t) = Gy, @ Mp o1, 1, <t=t,

146

Uniform NonRational B-Splines

so B-Spline basis matrix
-1 3 -3 1
113 -6 0 4
" 6/-3 3 3 1

1 0 0 0

B-Spline blending functions

BBS:é[(l-tf 3 =62 +4 30 +32+3t+1 £, 0<r<I

147

NonUniform NonRational B-Splines

the knot-value sequence is a
nondecreasing sequence

allow multiple knot and the number

of identical parameter is the
multiplicity

m Ex. (0,0,0,0,1,1,2,3,4,4,5,5,5,5)

SO

Q(t)=F_;e Bi—3,4 (H)+F_, Bi—2,4 (H)+F_ Bi—1,4 (£)+F o Bi,4 (7)

148

NonUniform NonRational B-Splines

0, otherwise

1, [St=t.,
Bi,l(t) — .

B, (1) = (t)-+- i B, (D)
t1+1 tz‘ z+2 _ti+1
—

Bi,3 (t) = 12() Bz’+1,2 (t)
tl'+2 tl' l+3 ti+1

[—t. =1
Bi,4(t): : BiS(t)—I_ s Bi+1,3(t)

to—t " toy =1

i+3 I i+4

where B, .(¢)is jth-order blending
function for weighting control point?

149

Knot Multiplicity & Continuity

since 9(,)is within the convex hull of
P,, P, and P

if £, =1¢.,, O()is within the convex hull of
P, P, and P_ and the convex hull of
F,,F,, and F,so it will lie on p_P_

ift, =¢,, =1, 0t)will lie on P

ifti =l =l =1y O)will lie on both £
and P, and the curve becomes broken

150

Knot Multiplicity & Continuity

mul
mul
mul
mul

ti
ti
ti
ti

O O 0O 0O

icity 1 :
Icity 2 :
icity 3 :
iIcity 4 :

C2 continuity
C! continuity
CO continuity
no continuity

151

NURBS:
NonUniform Rational B-Splines

rational

m x(¢), y(¢), and z(¢)are defined as the ratio
of two cubic polynomials

rational cubic polynomial curve

segments are ratios of polynomials

X(f)—W(t) y(f)—W(t) (t)_W(t)

can be Bézier, Hermite, or B-Splines

152

Parametric Curves in Unity

No script API supported in standard
assets

AnimationCurve

® Animation
Preview].“«]l“b[ﬂ]bﬂl 0 |
Simple Light Parameter :l Samples 60 1[@4] [+ 1
» |, Directional Light : Light.Color =
. Directional Light : Light.Intensity © =3
[Add Property] Edit Key...

/
/ - Clamped Auto Q
Auto

Free Smooth
Flat

Broken

Left Tangent
Right Tangent
Both Tangents

Parametric Curves in Unity

[1 Assets store

B-Spline Path®

MEWLIST You could be paying: Your price:
B-Spline Path $4 $5

1 user reviews Add to Cart

Taxes/VAT calculated at checkout

Timeline Controllable Path Curve Animation Tool

- Animate GameObject Position along B-Spline Curve in Unity
Timeline.

- Edit B-Spline Curve Graphically in SceneView.

- Curve Animation Preview in EditMode.

- Velocity Curve Control of Timeline Clip

154

