Geometric Modeling

Bing-Yu Chen
National Taiwan University
The University of Tokyo

Parametric Curves and Surfaces

\square Mathematical Curve Representation
\square Parametric Cubic Curves
\square Parametric Bi-Cubic Surfaces

The Utah Teapot

http://en.wikipedia.org/wiki/Utah_teapot http://www.sjbaker.org/teapot/

Mathematical Curve Representation

\square Explicit $y=f(x)$

- what if the curve is not a function, e.g., a circle?
\square Implicit $g(x, y)=0$
\square Parametric $(x(u), y(u))$
- For the circle:

Recall: Plane Equation

$\square A x+B y+C z+D=0$
a and (A, B, C) means the normal vector
so, given points P_{1}, P_{2}, and P_{3} on the plane

- $(A, B, C)=P_{1} P_{2} \times P_{1} P_{3}$
- what happened if $(A, B, C)=(0,0,0)$?
- the distance from a vertex (x, y, z) to the plane is

$$
d=\frac{A x+B y+C z+D}{\sqrt{A^{2}+B^{2}+C^{2}}}
$$

Parametric Polynomial Curves

\square We will use parametric curves where the functions are all polynomials in the parameter.

$$
\begin{aligned}
& x(u)=\sum_{k=0}^{n} a_{k} u^{k} \\
& y(u)=\sum_{k=0}^{n} b_{k} u^{k}
\end{aligned}
$$

\square Advantages:

- easy (and efficient) to compute
- infinitely differentiable

Parametric Cubic Curves

\square Fix $n=3$
\square The cubic polynomials that define a curve segment $Q(t)=\left[\begin{array}{lll}x(t) & y(t) & z(t)\end{array}\right]^{\mathrm{T}}$ are of the form

$$
\begin{aligned}
& x(t)=a_{x} t^{3}+b_{x} t^{2}+c_{x} t+d_{x} \\
& y(t)=a_{y} t^{3}+b_{y} t^{2}+c_{y} t+d_{y}, \\
& z(t)=a_{z} t^{3}+b_{z} t^{2}+c_{z} t+d_{z}, \quad 0 \leq t \leq 1 .
\end{aligned}
$$

Parametric Cubic Curves

\square The curve segment can be rewrite as

$$
Q(t)=\left[\begin{array}{lll}
x(t) & y(t) & z(t)
\end{array}\right]^{\mathrm{T}}=C \bullet T
$$

\square where $T=\left[\begin{array}{llll}t^{3} & t^{2} & t & 1\end{array}\right]^{T}$

$$
C=\left[\begin{array}{llll}
a_{x} & b_{x} & c_{x} & d_{x} \\
a_{y} & b_{y} & c_{y} & d_{y} \\
a_{z} & b_{z} & c_{z} & d_{z}
\end{array}\right]
$$

Tangent Vector

$$
\begin{aligned}
\frac{d}{d t} Q(t) & =Q^{\prime}(t)=\left[\begin{array}{lll}
\frac{d}{d t} x(t) & \frac{d}{d t} y(t) & \frac{d}{d t} z(t)
\end{array}\right]^{\mathrm{T}} \\
& =\frac{d}{d t} C \bullet T=C \bullet\left[\begin{array}{llll}
3 t^{2} & 2 t & 1 & 0
\end{array}\right]^{\mathrm{T}} \\
& =\left[\begin{array}{lll}
3 a_{x} t^{2}+2 b_{x} t+c_{x} & 3 a_{y} t^{2}+2 b_{y} t+c_{y} & 3 a_{z} t^{2}+2 b_{z} t+c_{z}
\end{array}\right]^{\mathrm{T}}
\end{aligned}
$$

Three Types of Parametric Cubic Curves

\square Hermite Curves

- defined by two endpoints and two endpoint tangent vectors
\square Bézier Curves
- defined by two endpoints and two control points which control the endpoint' tangent vectors
\square Splines
- defined by four control points

Parametric Cubic Curves

$\square Q(t)=C \bullet T$
\square rewrite the coefficient matrix as $C=G \bullet M$ - where M is a 4×4 basis matrix, G is called the geometry matrix
$Q(t)=\left[\begin{array}{l}x(t) \\ y(t) \\ z(t)\end{array}\right]=\left[\begin{array}{llll}G_{1} & G_{2} & G_{3} & G_{4}\end{array}\right]\left[\begin{array}{llll}m_{11} & m_{21} & m_{31} & m_{41} \\ m_{12} & m_{22} & m_{32} & m_{42} \\ m_{13} & m_{23} & m_{33} & m_{43} \\ m_{14} & m_{24} & m_{34} & m_{44}\end{array}\right]\left[\begin{array}{c}t^{3} \\ t^{2} \\ t \\ 1\end{array}\right]$

Parametric Cubic Curves

$\square Q(t)=G \bullet M \bullet T=G \bullet B$ where $B=M \bullet T$ is called the blending functions

Hermite Curves

\square Given the endpoints P_{1} and P_{4} and R^{1} tangent vectors at them R_{1} and R_{4}
\square What is

- Hermite basis matrix $M_{\text {H }}$
- Hermite geometry vector G_{H} - Hermite blending functions B_{H}
\square by definition

$$
G_{\mathrm{H}}=\left[\begin{array}{llll}
P_{1} & P_{4} & R_{1} & R_{4}
\end{array}\right]
$$

Hermite Curves

\square since $Q(0)=P_{1}=G_{\mathrm{H}} \bullet M_{\mathrm{H}} \bullet\left[\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right]^{\mathrm{R}_{1}}$

$$
\begin{gathered}
Q(1)=P_{4}=G_{\mathrm{H}} \bullet M_{\mathrm{H}} \bullet\left[\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right]^{\mathrm{T}} \\
Q^{\prime}(0)=R_{1}=G_{\mathrm{H}} \bullet M_{\mathrm{H}} \bullet\left[\begin{array}{llll}
0 & 0 & 1 & 0
\end{array}\right]^{\mathrm{T}} \\
Q^{\prime}(1)=R_{4}=G_{\mathrm{H}} \bullet M_{\mathrm{H}} \bullet\left[\begin{array}{llll}
3 & 2 & 1 & 0
\end{array}\right]^{\mathrm{T}} \\
G_{\mathrm{H}}=\left[\begin{array}{llll}
P_{1} & P_{4} & R_{1} & R_{4}
\end{array}\right]=G_{\mathrm{H}} \bullet M_{\mathrm{H}} \bullet\left[\begin{array}{llll}
0 & 1 & 0 & 3 \\
0 & 1 & 0 & 2 \\
0 & 1 & 1 & 1 \\
1 & 1 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Hermite Curves

\square SO $M_{\mathrm{H}}=\left[\begin{array}{llll}0 & 1 & 0 & 3 \\ 0 & 1 & 0 & 2 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0\end{array}\right]^{-1}=\left[\begin{array}{cccc}2 & -3 & 0 & 1 \\ -2 & 3 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 1 & -1 & 0 & 0\end{array}\right]$
\square and $Q(t)=G_{\mathrm{H}} \bullet M_{\mathrm{H}} \bullet T=G_{\mathrm{H}} \bullet B_{\mathrm{H}}$

$$
B_{\mathrm{H}}=\left[\begin{array}{llll}
2 t^{3}-3 t^{2}+1 & -2 t^{3}+3 t^{2} & t^{3}-2 t^{2}+t & t^{3}-t^{2}
\end{array}\right]^{\mathrm{T}}
$$

Computing a point

\square Given two endpoints P_{1} and P_{4} and two tangent vectors at them R_{1} and R_{4}
so

$$
\left.\begin{array}{llll}
Q(t) \\
P_{1} & P_{4} & R_{1} & R_{4}
\end{array}\right]\left[\begin{array}{ccccc}
2 & -3 & 0 & 1 \\
-2 & 3 & 0 & 0 \\
P_{1} & -2 & 1 & 0 \\
1 & -1 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
R_{4}^{3} \\
t^{2} \\
t^{2} \\
t \\
1 \\
1
\end{array}\right]
$$

Bézier Curves

\square Given the endpoints p_{1} and P_{4} and two control points P_{2} and P_{3} which determine the endpoints' tangent vectors, such that $R_{1}=Q^{\prime}(0)=3\left(P_{2}-P_{1}\right)$

$$
R_{4}=Q^{\prime}(1)=3\left(P_{4}-P_{3}\right)
$$

\square What is

- Bézier basis matrix M_{B}
- Bézier geometry vector G_{B}
- Bézier blending functions B_{B}

Bézier Curves

\square by definition $G_{\mathrm{B}}=\left[\begin{array}{llll}P_{1} & P_{2} & P_{3} & P_{4}\end{array}\right]$
\square then $G_{\mathrm{H}}=\left[\begin{array}{llll}P_{1} & P_{4} & R_{1} & R_{4}\end{array}\right]$

$$
=\left[\begin{array}{llll}
P_{1} & P_{2} & P_{3} & P_{4}
\end{array}\left[\begin{array}{cccc}
1 & 0 & -3 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & -3 \\
0 & 1 & 0 & 3
\end{array}\right]=G_{\mathrm{B}} \bullet M_{\mathrm{HB}}\right.
$$

\square so $Q(t)=G_{\mathrm{H}} \bullet M_{\mathrm{H}} \bullet T=\left(G_{\mathrm{B}} \bullet M_{\mathrm{HB}}\right) \bullet M_{\mathrm{H}} \bullet T$

$$
=G_{\mathrm{B}} \bullet\left(M_{\mathrm{HB}} \bullet M_{\mathrm{H}}\right) \bullet T=G_{\mathrm{B}} \bullet M_{\mathrm{B}} \bullet T
$$

Bézier Curves

Bernstein Polynomials

\square The coefficients of the control points are a set of functions called the Bernstein polynomials: $Q(t)=\sum_{i=0}^{n} b_{i}(t) P_{i}$

$$
\begin{aligned}
& b_{0}(t)=(1-t)^{3} \\
& b_{1}(t)=3 t(1-t)^{2} \\
& b_{2}(t)=3 t^{2}(1-t) \\
& b_{3}(t)=t^{3}
\end{aligned}
$$

Bernstein Polynomials

\square Useful properties on the interval [0,1]: - each is between 0 and 1

- sum of all four is exact 1
\square a.k.a., a "partition of unity"
\square These together imply that the curve lines within the convex hull of its control points.

Convex Hull

Subdividing Bézier Curves

$\square Q(t)=(1-t)^{3} P_{1}+3 t(1-t)^{2} P_{2}+3 t^{2}(1-t) P_{3}+t^{3} P_{4}$
\square How to draw the curve?
\square How to convert it to be line-segments?

Subdividing Bézier Curves (de Casteljau's algorithm)

$\square Q(t)=(1-t)^{3} P_{1}+3 t(1-t)^{2} P_{2}+3 t^{2}(1-t) P_{3}+t^{3} P_{4}$
\square How to draw the curve?
\square How to convert it to be line-segments?

$$
\begin{aligned}
Q\left(\frac{1}{2}\right) & =\frac{1}{8} P_{1}+\frac{3}{8} P_{2}+\frac{3}{8} P_{3}+\frac{1}{8} P_{4} \\
& =\frac{1}{2}\left(\frac{1}{2}\left(\frac{1}{2}\left(P_{1}+P_{2}\right)+\frac{1}{2}\left(P_{2}+P_{3}\right)\right)+\frac{1}{2}\left(\frac{1}{2}\left(P_{3}+P_{4}\right)+\frac{1}{2}\left(P_{2}+P_{3}\right)\right)\right)
\end{aligned}
$$

Display Bézier Curves

DisplayBezier(P1,P2,P3,P4) begin
if (FlatEnough(P1, P2, P3,P4)) Line(P1,P4);
else
Subdivide $(P[])=>L[], R[]$ DisplayBezier(L1,L2,L3,L4); DisplayBezier(R1,R2,R3,R4);
end;

Testing for Flatness

\square Compare total length of control polygon to length of line connecting endpoints

$$
\frac{\left|P_{1}-P_{2}\right|+\left|P_{2}-P_{3}\right|+\left|P_{3}-P_{4}\right|}{\left|P_{1}-P_{4}\right|}<1+\varepsilon
$$

$$
\stackrel{O}{P}_{1}
$$

P_{4}

What do we want for a curve?
\square Local control
\square Interpolation
\square Continuity

Local Control

\square One problem with Bézier curve is that every control points affect every point on the curve (except for endpoints). Moving a single control point affects the whole curve.
\square We'd like to have local control, that is, have each control point affect some well-defined neighborhood around that point.

Interpolation

\square Bézier curves are approximating. The curve does not necessarily pass through all the control points. We'd like to have a curve that is interpolating, that is, that always passes through every control points.

Continuity
 between Curve Segments

Continuity
 between Curve Segments

$\square G^{0}$ geometric continuity

- two curve segments join together
$\square G^{1}$ geometric continuity
- the directions (but not necessarily the magnitudes) of the two segments' tangent vectors are equal at a join point

Continuity
 between Curve Segments

$\square C^{1}$ continuous

- the tangent vectors of the two cubic curve segments are equal (both directions and magnitudes) at the segments' join point
$\square C^{n}$ continuous
- the direction and magnitude of $d^{n} / d t^{n}[Q(t)]$ through the nth derivative are equal at the join point

Continuity between Curve Segments

Continuity between Curve Segments

Bézier Curves \rightarrow Splines

\square Bézier curves have C-infinity continuity on their interiors, but we saw that they do not exhibit local control or interpolate their control points.
\square It is possible to define points that we want to interpolate, and then solve for the Bézier control points that will do the job.
\square But, you will need as many control points as interpolated points $->$ high order polynomials -> wiggly curves. (And you still won't have local control.)

Bézier Curves \rightarrow Splines

\square We will splice together a curve from individual Bézier segments. We call these curves splines.
\square When splicing Bézier together, we need to worry about continuity.

Ensuring C^{0} continuity

\square Suppose we have a cubic Bézier defined by $\left(V_{1}, V_{2}, V_{3}, V_{4}\right)$, and we want to attach another curve $\left(W_{1}, W_{2}, W_{3}, W_{4}\right)$ to it, so that there is C^{0} continuity at the joint.

$$
C^{0}: Q_{V}(1)=Q_{W}(0)
$$

\square What constraint(s) does this place on $\left(W_{1}, W_{2}, W_{3}, W_{4}\right)$?

$$
Q_{V}(1)=Q_{w}(0) \Rightarrow V_{4}=W_{1}
$$

Ensuring C^{1} continuity

\square Suppose we have a cubic Bézier defined by $\left(V_{1}, V_{2}, V_{3}, V_{4}\right)$, and we want to attach another curve $\left(W_{1}, W_{2}, W_{3}, W_{4}\right)$ to it, so that there is C^{1} continuity at the joint. $\quad C^{0}: Q_{V}(1)=Q_{w}(0)$

$$
C^{1}: Q_{v}^{\prime}(1)=Q_{W}^{\prime}(0)
$$

\square What constraint(s) does this place on $\left(W_{1}, W_{2}, W_{3}, W_{4}\right)$?

$$
\begin{aligned}
& Q_{V}(1)=Q_{W}(0) \Rightarrow V_{4}=W_{1} \\
& Q_{V}^{\prime}(1)=Q_{W}^{\prime}(0) \Rightarrow V_{4}-V_{3}=W_{2}-W_{1}
\end{aligned}
$$

The C ${ }^{1}$ Bézier Spline

\square How then could we construct a curve passing through a set of points $P_{1} \ldots P_{n}$?

- We can specify the Bézier control points directly, or we can devise a scheme for placing them automatically...

Catmull-Rom Spline

\square If we set each derivative to be one half of the vector between the previous and next controls, we get a Côtmull-Rom Splíhe.
\square This leads 40 :
$V_{1}=P_{2}$
$V_{2}=P_{2}+\frac{1}{6}\left(P_{3}-P_{1}\right)$
$V_{3}=P_{3}^{\prime}-\frac{1}{6}\left(P_{4}-P_{2}\right)$
$V_{4}=P_{3}$

Catmull-Rom Basis Matrix

$$
\begin{aligned}
Q(t) & =G_{\mathrm{B}} \bullet M_{\mathrm{B}} \bullet T \\
& =G_{\mathrm{B}} \bullet\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] \bullet T G_{\mathrm{B}}=\left[\begin{array}{l}
V_{1} \\
V_{2} \\
V_{3} \\
V_{4}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\frac{-1}{6} \\
0 \\
Q(t)
\end{array}=\left[\begin{array}{llll}
P_{1} & P_{2} & P_{3} & P_{4}
\end{array}\right] \frac{1}{2}\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
2 & -5 & 4 & -1 \\
-1 & 0 & 1 & 0 \\
0 & 2 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
t^{3} \\
t^{2} \\
t \\
1
\end{array}\right]\right.
\end{aligned}
$$

Ensuring C^{2} continuity

\square Suppose we have a cubic Bézier defined by $\left(V_{1}, V_{2}, V_{3}, V_{4}\right)$, and we want to attach another curve $\left(W_{1}, W_{2}, W_{3}, W_{4}\right)$ to it, so that there is C^{2} continuity at the joint.

$$
\begin{aligned}
& Q_{V}(1)=Q_{W}(0) \Rightarrow V_{4}=W_{1} \\
& Q_{V}^{\prime}(1)=Q_{W}^{\prime}(0) \Rightarrow V_{4}-V_{3}=W_{2}-W_{1} \\
& Q_{V}^{\prime \prime}(1)=Q_{W}^{\prime \prime}(0) \Rightarrow V_{2}-2 V_{3}+V_{4}=W_{1}-2 W_{2}+W_{3} \\
& \Downarrow \\
& W_{3}=V_{2}-4 V_{3}+4 V_{4}
\end{aligned}
$$

B-Spline

\square Instead of specifying the Bézier control points themselves, let's specify the corners of the A-frames in order to build a C^{2} continuous spline.

B-Spline

$$
\begin{aligned}
W_{3} & =V_{2}-4 V_{3}+4 V_{4} \\
& =2\left(2 V_{4}-V_{3}\right)-\left(2 V_{3}-V_{2}\right) \\
& =2 W_{2}-B_{2}
\end{aligned}
$$

B-Spline

\square Instead of specifying the Bézier control points themselves, let's specify the corners of the A-frames in order to build a C^{2} continuous spline.

B-Spline

\square Instead of specifying the Bézier control points themselves, let's specify the corners of the A-frames in order to build a C^{2} continuous spline.

B-Spline

\square Instead of specifying the Bézier control points themselves, let's specify the corners of the A-frames in order to build a C^{2} continuous spline.

These are called BSplines. The starting set of points are called de Boor points.

B-Spline

Uniform NonRational B-Splines

\square cubic B-Spline

- has $m+1$ control points $P_{0}, P_{1}, \ldots, P_{m}, m \geq 3$
- has m-2cubic polynomial curve segments
$Q_{3}, Q_{4}, \ldots, Q_{m}$
\square uniform
the knots are spaced at equal intervals of the parameter t
\square non-rational
- not rational cubic polynomial curves

Uniform NonRational B-Splines

\square curve segment Q_{i} is defined by points $P_{i-3}, P_{i-2}, P_{i-1}, P_{i}$, thus
\square B-Spline geometry matrix
$G_{\mathrm{Bs}_{i}}=\left[\begin{array}{llll}P_{i-3} & P_{i-2} & P_{i-1} & P_{i}\end{array}\right], \quad 3 \leq i \leq m$
\square if $T_{i}=\left[\begin{array}{llll}\left(t-t_{i}\right)^{3} & \left(t-t_{i}\right)^{2} & \left(t-t_{i}\right) & 1\end{array}\right]^{\top}$
\square then $Q_{i}(t)=G_{\mathrm{Bs}_{i}} \bullet M_{\mathrm{Bs}} \bullet T_{i}, \quad t_{i} \leq t \leq t_{i+1}$

Uniform NonRational B-Splines

\square so B-Spline basis matrix

$$
M_{\mathrm{Bs}}=\frac{1}{6}\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 0 & 4 \\
-3 & 3 & 3 & 1 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

\square B-Spline blending functions

$$
B_{\mathrm{Bs}}=\frac{1}{6}\left[\begin{array}{llll}
(1-t)^{3} & 3 t^{3}-6 t^{2}+4 & -3 t^{3}+3 t^{2}+3 t+1 & t^{3}
\end{array}\right]^{\mathrm{T}}, \quad 0 \leq t \leq 1
$$

NonUniform NonRational B-Splines

\square the knot-value sequence is a nondecreasing sequence
\square allow multiple knot and the number of identical parameter is the multiplicity

- Ex. $(0,0,0,0,1,1,2,3,4,4,5,5,5,5)$
\square so

$$
Q_{i}(t)=P_{i-3} \bullet B_{i-3,4}(t)+P_{i-2} \bullet B_{i-2,4}(t)+P_{i-1} \bullet B_{i-1,4}(t)+P_{i} \bullet B_{i, 4}(t)
$$

NonUniform NonRational B-Splines

\square where $B_{i, j}(t)$ is j th-order blending function for weighting control point P_{i}

$$
\begin{aligned}
& B_{i, 1}(t)= \begin{cases}1, & t_{i} \leq t \leq t_{i+1} \\
0, & \text { otherwise }\end{cases} \\
& B_{i, 2}(t)=\frac{t-t_{i}}{t_{i+1}-t_{i}} B_{i, 1}(t)+\frac{t_{i+2}-t}{t_{i+2}-t_{i+1}} B_{i+1,1}(t) \\
& B_{i, 3}(t)=\frac{t-t_{i}}{t_{i+2}-t_{i}} B_{i, 2}(t)+\frac{t_{i+3}-t}{t_{i+3}-t_{i+1}} B_{i+1,2}(t) \\
& B_{i, 4}(t)=\frac{t-t_{i}}{t_{i+3}-t_{i}} B_{i, 3}(t)+\frac{t_{i+4}-t}{t_{i+4}-t_{i+1}} B_{i+1,3}(t)
\end{aligned}
$$

Knot Multiplicity \& Continuity

\square since $Q\left(t_{i}\right)$ is within the convex hull of P_{i-3}, P_{i-2}, and P_{i-1}
\square if $t_{i}=t_{i+1}, Q\left(t_{i}\right)$ is within the convex hull of P_{i-3}, P_{i-2} and P_{i-1} and the convex hull of P_{i-2}, P_{i-1}, and $P_{i,}$, so it will lie on $\overline{P_{i-2} P_{i-1}}$
\square if $t_{i}=t_{i+1}=t_{i+2}, Q\left(t_{i}\right)$ will lie on P_{i-1}
\square if $t_{i}=t_{i+1}=t_{i+2}=t_{i+3} Q\left(t_{i}\right)$ will lie on both P_{i-1} and P_{i}, and the curve becomes broken

Knot Multiplicity \& Continuity

\square multiplicity $1: C^{2}$ continuity
\square multiplicity 2 : C^{1} continuity
\square multiplicity 3: C^{0} continuity
\square multiplicity 4 : no continuity

NURBS:
 NonUniform Rational B-Splines

\square rational

$\square x(t), y(t)$, and $z(t)$ are defined as the ratio of two cubic polynomials
\square rational cubic polynomial curve segments are ratios of polynomials

$$
x(t)=\frac{X(t)}{W(t)} \quad y(t)=\frac{Y(t)}{W(t)} \quad z(t)=\frac{Z(t)}{W(t)}
$$

\square can be Bézier, Hermite, or B-Splines

Parametric Bi-Cubic Surfaces

\square parametric cubic curves are $Q(t)=G \bullet M \bullet T$
\square so, parametric bi-cubic surfaces are

$$
Q(s)=G \bullet M \bullet S
$$

\square if we allow the points in G to vary in 3D along some path, then

$$
Q(s, t)=\left[\begin{array}{llll}
G_{1}(t) & G_{2}(t) & G_{3}(t) & G_{4}(t)
\end{array}\right] \bullet M \bullet S
$$

\square since $G_{i}(t)$ are cubics

$$
G_{i}(t)=\boldsymbol{G}_{i} \bullet M \bullet T, \text { where } \boldsymbol{G}_{i}=\left[\begin{array}{llll}
\boldsymbol{g}_{i 1} & \boldsymbol{g}_{i 2} & \boldsymbol{g}_{i 3} & \boldsymbol{g}_{i 4}
\end{array}\right]
$$

Parametric Bi-Cubic Surfaces

\square so

$$
\begin{aligned}
Q(s, t) & =T^{\mathrm{T}} \bullet M^{\mathrm{T}} \bullet\left[\begin{array}{llll}
\boldsymbol{g}_{11} & \boldsymbol{g}_{21} & \boldsymbol{g}_{31} & \boldsymbol{g}_{41} \\
\boldsymbol{g}_{12} & \boldsymbol{g}_{22} & \boldsymbol{g}_{32} & \boldsymbol{g}_{42} \\
\boldsymbol{g}_{13} & \boldsymbol{g}_{23} & \boldsymbol{g}_{33} & \boldsymbol{g}_{43} \\
\boldsymbol{g}_{14} & \boldsymbol{g}_{24} & \boldsymbol{g}_{34} & \boldsymbol{g}_{44}
\end{array}\right] \bullet M \bullet S \\
& =T^{\mathrm{T}} \bullet M^{\mathrm{T}} \bullet \boldsymbol{G} \bullet M \bullet S, \quad 0 \leq s, t \leq 1
\end{aligned}
$$

Hermite Surfaces

Bézier Surfaces

Normals to Surfaces

$$
\left.\left.\begin{array}{rl}
\frac{\partial}{\partial s} Q(s, t) & =T^{\mathrm{T}} \cdot M^{\mathrm{T}} \cdot G \bullet M \cdot \frac{\partial}{\partial s} S \\
& =T^{\mathrm{T}} \cdot M^{\mathrm{T}} \cdot G \bullet M \bullet\left[\begin{array}{lll}
3 s^{2} & 2 s & 1
\end{array}\right.
\end{array}\right]^{\mathrm{T}}{ }^{\mathrm{T}}\right)
$$

$$
\frac{\partial}{\partial s} Q(s, t) \times \frac{\partial}{\partial t} Q(s, t) \ldots \text { normal vector }
$$

