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Parametric Curves and Surfaces 

 Mathematical Curve Representation  

 Parametric Cubic Curves 

 Parametric Bi-Cubic Surfaces 



The Utah Teapot 

http://en.wikipedia.org/wiki/Utah_teapot 
http://www.sjbaker.org/teapot/ 



Mathematical Curve Representation 

 Explicit y=f(x) 

 what if the curve is not a function, 
e.g., a circle? 

 Implicit g(x,y)=0 

 

 Parametric (x(u),y(u)) 

 For the circle: 



Recall: Plane Equation 

   

 and            means the normal vector 

 so, given points   ,   , and    on the plane 

   

 what happened if                     ? 

 the distance from a vertex          to the 
plane is 
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Parametric Polynomial Curves 

 We will use parametric curves where 
the functions are all polynomials in 
the parameter. 

 

 

 

 Advantages: 
 easy (and efficient) to compute 

 infinitely differentiable 
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Parametric Cubic Curves 

 Fix 

 The cubic polynomials that define a 
curve segment                            are 
of the form 
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Parametric Cubic Curves 

 The curve segment can be rewrite as 
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Tangent Vector 
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Three Types of 
Parametric Cubic Curves 

 Hermite Curves 

 defined by two endpoints and two 
endpoint tangent vectors 

 Bézier Curves 

 defined by two endpoints and two 
control points which control the 
endpoint’ tangent vectors 

 Splines 

 defined by four control points 



Parametric Cubic Curves 

   

 rewrite the coefficient matrix as 

 where    is a 4x4 basis matrix,     is 
called the geometry matrix 

 so 
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Parametric Cubic Curves 

   

 where            is called the blending 
functions 
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Hermite Curves 

 Given the endpoints   and    and 
tangent vectors at them    and 

 What is 

 Hermite basis matrix 

 Hermite geometry vector 

 Hermite blending functions 

 by definition 
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Hermite Curves 

 since  
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Hermite Curves 

 so 
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Computing a point 

 Given two endpoints   and    and two 
tangent vectors at them    and 
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Bézier Curves 

 Given the endpoints   and    and two 
control points    and   which 
determine the endpoints’ tangent 
vectors, such that 

 

 What is 
 Bézier basis matrix 

 Bézier geometry vector 

 Bézier blending functions 
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Bézier Curves 

 by definition 

 then 
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Bézier Curves 

 and 
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Bernstein Polynomials 

 The coefficients of the control points 
are a set of functions called the 
Bernstein polynomials: 

 For degree 3, we have: 
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Bernstein Polynomials 

 Useful properties on the interval [0,1]: 

 each is between 0 and 1 

 sum of all four is exact 1 

 a.k.a., a “partition of unity” 

 These together imply that the curve 
lines within the convex hull of its 
control points. 



Convex Hull 
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Subdividing Bézier Curves 
 

   

 How to draw the curve ? 

 How to convert it to be line-segments ? 
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Subdividing Bézier Curves 
(de Casteljau’s algorithm) 

   

 How to draw the curve ? 

 How to convert it to be line-segments ? 
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Display Bézier Curves 

DisplayBezier(P1,P2,P3,P4) 

begin 
if (FlatEnough(P1,P2,P3,P4)) 
    Line(P1,P4); 
else 
    Subdivide(P[])=>L[],R[] 
    DisplayBezier(L1,L2,L3,L4); 
    DisplayBezier(R1,R2,R3,R4); 

end; 
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Testing for Flatness 

 Compare total length of control 
polygon to length of line connecting 
endpoints 
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What do we want for a curve? 

 Local control 

 Interpolation 

 Continuity 



Local Control 

 One problem with Bézier curve is that every 
control points affect every point on the 
curve (except for endpoints). Moving a 
single control point affects the whole curve. 

 We’d like to have 
local control, that is, 
have each control 
point affect some 
well-defined 
neighborhood 
around that point. 



Interpolation 

 Bézier curves are approximating. The curve 
does not necessarily pass through all the 
control points. We’d like to have a curve 
that is interpolating, that is, that always 
passes through every control points. 



Continuity 
between Curve Segments 
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Continuity 
between Curve Segments 

 G0 geometric continuity 

 two curve segments join together 

 

 G1 geometric continuity 

 the directions (but not necessarily the 
magnitudes) of the two segments’ 
tangent vectors are equal at a join point 



Continuity 
between Curve Segments 

 C1 continuous 

 the tangent vectors of the two cubic 
curve segments are equal (both 
directions and magnitudes) at the 
segments’ join point 

 Cn continuous 

 the direction and magnitude of 
through the nth derivative are equal at 
the join point 
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Continuity 
between Curve Segments 
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Continuity 
between Curve Segments 

x(t) 

y(t) TV3 

TV1=TV2 

P1 

P2 

P3 

Q1 

Q2 

Q3 



Bézier Curves → Splines 

 Bézier curves have C-infinity continuity on 
their interiors, but we saw that they do not 
exhibit local control or interpolate their 
control points. 

 It is possible to define points that we want 
to interpolate, and then solve for the Bézier 
control points that will do the job. 

 But, you will need as many control points 
as interpolated points -> high order 
polynomials -> wiggly curves. (And you still 
won’t have local control.) 



Bézier Curves → Splines 

 We will splice together a curve from 
individual Bézier segments. We call 
these curves splines. 

 When splicing Bézier together, we 
need to worry about continuity. 



Ensuring C0 continuity 

 Suppose we have a cubic Bézier 
defined by              , and we want to 
attach another curve                 to it, 
so that there is C0 continuity at the 
joint. 

 

 What constraint(s) does this place on 
                ? 

1 2 3 4( , , , )V V V V

1 2 3 4( , , , )W W W W

0 : (1) (0)V WC Q Q

1 2 3 4( , , , )W W W W

4 1(1) (0)V WQ Q V W  



Ensuring C1 continuity 

 Suppose we have a cubic Bézier 
defined by              , and we want to 
attach another curve                 to it, 
so that there is C1 continuity at the 
joint. 

 

 What constraint(s) does this place on 
                ? 
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The C1 Bézier Spline 

 How then could we construct a curve 
passing through a set of points       ? 

 

 

 

 

 

 We can specify the Bézier control points directly, 
or we can devise a scheme for placing them 
automatically… 
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Catmull-Rom Spline 

 If we set each derivative to be one half of 
the vector between the previous and next 
controls, we get a Catmull-Rom Spline. 

 This leads to: 
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Catmull-Rom Basis Matrix 
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Ensuring C2 continuity 

 Suppose we have a cubic Bézier 
defined by              , and we want to 
attach another curve                 to it, 
so that there is C2 continuity at the 
joint. 
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B-Spline 

 Instead of specifying the Bézier control points 
themselves, let’s specify the corners of the A-frames 
in order to build a C2 continuous spline. 



B-Spline 
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B-Spline 

 Instead of specifying the Bézier control points 
themselves, let’s specify the corners of the A-frames 
in order to build a C2 continuous spline. 
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B-Spline 

 Instead of specifying the Bézier control points 
themselves, let’s specify the corners of the A-frames 
in order to build a C2 continuous spline. 
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B-Spline 

 Instead of specifying the Bézier control points 
themselves, let’s specify the corners of the A-frames 
in order to build a C2 continuous spline. 
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 These are called B-
Splines. The starting 
set of points are called 
de Boor points. 



B-Spline 
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Uniform NonRational B-Splines 

 cubic B-Spline 
 has       control points 

 has       cubic polynomial curve segments 
   

 uniform 
 the knots are spaced at equal intervals 

of the parameter 

 non-rational 
 not rational cubic polynomial curves 
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Uniform NonRational B-Splines 

 curve segment    is defined by points 
               , thus 

 B-Spline geometry matrix 
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Uniform NonRational B-Splines 

 so B-Spline basis matrix 

 

 

 

 

 B-Spline blending functions 
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NonUniform NonRational B-Splines 

 the knot-value sequence is a 
nondecreasing sequence 

 allow multiple knot and the number 
of identical parameter is the 
multiplicity 

 Ex. (0,0,0,0,1,1,2,3,4,4,5,5,5,5) 

 so 
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NonUniform NonRational B-Splines 

 where        is jth-order blending 
function for weighting control point 
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Knot Multiplicity & Continuity 

 since      is within the convex hull of 
    ,    , and 

 if       ,      is within the convex hull of 
    ,    , and     and the convex hull of 
    ,    , and   ,so it will lie on 

 if             ,      will lie on 

 if                  ,      will lie on both 
and   , and the curve becomes broken 
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Knot Multiplicity & Continuity 

 multiplicity 1 : C2 continuity 

 multiplicity 2 : C1 continuity 

 multiplicity 3 : C0 continuity 

 multiplicity 4 : no continuity 



NURBS: 
NonUniform Rational B-Splines 

 rational 

     ,      , and      are defined as the ratio 
of two cubic polynomials 

 rational cubic polynomial curve 
segments are ratios of polynomials 

 

 

 can be Bézier, Hermite, or B-Splines 
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Parametric Bi-Cubic Surfaces 

 parametric cubic curves are 

 so, parametric bi-cubic surfaces are  

 

 if we allow the points in    to vary in 
3D along some path, then 

 

 since      are cubics 

TMGtQ )(

SMGsQ )(

  SMtGtGtGtGtsQ  )()()()(),( 4321

G

)(tGi

 4321  where,)( iiiiiii TMtG ggggGG 



Parametric Bi-Cubic Surfaces 
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Hermite Surfaces 
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Bézier Surfaces 
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Normals to Surfaces 
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normal vector 


