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Motivation

Interactive rendering of large-scale
geometric datasets is important

B Scientific and medical visualization

B Architectural and industrial CAD

B Training (military and otherwise)

B Entertainment




Motivation:
Big Models

[he problem:

B Polygonal models are often too complex
to render at interactive rates

Even worse:

B Incredibly, models are getting bigger as
fast as hardware is getting faster...




Big Models:
Submarine Torpedo Room

0 700,000 polygons

Courtesy General Dynamics, Electric Boat Div.



Big Models:
Coal-fired Power Plant

13 million polygons
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Big Models:
Double Eagle Container Ship

82 million polygons
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Courtesy Newport News Shipbuilding



Big Models:
The Digital Michelangelo Project
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David:
56,230,343 polygons

St. Matthew:
372,42‘2",615 polygons




Level of Detail:
The Basic Idea

One solution:

B Simplify the polygonal geometry of small
or distant objects

B Known as Level of Detail or LOD

[0 A.k.a. polygonal simplification, geometric
simplification, mesh reduction,
multiresolution modeling, ...




Level of Detail:
Traditional Approach

[0 Create /levels of detail (LODs) of
objects:

69,451 polys 2,502 polys 251 polys 76 polys




Level of Detail:
Traditional Approach

[1 Distant objects use coarser LODs:




Traditional Approach:
Discrete Level of Detail

[raditional LOD in a nutshell:

B Create LODs for each object separately
In @ preprocess

B At run-time, pick each object’s LOD
according to the object’s distance (or
similar criterion)

Since LODs are created offline at
fixed resolutions, this can be referred
as Discrete LOD




Discrete LOD:
Advantages

Simplest programming model;
decouples simplification and
rendering

B L OD creation need not address real-time
rendering constraints

B Run-time rendering need only pick LODs




Discrete LOD:
Advantages

Fits modern graphics hardware well
B Easy to compile each LOD into triangle
strips, display lists, vertex arrays, ...

B These render much faster than
unorganized polygons on today’s
hardware (3-5 x)




Discrete LOD:
Disadvantages

So why use anything but discrete LOD?

Answer: sometimes discrete LOD not
suited for drastic simplification

Some problem cases:

B Terrain flyovers

B Volumetric isosurfaces

B Super-detailed range scans
B Massive CAD models




Drastic Simplification:
The Problem With Large Objects

Courtesy IBM and ACOG



Drastic Simplification:
The Problem With Small Objects

Courtesy Electric Boat



Drastic Simplification:
The Problem With Topology

Courtesy University of Utah



Drastic Simplification

For drastic simplification:

B Large objects must be subdivided
B Small objects must be combined
B Topology must be simplified

Difficult or impossible with discrete LOD




Continuous Level of Detail

A departure from the traditional static
approach:

B Discrete LOD: create individual LODs in a
Dreprocess

B Continuous LOD: create data structure
from which a desired level of detail can
be extracted at run time.




Continuous LOD:
Advantages

Better granularity > better fidelity

B LOD is specified exactly, not chosen from
a few pre-created options

B Thus objects use no more polygons than
necessary, which frees up polygons for
other objects

B Net result: better resource utilization,
leading to better overall fidelity/polygon




Continuous LOD:
Advantages

Better granularity - smoother
transitions

B Switching between traditional LODs can
introduce visual “popping” effect

B Continuous LOD can adjust detail
gradually and incrementally, reducing
visual pops
[0 Can even geomorph the fine-grained

simplification operations over several
frames to eliminate pops [Hoppe 96, 98]




Continuous LOD:
Advantages

Supports progressive transmission

B Progressive Meshes [Hoppe 97]
B Progressive Forest Split Compression [Taubin 98]

Leads to view-dependent LOD

B Use current view parameters to select
best representation for the current view

B Single objects may thus span several
levels of detail




Typical Curve & Surface
Simplification Problems

Typical Curve Simplification Problem

B Given curve with n vertices, find an accurate
approximation using m vertices.

B Given curve with n vertices, find a compact
approximation with error < €.

Typical Surface Simplification Problem

B Given surface with n vertices, find accurate
approximation using m vertices.

B Given surface with n vertices, find a compact
approximation with error < €.




Simplification Problem Characteristics
- What problem do you want to solve?

topology of output
B curve or surface
topology & geometry of input

B points, function f(x), curve, height field
f(x,y), manifold, surface

other attributes:
B color, texture

domain of output
B subset of input vertices?




Simplification Problem Characteristics
- What problem do you want to solve?

topology of triangulation
B uniform, hierarchical, general

approximating elements

B linear, quadratic, cubic, ...,other
error metric

B L2 = sum of squared, Loo = maximum
constraints

B most accurate using a given number of elements
or amount of memory

B smallest satisfying a given error tolerance




Simplification Problem Characteristics
- How do you want to solve the problem?

speed / quality tradeoff

B optimal (& slow) or sub-optimal (& fast)?
refinement / decimation

B top down or bottom up?

number of passes
B one pass or multiple passes?

triangulation

B hierarchical triangulation, Delaunay triangulation,
data-dependent triangulation, or other?




Performance Requirements

Offline

B Generate model at given level(s) of detail
B Focus on quality

Real-time

B Generate model at given level(s) of detail
B Focus on speed

B Requires preprocessing

B Time/space/quality tradeoff




Taxonomy of
Surface Simplification Methods

[0 Height Field / Parametric Simplification
B subsampling, pyramid, quadtree methods

greedy insertion

O Manifold Simplification

vertex decimation
vertex decimation with point lists

wavelet
edge collapse

[0 Non-Manifold Simplification

vertex clustering

Garland97’

Garland95]

[ Schroeder92]

:Eck95%
'Lounsbery94]

[Hoppe93]
'Ronfard96]
' Hoppe96]

Gueziec95]

[Rossighac93]




Methodology

Sequence of local operations

B Involve near neighbors - only small
patch affected in each operation

B Each operation introduces error
B Find and apply operation which
introduces the least error

—




Simplification Operations

Decimation
B Vertex removal
[l v < v-1
O f < f-2
—
—_

B Remaining vertices - subset of original
vertex set




Simplification Operations

Decimation —_
B Edge collapse

v eev-1

O f < f-2 —
B Triangle collapse

0 v e v-2 —

0 f<f-4

—>

B \ertices may move




Simplification Operations

Contraction —
B Pair contraction

B Cluster contraction

(set of vertices) % % —

B Vertices may move




Error Control

Local error:

B Compare new patch with previous iteration
[J Fast
[0 Accumulates error
[0 Memory-less

Global error:

B Compare new patch with original mesh
[0 Slow
[0 Better quality control
[0 Can be used as termination condition

[0 Must remember the original mesh throughout
the algorithm




Local vs. Global Error

2000 faces 488 faces 488 faces
(local error) (global error)




Simplification Error Metrics

Measures
B Distance to plane
B Curvature

Usually approximated
B Average plane
B Discrete curvature




The Basic Algorithm

Repeat
B Select the element with minimal error

B Perform simplification operation
[0 (remove/contract)

B Update error
OO0 (local/global)

Until mesh size / quality is achieved




Implementation Details

Vertices/Edges/Faces data structure

B Easy access from each element to
neighboring elements

Use priority queue (e.g. heap)
B Fast access to element with minimal error
B Fast update




Vertex Removal Algorithm

Simplification operation:
B \ertex removal

Error metric:
B Distance to average plane

May preserve mesh features

(creases)




Algorithm Outline

Characterize local topology/geometry
Classify vertices as removable or not

Repeat

B Remove vertex

B Triangulate resulting hole

B Update error of affected vertices

Until reduction goal is met




Characterizing
Local Topology / Geometry

Vertex Classification

'~ %-%

Corner

T

Complex Interior

Boundary Simple




Characterizing
Local Topology / Geometry

Feature edge exists if the angle
between the surface normals of two
adjacent triangles is greater than a
user-specified “feature angle”.

E = Feature Edge




Characterizing
Local Topology / Geometry

Determine whether the given vertex
is @ potential candidate for deletion

All vertices except complex vertices
become candidates for deletion




Decimation Criterion

Evax — user defined parameter

Simple Vertex

B Distance of vertex to the face loop average
plane < Eyax

Boundary & Interior Vertex

B Distance of vertex to the new
boundary/edge < EMAX

G_2NA j D XA
SACINTTT YA

n.:triangle normal, X.:centers, A :areas

average plane ( = e (V —X)|,V:vertex of considered



Decimation Criterion

Corner Vertex ?

o =

B Corner vertices are usually not deleted to
keep the sharp features.




Triangulation

If a vertex is eliminated, the loop
created by removing the vertex is re-
triangulated.

Every loop is star shaped: recursive
loop splitting triangulation schemes
are used.

If a loop cannot be re-triangulated,
the vertex generating the loop is not
removed.

Definition: A polygon P in which there exists an interior point p
such that all the boundary points of P are visible from p.



Triangulation

After deleting a vertex and associated
triangles create 1 or 2 loops

1 loop
B Simple or Boundary Vertex

2 loops %
B Interior Edge Vertex 1
K=y O




Triangulation

A triangulation of set of points in the
plane is a partition of the convex hull to
triangles whose vertices are the points,
and are empty of other points.

There are an exponential number of
triangulations of a point set.

=S 88 &

Definition: the minimal convex set containing a set of points P.



Triangulation

Formal Definition

B maximal planar subdivision

[0 a subdivision S such that no edge
connecting two vertices can be added to S
without destroying its planarity

B triangulation of set of points P

[0 a maximal planar subdivision whose
vertices are elements of P




Triangulation

Outer polygon must be convex hull

Internal faces must be triangles,
otherwise they could be triangulated
further

convex hull boundary




Triangulation

For P consisting of n points, all
triangulations contain 2n-2-k triangles
and 3n-3-k edges

B n = number of points in P
B kK = number of points on convex hull of P

convex hull boundary




Recursive Splitting Triangulation

A split plane orthogonal to average
plane is determined.

split line

split plane

average plane
If two loops do not overlap, the split
plane is acceptable.




Recursive Splitting Triangulation

Best splitting plane is determined
using an aspect ratio:

minimum distance of the loop vertices to the split line

the length of the split line

Maximum aspect ratio gives best
splitting plane.




Piecewise Linear Interpolation

The height of a point p inside a triangle
is determined by the height of the
triangle vertices, and the location of p.

The result depends on the triangulation.




Barycentric Coordinates

Any point inside a triangle can be
expressed uniguely as a convex
combination of the triangle vertices.

P=aV, +a,V, +a,V,
Q- A

- A+A+A

a >0a +a,+a,=1




Quality Triangulation

Let A(T) =(,,,...,2,) be the angle
vector in the triangulationT, in
increasing order.

A(T) > A(T)) iff there exists an i such
that o, =¢; for all j<i o >af

Best triang /at/on is the Liangulation
the

B MaximiZ€s minimum andye.

good bad



Thales’ Theory

Let C be a circle, and / be a line intersecting

C at points @ and b. Let p, g, r and s be
points lying on the same side of /, where p
and g are on C, r inside C and s outside C.

Then:

S

Zarb > Zapb = Zagb > Lasb




Improving a Triangulation

Consider two adjacent triangles of T:

If the two triangles form a convex
quadrilateral, we could have an
alternative triangulation by performing
an edge flip on their shared edge.

illegal



Illegal Edges

Lemma: An edge is illegal iff one of its
opposite vertices is inside the circle
defined by the other three vertices.

Proof: By Thales’ theorem.
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Illegal Edges

Theorem: A Delaunay triangulation
does not contain illegal edges.

Corollary: A triangle is Delaunay iff
the circle through its vertices is
empty of other sites (the empty-circle
condition).

Corollary: The Delaunay triangulation
is not unique if more than three sites
are co-circular.




Delaunay Graph & Voronoi Diagram

Delaunay Graph of a set of points P is
the dual graph of the Voronoi Diagram
of P
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Definition: the partitioning of a plane with points P into convex po/ygons
such that each polygon contains exactly one generatln% Eomt and every
point in a given polygon is closer to its generating point than to any other




Delaunay Graph

Constructing Delaunay Graph by
connecting the adjacent vertices
sharing an edge.

Note: no two edges cross: Delaunay Graph is a planar graph.



Delaunay Triangulation

Some sets of more than 3 points of
Delaunay graph may lie on the same circle.

These points form empty convex polygons,
which can be triangulated.

Delaunay Triangulation is a triangulation

obtained by adding O or more edges to the
Delaunay Graph..

~
~
~




Pros and Cons

Pros:

B Efficient

B Simple to implement and use

0 Few input parameters to control quality
Reasonable approximation

Works on very large meshes

Preserves topology

Vertices are a subset of the original mesh

cons:
Bm Error is not bounded
[0 Local error evaluation causes error to accumulate




Edge Collapse Algorithm

Simplification operation:
B Pair contraction

Error metric:
B distance, pseudo-global

Simplifies also topology




Pros and Cons

Pros

B Error is bounded

m Allows topology simplification
B High quality result

B Quite efficient

Cons
B Difficulties along boundaries
B Difficulties with coplanar planes

B Introduces new vertices not present in the
original mesh




Special Cases

[0 Modification of topology of a closed structure

L=

[0 Topological *holes’ problem

Bo=lg




Special Cases

[0 Foldover problem

—l

[0 Topological inconsistency problem

—l




Vertex Tree & Active Triangle List

he Vertex Tree

B represents the entire model

B a hierarchical clustering of vertices

B queried each frame for updated scene

[he Active Triangle List
B represents the current simplification
B list of triangle to be displayed




The Vertex Tree

Each vertex tree node contains:
B 3 subset of model vertices
B a representative vertex or repvert

Folding a node collapses its vertices
to the repvert

Unfolding a node splits the repvert
back into vertices




Vertex Tree Example

Triangles in Active List Vertex Tree




Vertex Tree Example

0

Triangles in Active List Vertex Tree




Vertex Tree Example

Triangles in Active List Vertex Tree




Vertex Tree Example

o

Triangles in Active List Vertex Tree




Vertex Tree Example

Triangles in Active List Vertex Tree




Vertex Tree Example

Triangles in Active List Vertex Tree




Vertex Tree Example

» ©® ©

1 27 45 6 8 9

Triangles in Active List Vertex Tree




Vertex Tree Example

» ©® ©

1 27 45 6 8 9

Triangles in Active List Vertex Tree




Vertex Tree Example

®» ®

B 127 456 8 9

Triangles in Active List Vertex Tree




Vertex Tree Example

ONNO

1 27 45 6 8 9

Triangles in Active List Vertex Tree




Vertex Tree Example

O

Triangles in Active List

1 27 45 6 8 9

Vertex Tree




Vertex Tree Example

Triangles in Active List

1 27 45 6 8 9

Vertex Tree




Vertex Tree Example

1 27 45 6 8 9

Triangles in Active List Vertex Tree




The Vertex Tree:
Folding & Unfolding

Foldrnod\eA

U




The Vertex Tree:
Tris & Subtris

Fold node A

Unfold node 2 ‘

Tris: triangles that change shape upon folding
: triangles that disappear completely




