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Motivation 

 Interactive rendering of large-scale 
geometric datasets is important 

 Scientific and medical visualization 

 Architectural and industrial CAD 

 Training (military and otherwise) 

 Entertainment 



Motivation: 
Big Models 

 The problem: 

 Polygonal models are often too complex 
to render at interactive rates 

 Even worse: 

 Incredibly, models are getting bigger as 
fast as hardware is getting faster… 



Big Models: 
Submarine Torpedo Room 

 700,000 polygons 

Courtesy General Dynamics, Electric Boat Div. 



Big Models: 
Coal-fired Power Plant 

 13 million polygons 



Big Models: 
Plant Ecosystem Simulation 

 16.7 million polygons (sort of) 

Deussen et al: Realistic Modeling of Plant Ecosystems  



Big Models: 
Double Eagle Container Ship 

 82 million polygons 

Courtesy Newport News Shipbuilding 



Big Models: 
The Digital Michelangelo Project 

 David: 
56,230,343 polygons 

 St. Matthew: 
372,422,615 polygons 

Courtesy Digital Michelangelo Project, Stanford Univ. 



Level of Detail:  
The Basic Idea 

 One solution: 

 Simplify the polygonal geometry of small 
or distant objects 

 Known as Level of Detail or LOD 

 A.k.a. polygonal simplification, geometric 
simplification, mesh reduction, 
multiresolution modeling, … 



Level of Detail: 
Traditional Approach 

 Create levels of detail (LODs) of 
objects: 

69,451 polys 2,502 polys 251 polys 76 polys 



Level of Detail: 
Traditional Approach 

 Distant objects use coarser LODs: 



Traditional Approach:  
Discrete Level of Detail 

 Traditional LOD in a nutshell: 

 Create LODs for each object separately  
in a preprocess 

 At run-time, pick each object’s LOD 
according to the object’s distance (or  
similar criterion) 

 Since LODs are created offline at 
fixed resolutions, this can be referred 
as Discrete LOD 



Discrete LOD: 
Advantages 

 Simplest programming model; 
decouples simplification and 
rendering 

 LOD creation need not address real-time 
rendering constraints 

 Run-time rendering need only pick LODs 



Discrete LOD: 
Advantages 

 Fits modern graphics hardware well 

 Easy to compile each LOD into triangle 
strips, display lists, vertex arrays, … 

 These render much faster than 
unorganized polygons on today’s 
hardware (3-5 x) 



Discrete LOD: 
Disadvantages 

 So why use anything but discrete LOD? 

 Answer: sometimes discrete LOD not 
suited for drastic simplification 

 Some problem cases: 

 Terrain flyovers 

 Volumetric isosurfaces 

 Super-detailed range scans 

 Massive CAD models 



Drastic Simplification:  
The Problem With Large Objects 

Courtesy IBM and ACOG 



Drastic Simplification:  
The Problem With Small Objects 

Courtesy Electric Boat 



Drastic Simplification:  
The Problem With Topology 

Courtesy University of Utah 



Drastic Simplification 

 For drastic simplification: 

 Large objects must be subdivided 

 Small objects must be combined 

 Topology must be simplified 

 Difficult or impossible with discrete LOD 



Continuous Level of Detail 

 A departure from the traditional static 
approach: 

 Discrete LOD: create individual LODs in a 
preprocess 

 Continuous LOD: create data structure 
from which a desired level of detail can 
be extracted at run time. 



Continuous LOD: 
Advantages 

 Better granularity  better fidelity 

 LOD is specified exactly, not chosen from 
a few pre-created options 

 Thus objects use no more polygons than 
necessary, which frees up polygons for 
other objects  

 Net result: better resource utilization, 
leading to better overall fidelity/polygon 



Continuous LOD: 
Advantages 

 Better granularity  smoother 
transitions 
 Switching between traditional LODs can 

introduce visual “popping” effect 

 Continuous LOD can adjust detail 
gradually and incrementally, reducing 
visual pops 
 Can even geomorph the fine-grained 

simplification operations over several 
frames to eliminate pops [Hoppe 96, 98] 



Continuous LOD: 
Advantages 

 Supports progressive transmission 
 Progressive Meshes [Hoppe 97] 

 Progressive Forest Split Compression [Taubin 98] 

 Leads to view-dependent LOD 

 Use current view parameters to select 
best representation for the current view 

 Single objects may thus span several 
levels of detail 



Typical Curve & Surface 
Simplification Problems 

 Typical Curve Simplification Problem 
 Given curve with n vertices, find an accurate 

approximation using m vertices. 

 Given curve with n vertices, find a compact 
approximation with error < ε. 

 

 Typical Surface Simplification Problem 
 Given surface with n vertices, find accurate 

approximation using m vertices. 

 Given surface with n vertices, find a compact 
approximation with error < ε. 



Simplification Problem Characteristics 
- What problem do you want to solve? 

 topology of output 
 curve or surface 

 topology & geometry of input 
 points, function f(x), curve, height field 

f(x,y), manifold, surface 

 other attributes: 
 color, texture 

 domain of output 
 subset of input vertices? 



Simplification Problem Characteristics 
- What problem do you want to solve? 

 topology of triangulation 

 uniform, hierarchical, general 

 approximating elements 

 linear, quadratic, cubic, …,other 

 error metric 

 L2 = sum of squared, L∞ = maximum 

 constraints 

 most accurate using a given number of elements 
or amount of memory 

 smallest satisfying a given error tolerance 



Simplification Problem Characteristics 
- How do you want to solve the problem? 

 speed / quality tradeoff 

 optimal (& slow) or sub-optimal (& fast)? 

 refinement / decimation 

 top down or bottom up? 

 number of passes 

 one pass or multiple passes? 

 triangulation 

 hierarchical triangulation, Delaunay triangulation, 
data-dependent triangulation, or other? 



Performance Requirements 

 Offline 

 Generate model at given level(s) of detail 

 Focus on quality 

 

 Real-time 

 Generate model at given level(s) of detail 

 Focus on speed 

 Requires preprocessing 

 Time/space/quality tradeoff 



Taxonomy of 
Surface Simplification Methods 

 Height Field / Parametric Simplification 
 subsampling, pyramid, quadtree methods 
 greedy insertion   [Garland95] 

 Manifold Simplification 
 vertex decimation   [Schroeder92] 
 vertex decimation with point lists [Eck95] 

      [Lounsbery94] 
 wavelet    [Hoppe93] 
 edge collapse    [Ronfard96] 

      [Hoppe96] 
      [Gueziec95] 
      [Garland97] 

 Non-Manifold Simplification 
 vertex clustering   [Rossignac93] 



Methodology 

 Sequence of local operations 
 Involve near neighbors - only small 

patch affected in each operation 

 Each operation introduces error 

 Find and apply operation which 
introduces the least error  



Simplification Operations 

 Decimation 
 Vertex removal 
 v ← v-1 

 f ← f-2 

 

 

 

 

 Remaining vertices - subset of original 
vertex set 



Simplification Operations 

 Decimation 

 Edge collapse 

 v ← v-1 

 f ← f-2 

 Triangle collapse 

 v ← v-2 

 f ← f-4 

 

 Vertices may move 



 Contraction 
 Pair contraction 

 

 

 Cluster contraction 
(set of vertices) 

 

 

 

 Vertices may move 

Simplification Operations 



Error Control 

 Local error: 
 Compare new patch with previous iteration 

 Fast 

 Accumulates error 

 Memory-less 

 Global error: 
 Compare new patch with original mesh 

 Slow 

 Better quality control 

 Can be used as termination condition 

 Must remember the original mesh throughout 
the algorithm 



Local vs. Global Error 

2000 faces 488 faces 
(local error) 

488 faces 
(global error) 



Simplification Error Metrics 

 Measures 

 Distance to plane 

 Curvature 

 Usually approximated 

 Average plane 

 Discrete curvature 

/ 2 



The Basic Algorithm 

 Repeat 

 Select the element with minimal error 

 Perform simplification operation 

 (remove/contract) 

 Update error 

 (local/global) 

 

 Until mesh size / quality is achieved 



Implementation Details 

 Vertices/Edges/Faces data structure 

 Easy access from each element to 
neighboring elements 

 Use priority queue (e.g. heap) 

 Fast access to element with minimal error 

 Fast update 



Vertex Removal Algorithm 

 Simplification operation: 

 Vertex removal 

 

 Error metric: 

 Distance to average plane 

 

 May preserve mesh features 
(creases) 



Algorithm Outline 

 Characterize local topology/geometry 

 Classify vertices as removable or not 

 Repeat 

 Remove vertex 

 Triangulate resulting hole 

 Update error of affected vertices 

 Until reduction goal is met 



 Vertex Classification 

Characterizing 
Local Topology / Geometry 

Simple 

Complex 

Boundary 

Interior 

Corner 



Characterizing 
Local Topology / Geometry 

 Feature edge exists if the angle 
between the surface normals of two 
adjacent triangles is greater than a 
user-specified “feature angle”. 

E 


fa If 

E = Feature Edge 



Characterizing 
Local Topology / Geometry 

 Determine whether the given vertex 
is a potential candidate for deletion 

 

 All vertices except complex vertices 
become candidates for deletion 



Decimation Criterion 

 EMAX – user defined parameter 

 Simple Vertex 
 Distance of vertex to the face loop average 

plane < EMAX 

 Boundary & Interior Vertex 
 Distance of vertex to the new 

boundary/edge < EMAX 

average plane 
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Decimation Criterion 

 Corner Vertex ? 

 

 

 

 

 Corner vertices are usually not deleted to 
keep the sharp features. 



Triangulation 

 If a vertex is eliminated, the loop 
created by removing the vertex is re-
triangulated. 

 Every loop is star shaped: recursive 
loop splitting triangulation schemes 
are used. 

 If a loop cannot be re-triangulated, 
the vertex generating the loop is not 
removed. 

Definition: A polygon P in which there exists an interior point p 
such that all the boundary points of P are visible from p.  



Triangulation 

 After deleting a vertex and associated 
triangles create 1 or 2 loops 

 1 loop 

 Simple or Boundary Vertex 

 2 loops 

 Interior Edge Vertex 

 



Triangulation 

 A triangulation of set of points in the 
plane is a partition of the convex hull to 
triangles whose vertices are the points, 
and are empty of other points. 

 There are an exponential number of 
triangulations of a point set. 

Definition: the minimal convex set containing a set of points P.  



Triangulation 

 Formal Definition 

 maximal planar subdivision 

 a subdivision S such that no edge 
connecting two vertices can be added to S 
without destroying its planarity 

 triangulation of set of points P 

 a maximal planar subdivision whose 
vertices are elements of P  



Triangulation 

 Outer polygon must be convex hull 

 Internal faces must be triangles, 
otherwise they could be triangulated 
further 

convex hull boundary 



Triangulation 

 For P consisting of n points, all 
triangulations contain 2n-2-k triangles 
and 3n-3-k edges 
 n = number of points in P 
 k = number of points on convex hull of P 

 

convex hull boundary 



Recursive Splitting Triangulation 

 A split plane orthogonal to average 
plane is determined. 

 

 

 

 

 If two loops do not overlap, the split 
plane is acceptable. 

average plane 

split plane split line 



Recursive Splitting Triangulation 

 Best splitting plane is determined 
using an aspect ratio: 

 

 

 

 

 Maximum aspect ratio gives best 
splitting plane. 

minimum distance of the loop vertices to the split line

the length of the split line



Piecewise Linear Interpolation 

 The height of a point p inside a triangle 
is determined by the height of the 
triangle vertices, and the location of p. 

 The result depends on the triangulation. 
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Barycentric Coordinates 

 Any point inside a triangle can be 
expressed uniquely as a convex 
combination of the triangle vertices. 
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Quality Triangulation 

 Let                         be the angle 
vector in the triangulation  , in 
increasing order. 

                iff there exists an   such 
that          for all 

 Best triangulation is the triangulation 
that is angle optimal, i.e. has the 
largest angle vector. 

 Maximizes minimum angle. 
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Thales’ Theory 

 Let C be a circle, and l be a line intersecting 
C at points a and b. Let p, q, r and s be 
points lying on the same side of l, where p 
and q are on C, r inside C and s outside C. 
Then: 

a

b

p
q

r

s

l

arb apb aqb asb   



Improving a Triangulation 

 Consider two adjacent triangles of T: 

 If the two triangles form a convex 
quadrilateral, we could have an 
alternative triangulation by performing 
an edge flip on their shared edge. 

 

edge flip 

1

2 3

4

5

6
1

2

3

4

5

6

illegal 



Illegal Edges 

 Lemma: An edge is illegal iff one of its 
opposite vertices is inside the circle 
defined by the other three vertices. 

 Proof: By Thales’ theorem. 



Illegal Edges 

 Theorem: A Delaunay triangulation 
does not contain illegal edges. 

 Corollary: A triangle is Delaunay iff 
the circle through its vertices is 
empty of other sites (the empty-circle 
condition). 

 Corollary: The Delaunay triangulation 
is not unique if more than three sites 
are co-circular. 



Delaunay Graph & Voronoi Diagram  

 Delaunay Graph of a set of points P is 
the dual graph of the Voronoi Diagram 
of P 

 

Definition: the partitioning of a plane with points P into convex polygons 
such that each polygon contains exactly one generating point and every 
point in a given polygon is closer to its generating point than to any other.  



Delaunay Graph 

 Constructing Delaunay Graph by 
connecting the adjacent vertices 
sharing an edge. 

Note: no two edges cross; Delaunay Graph is a planar graph. 



Delaunay Triangulation 

 Some sets of more than 3 points of 
Delaunay graph may lie on the same circle.  

 These points form empty convex polygons, 
which can be triangulated.  

 Delaunay Triangulation is a triangulation 
obtained by adding 0 or more edges to the 
Delaunay Graph. 



Pros and Cons 

 Pros: 
 Efficient 

 Simple to implement and use 

 Few input parameters to control quality 

 Reasonable approximation 

 Works on very large meshes 

 Preserves topology 

 Vertices are a subset of the original mesh 

 Cons: 
 Error is not bounded 

 Local error evaluation causes error to accumulate 



Edge Collapse Algorithm 

 Simplification operation: 

 Pair contraction 

 

 Error metric: 

 distance, pseudo-global 

 

 Simplifies also topology 



Pros and Cons 

 Pros 

 Error is bounded 

 Allows topology simplification 

 High quality result 

 Quite efficient 

 Cons 

 Difficulties along boundaries 

 Difficulties with coplanar planes 

 Introduces new vertices not present in the 
original mesh 



Special Cases 

 Modification of topology of a closed structure 
 
 
 
 
 

 Topological ‘holes’ problem 



Special Cases 

 Foldover problem 
 
 
 
 
 

 Topological inconsistency problem 



Vertex Tree & Active Triangle List 

 The Vertex Tree 

 represents the entire model 

 a hierarchical clustering of vertices 

 queried each frame for updated scene 

 The Active Triangle List 

 represents the current simplification 

 list of triangle to be displayed 



The Vertex Tree 

 Each vertex tree node contains: 

 a subset of model vertices 

 a representative vertex or repvert 

 Folding a node collapses its vertices 
to the repvert 

 Unfolding a node splits the repvert 
back into vertices 



Vertex Tree Example 

Vertex Tree Triangles in Active List 
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Vertex Tree Example 

Vertex Tree Triangles in Active List 
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Vertex Tree Example 

Vertex Tree Triangles in Active List 
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Vertex Tree Example 

Vertex Tree Triangles in Active List 
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Vertex Tree Example 

Vertex Tree Triangles in Active List 
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Vertex Tree Example 

Vertex Tree Triangles in Active List 
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Vertex Tree Example 

Vertex Tree Triangles in Active List 
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Vertex Tree Example 

Vertex Tree Triangles in Active List 
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Vertex Tree Example 

Vertex Tree Triangles in Active List 
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Vertex Tree Example 

Vertex Tree Triangles in Active List 
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Vertex Tree Example 

Vertex Tree Triangles in Active List 
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Vertex Tree Example 

Vertex Tree Triangles in Active List 
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Vertex Tree Example 

Vertex Tree Triangles in Active List 
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The Vertex Tree: 
Folding & Unfolding 
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The Vertex Tree: 
Tris & Subtris 
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Tris: triangles that change shape upon folding 
Subtris: triangles that disappear completely 


