Geometric Modeling

Bing-Yu Chen National Taiwan University The University of Tokyo

Surface Simplification

- Motivation
- Basic Idea of LOD
- Discrete LOD
- Continuous LOD
- Simplification Problem Characteristics
- Methodology Overview
- Simplification Algorithms
- □ The Vertex Tree

Motivation

- Interactive rendering of large-scale geometric datasets is important
 - Scientific and medical visualization
 - Architectural and industrial CAD
 - Training (military and otherwise)
 - Entertainment

Motivation: Big Models

□ The problem:

Polygonal models are often too complex to render at interactive rates

Even worse:

Incredibly, models are getting bigger as fast as hardware is getting faster...

Big Models: Submarine Torpedo Room

Courtesy General Dynamics, Electric Boat Div.

Big Models: Coal-fired Power Plant

Big Models: Plant Ecosystem Simulation I 16.7 million polygons (sort of)

Deussen et al: Realistic Modeling of Plant Ecosystems

Big Models: Double Eagle Container Ship

82 million polygons

Courtesy Newport News Shipbuilding

Big Models: The Digital Michelangelo Project

 David: 56,230,343 polygons
St. Matthew: 372,422,615 polygons

Courtesy Digital Michelangelo Project, Stanford Univ.

Level of Detail: The Basic Idea

□ One solution:

- Simplify the polygonal geometry of small or distant objects
- Known as Level of Detail or LOD
 - A.k.a. polygonal simplification, geometric simplification, mesh reduction, multiresolution modeling, ...

Level of Detail: Traditional Approach

Create *levels of detail* (LODs) of objects:

69,451 polys2,502 polys251 polys76 polys

Level of Detail: Traditional Approach

Distant objects use coarser LODs:

Traditional Approach: Discrete Level of Detail

□ Traditional LOD in a nutshell:

- Create LODs for each object separately in a preprocess
- At run-time, pick each object's LOD according to the object's distance (or similar criterion)
- Since LODs are created offline at fixed resolutions, this can be referred as Discrete LOD

Discrete LOD: Advantages

Simplest programming model; decouples simplification and rendering

LOD creation need not address real-time rendering constraints

Run-time rendering need only pick LODs

Discrete LOD: Advantages

□ Fits modern graphics hardware well

- Easy to compile each LOD into triangle strips, display lists, vertex arrays, ...
- These render *much* faster than unorganized polygons on today's hardware (3-5 x)

Discrete LOD: Disadvantages

- □ So why use anything but discrete LOD?
- Answer: sometimes discrete LOD not suited for *drastic simplification*
- Some problem cases:
 - Terrain flyovers
 - Volumetric isosurfaces
 - Super-detailed range scans
 - Massive CAD models

Drastic Simplification: The Problem With Large Objects

Courtesy IBM and ACOG

Drastic Simplification: The Problem With Small Objects

Courtesy Electric Boat

Drastic Simplification: The Problem With Topology

Courtesy University of Utah

Drastic Simplification

□ For drastic simplification:

- Large objects must be subdivided
- Small objects must be combined
- Topology must be simplified
- Difficult or impossible with discrete LOD

Continuous Level of Detail

- A departure from the traditional static approach:
 - Discrete LOD: create individual LODs in a preprocess
 - Continuous LOD: create data structure from which a desired level of detail can be extracted at *run time*.

Continuous LOD: Advantages

\Box Better granularity \rightarrow better fidelity

- LOD is specified exactly, not chosen from a few pre-created options
- Thus objects use no more polygons than necessary, which frees up polygons for other objects
- Net result: better resource utilization, leading to better overall fidelity/polygon

Continuous LOD: Advantages

- □ Better granularity → smoother transitions
 - Switching between traditional LODs can introduce visual "popping" effect
 - Continuous LOD can adjust detail gradually and incrementally, reducing visual pops
 - Can even geomorph the fine-grained simplification operations over several frames to eliminate pops [Hoppe 96, 98]

Continuous LOD: Advantages

- Supports progressive transmission
 - Progressive Meshes [Hoppe 97]
 - Progressive Forest Split Compression [Taubin 98]
- □ Leads to *view-dependent LOD*
 - Use current view parameters to select best representation for the current view
 - Single objects may thus span several levels of detail

Typical Curve & Surface Simplification Problems

Typical Curve Simplification Problem

- Given curve with n vertices, find an accurate approximation using m vertices.
- Given curve with *n* vertices, find a compact approximation with error < ε.</p>

Typical Surface Simplification Problem

- Given surface with n vertices, find accurate approximation using m vertices.
- Given surface with *n* vertices, find a compact approximation with error < ε.</p>

Simplification Problem Characteristics

- What problem do you want to solve?
- topology of output
 - curve or surface
- topology & geometry of input
 - points, function f(x), curve, height field f(x,y), manifold, surface
- other attributes:
 - color, texture
- domain of output
 - subset of input vertices?

Simplification Problem Characteristics

- What problem do you want to solve?
- topology of triangulation
 - uniform, hierarchical, general
- approximating elements
 - linear, quadratic, cubic, ...,other
- error metric
 - L2 = sum of squared, $L\infty$ = maximum
- constraints
 - most accurate using a given number of elements or amount of memory
 - smallest satisfying a given error tolerance

Simplification Problem Characteristics

- How do you want to solve the problem?
- speed / quality tradeoff
 - optimal (& slow) or sub-optimal (& fast)?
- refinement / decimation
 - top down or bottom up?
- number of passes
 - one pass or multiple passes?
- triangulation
 - hierarchical triangulation, Delaunay triangulation, data-dependent triangulation, or other?

Performance Requirements

Offline

- Generate model at given level(s) of detail
- Focus on quality

Real-time

- Generate model at given level(s) of detail
- Focus on speed
- Requires preprocessing
- Time/space/quality tradeoff

Taxonomy of Surface Simplification Methods

- Height Field / Parametric Simplification
 - subsampling, pyramid, quadtree methods
 - greedy insertion
- Manifold Simplification
 - vertex decimation
 - vertex decimation with point lists
 - wavelet
 - edge collapse

[Garland95]

[Schroeder92] [Eck95] [Lounsbery94] [Hoppe93] [Ronfard96] [Hoppe96] [Gueziec95] [Garland97]

Non-Manifold Simplification
vertex clustering

[Rossignac93]

Methodology

Sequence of local operations

- Involve near neighbors only small patch affected in each operation
- Each operation introduces error
- Find and apply operation which introduces the least error

Simplification Operations

Decimation Vertex removal

- □ v ← v-1
- □ f ← f-2

Remaining vertices - subset of original vertex set

Simplification Operations

Simplification Operations

Error Control

□ Local error:

Compare new patch with previous iteration

Fast

Accumulates error

Memory-less

- □ Global error:
 - Compare new patch with original mesh

□ Slow

Better quality control

Can be used as termination condition

Must remember the original mesh throughout the algorithm

Local vs. Global Error

Simplification Error Metrics

Measures

- Distance to plane
- Curvature
- Usually approximated
 - Average plane
 - Discrete curvature

The Basic Algorithm

Repeat

Select the element with minimal error

Perform simplification operation

□ (remove/contract)

Update error

(local/global)

Until mesh size / quality is achieved

Implementation Details

Vertices/Edges/Faces data structure

Easy access from each element to neighboring elements

Use priority queue (e.g. heap)

- Fast access to element with minimal error
- Fast update

Vertex Removal Algorithm

Simplification operation:

Vertex removal

Error metric:

Distance to average plane

May preserve mesh features (creases)

Algorithm Outline

- Characterize local topology/geometry
- Classify vertices as removable or not

Repeat

- Remove vertex
- Triangulate resulting hole
- Update error of affected vertices
- Until reduction goal is met

Characterizing Local Topology / Geometry

Vertex Classification

Complex

Boundary

Corner

Interior

Characterizing Local Topology / Geometry

Feature edge exists if the angle between the surface normals of two adjacent triangles is greater than a user-specified "feature angle".

Characterizing Local Topology / Geometry

Determine whether the given vertex is a potential candidate for deletion

All vertices except complex vertices become candidates for deletion

Decimation Criterion

- □ E_{MAX} user defined parameter
- Simple Vertex
 - Distance of vertex to the face loop average plane $< E_{MAX}$
- Boundary & Interior Vertex
 - Distance of vertex to the new boundary/edge < E_{MAX}

 $\vec{n_i}$:triangle normal, $\vec{x_i}$:centers, A_i :areas average plane $d = |\vec{n} \bullet (\vec{v} - \vec{x})|, \vec{v}$:vertex of considered

 $\frac{\vec{n}_i A_i}{\vec{n}_i}, \vec{n} = \frac{N}{\vec{N}_i}, \vec{x} =$

 $\overline{x}_i A_i$

Decimation Criterion

□ Corner Vertex ?

Corner vertices are usually not deleted to keep the sharp features.

- If a vertex is eliminated, the loop created by removing the vertex is retriangulated.
- Every loop is star shaped: recursive loop splitting triangulation schemes are used.
- If a loop cannot be re-triangulated, the vertex generating the loop is not removed.

Definition: A polygon *P* in which there exists an interior point *p* such that all the boundary points of *P* are *visible* from *p*.

- After deleting a vertex and associated triangles create 1 or 2 loops
- 1 loop
 - Simple or Boundary Vertex
- 2 loops
 - Interior Edge Vertex

- A triangulation of set of points in the plane is a partition of the convex hull to triangles whose vertices are the points, and are empty of other points.
- There are an exponential number of triangulations of a point set.

Definition: the minimal *convex set* containing a set of points *P*.

Formal Definition

- maximal planar subdivision
 - a subdivision S such that no edge connecting two vertices can be added to S without destroying its planarity
- triangulation of set of points P
 - a maximal planar subdivision whose vertices are elements of P

 Outer polygon must be convex hull
Internal faces must be triangles, otherwise they could be triangulated further

- For P consisting of n points, all triangulations contain 2n-2-k triangles and 3n-3-k edges
 - $\blacksquare n = \text{number of points in } P$
 - k = number of points on convex hull of P

Recursive Splitting Triangulation

A split plane orthogonal to average plane is determined.

□ If two loops do not overlap, the split plane is acceptable.

Recursive Splitting Triangulation

Best splitting plane is determined using an aspect ratio:

minimum distance of the loop vertices to the split line

the length of the split line

Maximum aspect ratio gives best splitting plane.

Piecewise Linear Interpolation

- The height of a point p inside a triangle is determined by the height of the triangle vertices, and the location of p.
- The result depends on the triangulation.

Barycentric Coordinates

Any point inside a triangle can be expressed uniquely as a convex combination of the triangle vertices.

Quality Triangulation

- □ Let $A(T) = (\alpha_1, \alpha_2, ..., \alpha_m)$ be the *angle vector* in the triangulation *T*, in increasing order.
- $\Box A(T) > A(T') \text{ iff there exists an } i \text{ such}$ that $\alpha_j = \alpha'_j \text{ for all } j < i \quad \alpha_i > \alpha'_i$

Best triangulation is the triangulation that is angle optimal, i.e. has the largest angle vector.
Maximizes minimum angle.
good bad

Thales' Theory

Let C be a circle, and I be a line intersecting C at points a and b. Let p, q, r and s be points lying on the same side of I, where p and q are on C, r inside C and s outside C. Then:

 $\angle arb > \angle apb = \angle aqb > \angle asb$

Improving a Triangulation

- Consider two adjacent triangles of T:
- If the two triangles form a convex quadrilateral, we could have an alternative triangulation by performing an edge flip on their shared edge.

Illegal Edges

- Lemma: An edge is illegal iff one of its opposite vertices is inside the circle defined by the other three vertices.
- Proof: By Thales' theorem.

Illegal Edges

- Theorem: A Delaunay triangulation does not contain illegal edges.
- Corollary: A triangle is Delaunay iff the circle through its vertices is empty of other sites (the *empty-circle* condition).
- Corollary: The Delaunay triangulation is not unique if more than three sites are co-circular.

Delaunay Graph & Voronoi Diagram

Delaunay Graph of a set of points P is the dual graph of the Voronoi Diagram of P

Definition: the partitioning of a plane with points *P* into *convex polygons* such that each polygon contains exactly one generating point and every point in a given polygon is closer to its generating point than to any other.

Delaunay Graph

Constructing Delaunay Graph by connecting the adjacent vertices sharing an edge.

Note: no two edges cross; Delaunay Graph is a planar graph.

Delaunay Triangulation

- Some sets of more than 3 points of Delaunay graph may lie on the same circle.
- These points form empty convex polygons, which can be triangulated.
- Delaunay Triangulation is a triangulation obtained by adding 0 or more edges to the Delaunay Graph.

Pros and Cons

Pros:

- Efficient
- Simple to implement and use
 - □ Few input parameters to control quality
- Reasonable approximation
- Works on very large meshes
- Preserves topology
- Vertices are a subset of the original mesh
- Cons:
 - Error is not bounded
 - □ Local error evaluation causes error to accumulate

Edge Collapse Algorithm

Simplification operation:

Pair contraction

Error metric:
distance, pseudo-global

Simplifies also topology

Pros and Cons

Pros

- Error is bounded
- Allows topology simplification
- High quality result
- Quite efficient
- Cons
 - Difficulties along boundaries
 - Difficulties with coplanar planes
 - Introduces new vertices not present in the original mesh

Special Cases

Modification of topology of a closed structure

Topological `holes' problem

Vertex Tree & Active Triangle List

□ The Vertex Tree

- represents the entire model
- a hierarchical clustering of vertices
- queried each frame for updated scene
- □ The Active Triangle List
 - represents the current simplification
 - list of triangle to be displayed

The Vertex Tree

Each vertex tree node contains:

- a subset of model vertices
- a representative vertex or repvert
- □ *Folding* a node collapses its vertices to the repvert
- Unfolding a node splits the repvert back into vertices

Vertex Tree Example

Triangles in Active List

Vertex Tree

Triangles in Active List

Triangles in Active List

Triangles in Active List

The Vertex Tree: Folding & Unfolding

The Vertex Tree: Tris & Subtris

Tris: triangles that change shape upon folding Subtris: triangles that disappear completely