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Motivation 

 Interactive rendering of large-scale 
geometric datasets is important 

 Scientific and medical visualization 

 Architectural and industrial CAD 

 Training (military and otherwise) 

 Entertainment 



Motivation: 
Big Models 

 The problem: 

 Polygonal models are often too complex 
to render at interactive rates 

 Even worse: 

 Incredibly, models are getting bigger as 
fast as hardware is getting faster… 



Big Models: 
Submarine Torpedo Room 

 700,000 polygons 

Courtesy General Dynamics, Electric Boat Div. 



Big Models: 
Coal-fired Power Plant 

 13 million polygons 



Big Models: 
Plant Ecosystem Simulation 

 16.7 million polygons (sort of) 

Deussen et al: Realistic Modeling of Plant Ecosystems  



Big Models: 
Double Eagle Container Ship 

 82 million polygons 

Courtesy Newport News Shipbuilding 



Big Models: 
The Digital Michelangelo Project 

 David: 
56,230,343 polygons 

 St. Matthew: 
372,422,615 polygons 

Courtesy Digital Michelangelo Project, Stanford Univ. 



Level of Detail:  
The Basic Idea 

 One solution: 

 Simplify the polygonal geometry of small 
or distant objects 

 Known as Level of Detail or LOD 

 A.k.a. polygonal simplification, geometric 
simplification, mesh reduction, 
multiresolution modeling, … 



Level of Detail: 
Traditional Approach 

 Create levels of detail (LODs) of 
objects: 

69,451 polys 2,502 polys 251 polys 76 polys 



Level of Detail: 
Traditional Approach 

 Distant objects use coarser LODs: 



Traditional Approach:  
Discrete Level of Detail 

 Traditional LOD in a nutshell: 

 Create LODs for each object separately  
in a preprocess 

 At run-time, pick each object’s LOD 
according to the object’s distance (or  
similar criterion) 

 Since LODs are created offline at 
fixed resolutions, this can be referred 
as Discrete LOD 



Discrete LOD: 
Advantages 

 Simplest programming model; 
decouples simplification and 
rendering 

 LOD creation need not address real-time 
rendering constraints 

 Run-time rendering need only pick LODs 



Discrete LOD: 
Advantages 

 Fits modern graphics hardware well 

 Easy to compile each LOD into triangle 
strips, display lists, vertex arrays, … 

 These render much faster than 
unorganized polygons on today’s 
hardware (3-5 x) 



Discrete LOD: 
Disadvantages 

 So why use anything but discrete LOD? 

 Answer: sometimes discrete LOD not 
suited for drastic simplification 

 Some problem cases: 

 Terrain flyovers 

 Volumetric isosurfaces 

 Super-detailed range scans 

 Massive CAD models 



Drastic Simplification:  
The Problem With Large Objects 

Courtesy IBM and ACOG 



Drastic Simplification:  
The Problem With Small Objects 

Courtesy Electric Boat 



Drastic Simplification:  
The Problem With Topology 

Courtesy University of Utah 



Drastic Simplification 

 For drastic simplification: 

 Large objects must be subdivided 

 Small objects must be combined 

 Topology must be simplified 

 Difficult or impossible with discrete LOD 



Continuous Level of Detail 

 A departure from the traditional static 
approach: 

 Discrete LOD: create individual LODs in a 
preprocess 

 Continuous LOD: create data structure 
from which a desired level of detail can 
be extracted at run time. 



Continuous LOD: 
Advantages 

 Better granularity  better fidelity 

 LOD is specified exactly, not chosen from 
a few pre-created options 

 Thus objects use no more polygons than 
necessary, which frees up polygons for 
other objects  

 Net result: better resource utilization, 
leading to better overall fidelity/polygon 



Continuous LOD: 
Advantages 

 Better granularity  smoother 
transitions 
 Switching between traditional LODs can 

introduce visual “popping” effect 

 Continuous LOD can adjust detail 
gradually and incrementally, reducing 
visual pops 
 Can even geomorph the fine-grained 

simplification operations over several 
frames to eliminate pops [Hoppe 96, 98] 



Continuous LOD: 
Advantages 

 Supports progressive transmission 
 Progressive Meshes [Hoppe 97] 

 Progressive Forest Split Compression [Taubin 98] 

 Leads to view-dependent LOD 

 Use current view parameters to select 
best representation for the current view 

 Single objects may thus span several 
levels of detail 



Typical Curve & Surface 
Simplification Problems 

 Typical Curve Simplification Problem 
 Given curve with n vertices, find an accurate 

approximation using m vertices. 

 Given curve with n vertices, find a compact 
approximation with error < ε. 

 

 Typical Surface Simplification Problem 
 Given surface with n vertices, find accurate 

approximation using m vertices. 

 Given surface with n vertices, find a compact 
approximation with error < ε. 



Simplification Problem Characteristics 
- What problem do you want to solve? 

 topology of output 
 curve or surface 

 topology & geometry of input 
 points, function f(x), curve, height field 

f(x,y), manifold, surface 

 other attributes: 
 color, texture 

 domain of output 
 subset of input vertices? 



Simplification Problem Characteristics 
- What problem do you want to solve? 

 topology of triangulation 

 uniform, hierarchical, general 

 approximating elements 

 linear, quadratic, cubic, …,other 

 error metric 

 L2 = sum of squared, L∞ = maximum 

 constraints 

 most accurate using a given number of elements 
or amount of memory 

 smallest satisfying a given error tolerance 



Simplification Problem Characteristics 
- How do you want to solve the problem? 

 speed / quality tradeoff 

 optimal (& slow) or sub-optimal (& fast)? 

 refinement / decimation 

 top down or bottom up? 

 number of passes 

 one pass or multiple passes? 

 triangulation 

 hierarchical triangulation, Delaunay triangulation, 
data-dependent triangulation, or other? 



Performance Requirements 

 Offline 

 Generate model at given level(s) of detail 

 Focus on quality 

 

 Real-time 

 Generate model at given level(s) of detail 

 Focus on speed 

 Requires preprocessing 

 Time/space/quality tradeoff 



Taxonomy of 
Surface Simplification Methods 

 Height Field / Parametric Simplification 
 subsampling, pyramid, quadtree methods 
 greedy insertion   [Garland95] 

 Manifold Simplification 
 vertex decimation   [Schroeder92] 
 vertex decimation with point lists [Eck95] 

      [Lounsbery94] 
 wavelet    [Hoppe93] 
 edge collapse    [Ronfard96] 

      [Hoppe96] 
      [Gueziec95] 
      [Garland97] 

 Non-Manifold Simplification 
 vertex clustering   [Rossignac93] 



Methodology 

 Sequence of local operations 
 Involve near neighbors - only small 

patch affected in each operation 

 Each operation introduces error 

 Find and apply operation which 
introduces the least error  



Simplification Operations 

 Decimation 
 Vertex removal 
 v ← v-1 

 f ← f-2 

 

 

 

 

 Remaining vertices - subset of original 
vertex set 



Simplification Operations 

 Decimation 

 Edge collapse 

 v ← v-1 

 f ← f-2 

 Triangle collapse 

 v ← v-2 

 f ← f-4 

 

 Vertices may move 



 Contraction 
 Pair contraction 

 

 

 Cluster contraction 
(set of vertices) 

 

 

 

 Vertices may move 

Simplification Operations 



Error Control 

 Local error: 
 Compare new patch with previous iteration 

 Fast 

 Accumulates error 

 Memory-less 

 Global error: 
 Compare new patch with original mesh 

 Slow 

 Better quality control 

 Can be used as termination condition 

 Must remember the original mesh throughout 
the algorithm 



Local vs. Global Error 

2000 faces 488 faces 
(local error) 

488 faces 
(global error) 



Simplification Error Metrics 

 Measures 

 Distance to plane 

 Curvature 

 Usually approximated 

 Average plane 

 Discrete curvature 

/ 2 



The Basic Algorithm 

 Repeat 

 Select the element with minimal error 

 Perform simplification operation 

 (remove/contract) 

 Update error 

 (local/global) 

 

 Until mesh size / quality is achieved 



Implementation Details 

 Vertices/Edges/Faces data structure 

 Easy access from each element to 
neighboring elements 

 Use priority queue (e.g. heap) 

 Fast access to element with minimal error 

 Fast update 



Vertex Removal Algorithm 

 Simplification operation: 

 Vertex removal 

 

 Error metric: 

 Distance to average plane 

 

 May preserve mesh features 
(creases) 



Algorithm Outline 

 Characterize local topology/geometry 

 Classify vertices as removable or not 

 Repeat 

 Remove vertex 

 Triangulate resulting hole 

 Update error of affected vertices 

 Until reduction goal is met 



 Vertex Classification 

Characterizing 
Local Topology / Geometry 

Simple 

Complex 

Boundary 

Interior 

Corner 



Characterizing 
Local Topology / Geometry 

 Feature edge exists if the angle 
between the surface normals of two 
adjacent triangles is greater than a 
user-specified “feature angle”. 

E 


fa If 

E = Feature Edge 



Characterizing 
Local Topology / Geometry 

 Determine whether the given vertex 
is a potential candidate for deletion 

 

 All vertices except complex vertices 
become candidates for deletion 



Decimation Criterion 

 EMAX – user defined parameter 

 Simple Vertex 
 Distance of vertex to the face loop average 

plane < EMAX 

 Boundary & Interior Vertex 
 Distance of vertex to the new 

boundary/edge < EMAX 

average plane 
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Decimation Criterion 

 Corner Vertex ? 

 

 

 

 

 Corner vertices are usually not deleted to 
keep the sharp features. 



Triangulation 

 If a vertex is eliminated, the loop 
created by removing the vertex is re-
triangulated. 

 Every loop is star shaped: recursive 
loop splitting triangulation schemes 
are used. 

 If a loop cannot be re-triangulated, 
the vertex generating the loop is not 
removed. 

Definition: A polygon P in which there exists an interior point p 
such that all the boundary points of P are visible from p.  



Triangulation 

 After deleting a vertex and associated 
triangles create 1 or 2 loops 

 1 loop 

 Simple or Boundary Vertex 

 2 loops 

 Interior Edge Vertex 

 



Triangulation 

 A triangulation of set of points in the 
plane is a partition of the convex hull to 
triangles whose vertices are the points, 
and are empty of other points. 

 There are an exponential number of 
triangulations of a point set. 

Definition: the minimal convex set containing a set of points P.  



Triangulation 

 Formal Definition 

 maximal planar subdivision 

 a subdivision S such that no edge 
connecting two vertices can be added to S 
without destroying its planarity 

 triangulation of set of points P 

 a maximal planar subdivision whose 
vertices are elements of P  



Triangulation 

 Outer polygon must be convex hull 

 Internal faces must be triangles, 
otherwise they could be triangulated 
further 

convex hull boundary 



Triangulation 

 For P consisting of n points, all 
triangulations contain 2n-2-k triangles 
and 3n-3-k edges 
 n = number of points in P 
 k = number of points on convex hull of P 

 

convex hull boundary 



Recursive Splitting Triangulation 

 A split plane orthogonal to average 
plane is determined. 

 

 

 

 

 If two loops do not overlap, the split 
plane is acceptable. 

average plane 

split plane split line 



Recursive Splitting Triangulation 

 Best splitting plane is determined 
using an aspect ratio: 

 

 

 

 

 Maximum aspect ratio gives best 
splitting plane. 

minimum distance of the loop vertices to the split line

the length of the split line



Piecewise Linear Interpolation 

 The height of a point p inside a triangle 
is determined by the height of the 
triangle vertices, and the location of p. 

 The result depends on the triangulation. 
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Barycentric Coordinates 

 Any point inside a triangle can be 
expressed uniquely as a convex 
combination of the triangle vertices. 
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Quality Triangulation 

 Let                         be the angle 
vector in the triangulation  , in 
increasing order. 

                iff there exists an   such 
that          for all 

 Best triangulation is the triangulation 
that is angle optimal, i.e. has the 
largest angle vector. 

 Maximizes minimum angle. 

1 2A( ) ( , ,..., )mT   

T

A( ) A( )T T 

j j  j i i i 

i

good bad 



Thales’ Theory 

 Let C be a circle, and l be a line intersecting 
C at points a and b. Let p, q, r and s be 
points lying on the same side of l, where p 
and q are on C, r inside C and s outside C. 
Then: 

a

b

p
q

r

s

l

arb apb aqb asb   



Improving a Triangulation 

 Consider two adjacent triangles of T: 

 If the two triangles form a convex 
quadrilateral, we could have an 
alternative triangulation by performing 
an edge flip on their shared edge. 

 

edge flip 

1

2 3

4

5

6
1

2

3

4

5

6

illegal 



Illegal Edges 

 Lemma: An edge is illegal iff one of its 
opposite vertices is inside the circle 
defined by the other three vertices. 

 Proof: By Thales’ theorem. 



Illegal Edges 

 Theorem: A Delaunay triangulation 
does not contain illegal edges. 

 Corollary: A triangle is Delaunay iff 
the circle through its vertices is 
empty of other sites (the empty-circle 
condition). 

 Corollary: The Delaunay triangulation 
is not unique if more than three sites 
are co-circular. 



Delaunay Graph & Voronoi Diagram  

 Delaunay Graph of a set of points P is 
the dual graph of the Voronoi Diagram 
of P 

 

Definition: the partitioning of a plane with points P into convex polygons 
such that each polygon contains exactly one generating point and every 
point in a given polygon is closer to its generating point than to any other.  



Delaunay Graph 

 Constructing Delaunay Graph by 
connecting the adjacent vertices 
sharing an edge. 

Note: no two edges cross; Delaunay Graph is a planar graph. 



Delaunay Triangulation 

 Some sets of more than 3 points of 
Delaunay graph may lie on the same circle.  

 These points form empty convex polygons, 
which can be triangulated.  

 Delaunay Triangulation is a triangulation 
obtained by adding 0 or more edges to the 
Delaunay Graph. 



Pros and Cons 

 Pros: 
 Efficient 

 Simple to implement and use 

 Few input parameters to control quality 

 Reasonable approximation 

 Works on very large meshes 

 Preserves topology 

 Vertices are a subset of the original mesh 

 Cons: 
 Error is not bounded 

 Local error evaluation causes error to accumulate 



Edge Collapse Algorithm 

 Simplification operation: 

 Pair contraction 

 

 Error metric: 

 distance, pseudo-global 

 

 Simplifies also topology 



Pros and Cons 

 Pros 

 Error is bounded 

 Allows topology simplification 

 High quality result 

 Quite efficient 

 Cons 

 Difficulties along boundaries 

 Difficulties with coplanar planes 

 Introduces new vertices not present in the 
original mesh 



Special Cases 

 Modification of topology of a closed structure 
 
 
 
 
 

 Topological ‘holes’ problem 



Special Cases 

 Foldover problem 
 
 
 
 
 

 Topological inconsistency problem 



Vertex Tree & Active Triangle List 

 The Vertex Tree 

 represents the entire model 

 a hierarchical clustering of vertices 

 queried each frame for updated scene 

 The Active Triangle List 

 represents the current simplification 

 list of triangle to be displayed 



The Vertex Tree 

 Each vertex tree node contains: 

 a subset of model vertices 

 a representative vertex or repvert 

 Folding a node collapses its vertices 
to the repvert 

 Unfolding a node splits the repvert 
back into vertices 



Vertex Tree Example 

Vertex Tree Triangles in Active List 
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Vertex Tree Example 

Vertex Tree Triangles in Active List 
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Vertex Tree Example 

Vertex Tree Triangles in Active List 
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Vertex Tree Example 

Vertex Tree Triangles in Active List 
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Vertex Tree Example 

Vertex Tree Triangles in Active List 
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Vertex Tree Example 

Vertex Tree Triangles in Active List 
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Vertex Tree Example 

Vertex Tree Triangles in Active List 
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Vertex Tree Example 

Vertex Tree Triangles in Active List 
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Vertex Tree Example 

Vertex Tree Triangles in Active List 
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Vertex Tree Example 

Vertex Tree Triangles in Active List 
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Vertex Tree Example 

Vertex Tree Triangles in Active List 
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Vertex Tree Example 

Vertex Tree Triangles in Active List 

1 2 

3 

4 5 6 7 8 9 

10 A B C 

I II 

R 

B 

II I 

R 



Vertex Tree Example 

Vertex Tree Triangles in Active List 
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The Vertex Tree: 
Folding & Unfolding 

1 
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Fold node A 

Unfold node A 



The Vertex Tree: 
Tris & Subtris 

1 
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Fold node A 

Unfold node A 

Tris: triangles that change shape upon folding 
Subtris: triangles that disappear completely 


