
Geometric Modeling

Bing-Yu Chen
National Taiwan University
The University of Tokyo

Surface Simplification

 Motivation

 Basic Idea of LOD

 Discrete LOD

 Continuous LOD

 Simplification Problem Characteristics

 Methodology Overview

 Simplification Algorithms

 The Vertex Tree

Motivation

 Interactive rendering of large-scale
geometric datasets is important

 Scientific and medical visualization

 Architectural and industrial CAD

 Training (military and otherwise)

 Entertainment

Motivation:
Big Models

 The problem:

 Polygonal models are often too complex
to render at interactive rates

 Even worse:

 Incredibly, models are getting bigger as
fast as hardware is getting faster…

Big Models:
Submarine Torpedo Room

 700,000 polygons

Courtesy General Dynamics, Electric Boat Div.

Big Models:
Coal-fired Power Plant

 13 million polygons

Big Models:
Plant Ecosystem Simulation

 16.7 million polygons (sort of)

Deussen et al: Realistic Modeling of Plant Ecosystems

Big Models:
Double Eagle Container Ship

 82 million polygons

Courtesy Newport News Shipbuilding

Big Models:
The Digital Michelangelo Project

 David:
56,230,343 polygons

 St. Matthew:
372,422,615 polygons

Courtesy Digital Michelangelo Project, Stanford Univ.

Level of Detail:
The Basic Idea

 One solution:

 Simplify the polygonal geometry of small
or distant objects

 Known as Level of Detail or LOD

 A.k.a. polygonal simplification, geometric
simplification, mesh reduction,
multiresolution modeling, …

Level of Detail:
Traditional Approach

 Create levels of detail (LODs) of
objects:

69,451 polys 2,502 polys 251 polys 76 polys

Level of Detail:
Traditional Approach

 Distant objects use coarser LODs:

Traditional Approach:
Discrete Level of Detail

 Traditional LOD in a nutshell:

 Create LODs for each object separately
in a preprocess

 At run-time, pick each object’s LOD
according to the object’s distance (or
similar criterion)

 Since LODs are created offline at
fixed resolutions, this can be referred
as Discrete LOD

Discrete LOD:
Advantages

 Simplest programming model;
decouples simplification and
rendering

 LOD creation need not address real-time
rendering constraints

 Run-time rendering need only pick LODs

Discrete LOD:
Advantages

 Fits modern graphics hardware well

 Easy to compile each LOD into triangle
strips, display lists, vertex arrays, …

 These render much faster than
unorganized polygons on today’s
hardware (3-5 x)

Discrete LOD:
Disadvantages

 So why use anything but discrete LOD?

 Answer: sometimes discrete LOD not
suited for drastic simplification

 Some problem cases:

 Terrain flyovers

 Volumetric isosurfaces

 Super-detailed range scans

 Massive CAD models

Drastic Simplification:
The Problem With Large Objects

Courtesy IBM and ACOG

Drastic Simplification:
The Problem With Small Objects

Courtesy Electric Boat

Drastic Simplification:
The Problem With Topology

Courtesy University of Utah

Drastic Simplification

 For drastic simplification:

 Large objects must be subdivided

 Small objects must be combined

 Topology must be simplified

 Difficult or impossible with discrete LOD

Continuous Level of Detail

 A departure from the traditional static
approach:

 Discrete LOD: create individual LODs in a
preprocess

 Continuous LOD: create data structure
from which a desired level of detail can
be extracted at run time.

Continuous LOD:
Advantages

 Better granularity  better fidelity

 LOD is specified exactly, not chosen from
a few pre-created options

 Thus objects use no more polygons than
necessary, which frees up polygons for
other objects

 Net result: better resource utilization,
leading to better overall fidelity/polygon

Continuous LOD:
Advantages

 Better granularity  smoother
transitions
 Switching between traditional LODs can

introduce visual “popping” effect

 Continuous LOD can adjust detail
gradually and incrementally, reducing
visual pops
 Can even geomorph the fine-grained

simplification operations over several
frames to eliminate pops [Hoppe 96, 98]

Continuous LOD:
Advantages

 Supports progressive transmission
 Progressive Meshes [Hoppe 97]

 Progressive Forest Split Compression [Taubin 98]

 Leads to view-dependent LOD

 Use current view parameters to select
best representation for the current view

 Single objects may thus span several
levels of detail

Typical Curve & Surface
Simplification Problems

 Typical Curve Simplification Problem
 Given curve with n vertices, find an accurate

approximation using m vertices.

 Given curve with n vertices, find a compact
approximation with error < ε.

 Typical Surface Simplification Problem
 Given surface with n vertices, find accurate

approximation using m vertices.

 Given surface with n vertices, find a compact
approximation with error < ε.

Simplification Problem Characteristics
- What problem do you want to solve?

 topology of output
 curve or surface

 topology & geometry of input
 points, function f(x), curve, height field

f(x,y), manifold, surface

 other attributes:
 color, texture

 domain of output
 subset of input vertices?

Simplification Problem Characteristics
- What problem do you want to solve?

 topology of triangulation

 uniform, hierarchical, general

 approximating elements

 linear, quadratic, cubic, …,other

 error metric

 L2 = sum of squared, L∞ = maximum

 constraints

 most accurate using a given number of elements
or amount of memory

 smallest satisfying a given error tolerance

Simplification Problem Characteristics
- How do you want to solve the problem?

 speed / quality tradeoff

 optimal (& slow) or sub-optimal (& fast)?

 refinement / decimation

 top down or bottom up?

 number of passes

 one pass or multiple passes?

 triangulation

 hierarchical triangulation, Delaunay triangulation,
data-dependent triangulation, or other?

Performance Requirements

 Offline

 Generate model at given level(s) of detail

 Focus on quality

 Real-time

 Generate model at given level(s) of detail

 Focus on speed

 Requires preprocessing

 Time/space/quality tradeoff

Taxonomy of
Surface Simplification Methods

 Height Field / Parametric Simplification
 subsampling, pyramid, quadtree methods
 greedy insertion [Garland95]

 Manifold Simplification
 vertex decimation [Schroeder92]
 vertex decimation with point lists [Eck95]

 [Lounsbery94]
 wavelet [Hoppe93]
 edge collapse [Ronfard96]

 [Hoppe96]
 [Gueziec95]
 [Garland97]

 Non-Manifold Simplification
 vertex clustering [Rossignac93]

Methodology

 Sequence of local operations
 Involve near neighbors - only small

patch affected in each operation

 Each operation introduces error

 Find and apply operation which
introduces the least error

Simplification Operations

 Decimation
 Vertex removal
 v ← v-1

 f ← f-2

 Remaining vertices - subset of original
vertex set

Simplification Operations

 Decimation

 Edge collapse

 v ← v-1

 f ← f-2

 Triangle collapse

 v ← v-2

 f ← f-4

 Vertices may move

 Contraction
 Pair contraction

 Cluster contraction
(set of vertices)

 Vertices may move

Simplification Operations

Error Control

 Local error:
 Compare new patch with previous iteration

 Fast

 Accumulates error

 Memory-less

 Global error:
 Compare new patch with original mesh

 Slow

 Better quality control

 Can be used as termination condition

 Must remember the original mesh throughout
the algorithm

Local vs. Global Error

2000 faces 488 faces
(local error)

488 faces
(global error)

Simplification Error Metrics

 Measures

 Distance to plane

 Curvature

 Usually approximated

 Average plane

 Discrete curvature

/ 2 

The Basic Algorithm

 Repeat

 Select the element with minimal error

 Perform simplification operation

 (remove/contract)

 Update error

 (local/global)

 Until mesh size / quality is achieved

Implementation Details

 Vertices/Edges/Faces data structure

 Easy access from each element to
neighboring elements

 Use priority queue (e.g. heap)

 Fast access to element with minimal error

 Fast update

Vertex Removal Algorithm

 Simplification operation:

 Vertex removal

 Error metric:

 Distance to average plane

 May preserve mesh features
(creases)

Algorithm Outline

 Characterize local topology/geometry

 Classify vertices as removable or not

 Repeat

 Remove vertex

 Triangulate resulting hole

 Update error of affected vertices

 Until reduction goal is met

 Vertex Classification

Characterizing
Local Topology / Geometry

Simple

Complex

Boundary

Interior

Corner

Characterizing
Local Topology / Geometry

 Feature edge exists if the angle
between the surface normals of two
adjacent triangles is greater than a
user-specified “feature angle”.

E


fa If

E = Feature Edge

Characterizing
Local Topology / Geometry

 Determine whether the given vertex
is a potential candidate for deletion

 All vertices except complex vertices
become candidates for deletion

Decimation Criterion

 EMAX – user defined parameter

 Simple Vertex
 Distance of vertex to the face loop average

plane < EMAX

 Boundary & Interior Vertex
 Distance of vertex to the new

boundary/edge < EMAX

average plane

, ,
| |

:triangle normal, :centers, :areas

| () |, :vertex of considered

i i i i

i i

i i i

n A x AN
N n x

A AN

n x A

d n v x v

  

  

 
 

Decimation Criterion

 Corner Vertex ?

 Corner vertices are usually not deleted to
keep the sharp features.

Triangulation

 If a vertex is eliminated, the loop
created by removing the vertex is re-
triangulated.

 Every loop is star shaped: recursive
loop splitting triangulation schemes
are used.

 If a loop cannot be re-triangulated,
the vertex generating the loop is not
removed.

Definition: A polygon P in which there exists an interior point p
such that all the boundary points of P are visible from p.

Triangulation

 After deleting a vertex and associated
triangles create 1 or 2 loops

 1 loop

 Simple or Boundary Vertex

 2 loops

 Interior Edge Vertex

Triangulation

 A triangulation of set of points in the
plane is a partition of the convex hull to
triangles whose vertices are the points,
and are empty of other points.

 There are an exponential number of
triangulations of a point set.

Definition: the minimal convex set containing a set of points P.

Triangulation

 Formal Definition

 maximal planar subdivision

 a subdivision S such that no edge
connecting two vertices can be added to S
without destroying its planarity

 triangulation of set of points P

 a maximal planar subdivision whose
vertices are elements of P

Triangulation

 Outer polygon must be convex hull

 Internal faces must be triangles,
otherwise they could be triangulated
further

convex hull boundary

Triangulation

 For P consisting of n points, all
triangulations contain 2n-2-k triangles
and 3n-3-k edges
 n = number of points in P
 k = number of points on convex hull of P

convex hull boundary

Recursive Splitting Triangulation

 A split plane orthogonal to average
plane is determined.

 If two loops do not overlap, the split
plane is acceptable.

average plane

split plane split line

Recursive Splitting Triangulation

 Best splitting plane is determined
using an aspect ratio:

 Maximum aspect ratio gives best
splitting plane.

minimum distance of the loop vertices to the split line

the length of the split line

Piecewise Linear Interpolation

 The height of a point p inside a triangle
is determined by the height of the
triangle vertices, and the location of p.

 The result depends on the triangulation.

0

0

0

0

0

0

>0

p

=0

0

0

0

0

0

0

>0

p

>0

Barycentric Coordinates

 Any point inside a triangle can be
expressed uniquely as a convex
combination of the triangle vertices.

1v

2v

3v

p
1A

2A

3A 1 1 2 2 3 3

1 2 3

1 2 30, 1

i
i

i

p a v a v a v

A
a

A A A

a a a a

  


 

   

Quality Triangulation

 Let be the angle
vector in the triangulation , in
increasing order.

 iff there exists an such
that for all

 Best triangulation is the triangulation
that is angle optimal, i.e. has the
largest angle vector.

 Maximizes minimum angle.

1 2A() (, ,...,)mT   

T

A() A()T T 

j j  j i i i 

i

good bad

Thales’ Theory

 Let C be a circle, and l be a line intersecting
C at points a and b. Let p, q, r and s be
points lying on the same side of l, where p
and q are on C, r inside C and s outside C.
Then:

a

b

p
q

r

s

l

arb apb aqb asb   

Improving a Triangulation

 Consider two adjacent triangles of T:

 If the two triangles form a convex
quadrilateral, we could have an
alternative triangulation by performing
an edge flip on their shared edge.

edge flip

1

2 3

4

5

6
1

2

3

4

5

6

illegal

Illegal Edges

 Lemma: An edge is illegal iff one of its
opposite vertices is inside the circle
defined by the other three vertices.

 Proof: By Thales’ theorem.

Illegal Edges

 Theorem: A Delaunay triangulation
does not contain illegal edges.

 Corollary: A triangle is Delaunay iff
the circle through its vertices is
empty of other sites (the empty-circle
condition).

 Corollary: The Delaunay triangulation
is not unique if more than three sites
are co-circular.

Delaunay Graph & Voronoi Diagram

 Delaunay Graph of a set of points P is
the dual graph of the Voronoi Diagram
of P

Definition: the partitioning of a plane with points P into convex polygons
such that each polygon contains exactly one generating point and every
point in a given polygon is closer to its generating point than to any other.

Delaunay Graph

 Constructing Delaunay Graph by
connecting the adjacent vertices
sharing an edge.

Note: no two edges cross; Delaunay Graph is a planar graph.

Delaunay Triangulation

 Some sets of more than 3 points of
Delaunay graph may lie on the same circle.

 These points form empty convex polygons,
which can be triangulated.

 Delaunay Triangulation is a triangulation
obtained by adding 0 or more edges to the
Delaunay Graph.

Pros and Cons

 Pros:
 Efficient

 Simple to implement and use

 Few input parameters to control quality

 Reasonable approximation

 Works on very large meshes

 Preserves topology

 Vertices are a subset of the original mesh

 Cons:
 Error is not bounded

 Local error evaluation causes error to accumulate

Edge Collapse Algorithm

 Simplification operation:

 Pair contraction

 Error metric:

 distance, pseudo-global

 Simplifies also topology

Pros and Cons

 Pros

 Error is bounded

 Allows topology simplification

 High quality result

 Quite efficient

 Cons

 Difficulties along boundaries

 Difficulties with coplanar planes

 Introduces new vertices not present in the
original mesh

Special Cases

 Modification of topology of a closed structure

 Topological ‘holes’ problem

Special Cases

 Foldover problem

 Topological inconsistency problem

Vertex Tree & Active Triangle List

 The Vertex Tree

 represents the entire model

 a hierarchical clustering of vertices

 queried each frame for updated scene

 The Active Triangle List

 represents the current simplification

 list of triangle to be displayed

The Vertex Tree

 Each vertex tree node contains:

 a subset of model vertices

 a representative vertex or repvert

 Folding a node collapses its vertices
to the repvert

 Unfolding a node splits the repvert
back into vertices

Vertex Tree Example

Vertex Tree Triangles in Active List

1

2

3

4 5

6

7 8

9

10

1 2

3

4 5 6 7 8 9

10 A B C

I II

R

Vertex Tree Example

Vertex Tree Triangles in Active List

1

2

3

4 5

6

7 8

9

10

1 2

3

4 5 6 7 8 9

10 A B C

I II

R

A

Vertex Tree Example

Vertex Tree Triangles in Active List

3

4 5

6

8

9

10

1 2

3

4 5 6 7 8 9

10 A B C

I II

R

A

Vertex Tree Example

Vertex Tree Triangles in Active List

3

4 5

6

8

9

10

1 2

3

4 5 6 7 8 9

10 A B C

I II

R

A

B

Vertex Tree Example

Vertex Tree Triangles in Active List

3

8

9

10

1 2

3

4 5 6 7 8 9

10 A B C

I II

R

A

B

Vertex Tree Example

Vertex Tree Triangles in Active List

3

8

9

10

1 2

3

4 5 6 7 8 9

10 A B C

I II

R

A

B

C

Vertex Tree Example

Vertex Tree Triangles in Active List

3

10

1 2

3

4 5 6 7 8 9

10 A B C

I II

R

A

B

C

Vertex Tree Example

Vertex Tree Triangles in Active List

3

10

1 2

3

4 5 6 7 8 9

10 A B C

I II

R

A

B

C

II

Vertex Tree Example

Vertex Tree Triangles in Active List

10

1 2

3

4 5 6 7 8 9

10 A B C

I II

R

A

B

II

Vertex Tree Example

Vertex Tree Triangles in Active List

10

1 2

3

4 5 6 7 8 9

10 A B C

I II

R

A

B

II I

Vertex Tree Example

Vertex Tree Triangles in Active List

1 2

3

4 5 6 7 8 9

10 A B C

I II

R

B

II I

Vertex Tree Example

Vertex Tree Triangles in Active List

1 2

3

4 5 6 7 8 9

10 A B C

I II

R

B

II I

R

Vertex Tree Example

Vertex Tree Triangles in Active List

1 2

3

4 5 6 7 8 9

10 A B C

I II

R

R

The Vertex Tree:
Folding & Unfolding

1

2

3

4 5

6

7 8

9

10

A

3

4 5

6

8

9

10

A

Fold node A

Unfold node A

The Vertex Tree:
Tris & Subtris

1

2

3

4 5

6

7 8

9

10

3

4 5

6

8

9

10

A

Fold node A

Unfold node A

Tris: triangles that change shape upon folding
Subtris: triangles that disappear completely

