Geometric Modeling

Bing-Yu Chen
National Taiwan University
The University of Tokyo

Surface Simplification

\square Motivation
\square Basic Idea of LOD
\square Discrete LOD
\square Continuous LOD
\square Simplification Problem Characteristics
\square Methodology Overview
\square Simplification Algorithms
\square The Vertex Tree

Motivation

\square Interactive rendering of large-scale geometric datasets is important - Scientific and medical visualization - Architectural and industrial CAD

- Training (military and otherwise)
- Entertainment

Motivation:
 Big Models

\square The problem:

- Polygonal models are often too complex to render at interactive rates
\square Even worse:
- Incredibly, models are getting bigger as fast as hardware is getting faster...

Big Models:
 Submarine Torpedo Room

$\square 700,000$ polygons

Courtesy General Dynamics, Electric Boat Div.

Big Models: Coal-fired Power Plant

$\square 13$ million polygons

Big Models: Double Eagle Container Ship

$\square 82$ million polygons

Courtesy Newport News Shipbuilding

Big Models:

The Digital Michelangelo Project

\square David:

56,230,343 polygons
\square St. Matthew:
$372,422,615$ polygons

Courtesy Digital Michelangelo Project, Stanford Univ.

Level of Detail:
 The Basic Idea

\square One solution:

- Simplify the polygonal geometry of small or distant objects
- Known as Level of Detail or LOD
\square A.k.a. polygonal simplification, geometric simplification, mesh reduction, multiresolution modeling, ...

Level of Detail: Traditional Approach

- Create levels of detail (LODs) of objects:

69,451 polys
2,502 polys

251 polys
76 polys

Level of Detail:
 Traditional Approach

\square Distant objects use coarser LODs:

Traditional Approach: Discrete Level of Detail

\square Traditional LOD in a nutshell:

- Create LODs for each object separately in a preprocess
- At run-time, pick each object's LOD according to the object's distance (or similar criterion)
\square Since LODs are created offline at fixed resolutions, this can be referred as Discrete LOD

Discrete LOD: Advantages

\square Simplest programming model; decouples simplification and rendering

- LOD creation need not address real-time rendering constraints
- Run-time rendering need only pick LODs

Discrete LOD: Advantages

\square Fits modern graphics hardware well

- Easy to compile each LOD into triangle strips, display lists, vertex arrays, ...
- These render much faster than unorganized polygons on today's hardware (3-5 x)

Discrete LOD:
 Disadvantages

\square So why use anything but discrete LOD?
\square Answer: sometimes discrete LOD not suited for drastic simplification
\square Some problem cases:

- Terrain flyovers
- Volumetric isosurfaces
- Super-detailed range scans
- Massive CAD models

Drastic Simplification: The Problem With Large Objects

Drastic Simplification: The Problem With Small Objects

Courtesy Electric Boat

Drastic Simplification: The Problem With Topology

Drastic Simplification

\square For drastic simplification:

- Large objects must be subdivided
- Small objects must be combined
- Topology must be simplified
\square Difficult or impossible with discrete LOD

Continuous Level of Detail

\square A departure from the traditional static approach:

- Discrete LOD: create individual LODs in a preprocess
- Continuous LOD: create data structure from which a desired level of detail can be extracted at run time.

Continuous LOD: Advantages

\square Better granularity \rightarrow better fidelity

- LOD is specified exactly, not chosen from a few pre-created options
- Thus objects use no more polygons than necessary, which frees up polygons for other objects
- Net result: better resource utilization, leading to better overall fidelity/polygon

Continuous LOD: Advantages

\square Better granularity \rightarrow smoother transitions

- Switching between traditional LODs can introduce visual "popping" effect
- Continuous LOD can adjust detail gradually and incrementally, reducing visual pops
- Can even geomorph the fine-grained simplification operations over several frames to eliminate pops [Hoppe 96, 98]

Continuous LOD: Advantages

\square Supports progressive transmission

- Progressive Meshes [Hoppe 97]
- Progressive Forest Split Compression [Taubin 98]
\square Leads to view-dependent LOD
- Use current view parameters to select best representation for the current view
- Single objects may thus span several levels of detail

Typical Curve \& Surface Simplification Problems

\square Typical Curve Simplification Problem

- Given curve with n vertices, find an accurate approximation using m vertices.
- Given curve with n vertices, find a compact approximation with error $<\varepsilon$.
\square Typical Surface Simplification Problem Given surface with n vertices, find accurate approximation using m vertices.
- Given surface with n vertices, find a compact approximation with error $<\varepsilon$.

Simplification Problem Characteristics
 - What problem do you want to solve?

\square topology of output

- curve or surface
\square topology \& geometry of input
- points, function $f(x)$, curve, height field $f(x, y)$, manifold, surface
\square other attributes:
- color, texture
\square domain of output
- subset of input vertices?

Simplification Problem Characteristics - What problem do you want to solve?

- topology of triangulation
- uniform, hierarchical, general
\square approximating elements
- linear, quadratic, cubic, ...,other
\square error metric
- L2 = sum of squared, $\mathrm{L} \infty=$ maximum
\square constraints
- most accurate using a given number of elements or amount of memory
- smallest satisfying a given error tolerance

Simplification Problem Characteristics
 - How do you want to solve the problem?

\square speed / quality tradeoff

- optimal (\& slow) or sub-optimal (\& fast)?
\square refinement / decimation
- top down or bottom up?
\square number of passes
- one pass or multiple passes?
\square triangulation
- hierarchical triangulation, Delaunay triangulation, data-dependent triangulation, or other?

Performance Requirements

\square Offline

- Generate model at given level(s) of detail
- Focus on quality
\square Real-time
- Generate model at given level(s) of detail
- Focus on speed
- Requires preprocessing
- Time/space/quality tradeoff

Taxonomy of Surface Simplification Methods

\square Height Field / Parametric Simplification

- subsampling, pyramid, quadtree methods
- greedy insertion
\square Manifold Simplification
- vertex decimation
- vertex decimation with point lists
- wavelet
- edge collapse
[Garland95]
[Schroeder92]
[Eck95]
[Lounsbery94]
[Hoppe93]
[Ronfard96]
Hoppe96
Gueziec95
[Garland97]
\square Non-Manifold Simplification
- vertex clustering
[Rossignac93]

Methodology

\square Sequence of local operations

- Involve near neighbors - only small patch affected in each operation
- Each operation introduces error
- Find and apply operation which introduces the least error

Simplification Operations

- Decimation
- Vertex removal
$\square \mathrm{v} \leftarrow \mathrm{v}-1$
$\square \mathrm{f} \leftarrow \mathrm{f}-2$

- Remaining vertices - subset of original vertex set

Simplification Operations

\square Decimation

- Edge collapse
$\square \mathrm{v} \leftarrow \mathrm{v}-1$
- $\mathrm{f} \leftarrow \mathrm{f}-2$
- Triangle collapse
$\square \vee \leftarrow \mathrm{v}-2$
$\square f \leftarrow f-4$
- Vertices may move

Simplification Operations

\square Contraction

- Pair contraction

- Cluster contraction (set of vertices)
- Vertices may move

Error Control

\square Local error:

- Compare new patch with previous iteration
\square Fast
\square Accumulates error
\square Memory-less
\square Global error:
- Compare new patch with original mesh
\square Slow
\square Better quality control
\square Can be used as termination condition
\square Must remember the original mesh throughout the algorithm

Local vs. Global Error

Simplification Error Metrics

\square Measures

- Distance to plane
- Curvature
\square Usually approximated
- Average plane
- Discrete curvature

The Basic Algorithm

\square Repeat

- Select the element with minimal error
- Perform simplification operation
\square (remove/contract)
- Update error
- (local/global)
\square Until mesh size / quality is achieved

Implementation Details

\square Vertices/Edges/Faces data structure - Easy access from each element to neighboring elements
\square Use priority queue (e.g. heap)

- Fast access to element with minimal error
- Fast update

Vertex Removal Algorithm

\square Simplification operation:

- Vertex removal
\square Error metric:
- Distance to average plane
\square May preserve mesh features (creases)

Algorithm Outline

\square Characterize local topology/geometry
\square Classify vertices as removable or not
\square Repeat

- Remove vertex
- Triangulate resulting hole
- Update error of affected vertices
\square Until reduction goal is met

Characterizing
 Local Topology / Geometry

\square Vertex Classification

Boundary

Simple

Complex

Corner

Interior

Characterizing

Local Topology / Geometry

\square Feature edge exists if the angle between the surface normals of two adjacent triangles is greater than a user-specified "feature angle".

Characterizing

Local Topology / Geometry
\square Determine whether the given vertex is a potential candidate for deletion
\square All vertices except complex vertices become candidates for deletion

Decimation Criterion

$\square E_{\text {MAX }}$ - user defined parameter
\square Simple Vertex

- Distance of vertex to the face loop average plane $<\mathrm{E}_{\text {MAX }}$
\square Boundary \& Interior Vertex - Distance of vertex to the new boundary/edge $<\mathrm{E}_{\text {MAX }}$

$$
\vec{N}=\frac{\sum \vec{n}_{i} A_{i}}{\sum A_{i}}, \vec{n}=\frac{\vec{N}}{|\vec{N}|}, \vec{x}=\frac{\sum \vec{x}_{i} A_{i}}{\sum A_{i}}
$$

\vec{n}_{i} :triangle normal, \vec{x}_{i} :centers, A_{i} :areas
average plane $d=|\vec{n} \bullet(\vec{v}-\vec{x})|, \vec{v}:$ vertex of considered

Decimation Criterion

\square Corner Vertex?

- Corner vertices are usually not deleted to keep the sharp features.

Triangulation

\square If a vertex is eliminated, the loop created by removing the vertex is retriangulated.
\square Every loop is star shaped: recursive loop splitting triangulation schemes are used.
\square If a loop cannot be re-triangulated, the vertex generating the loop is not removed.
Definition: A polygon P in which there exists an interior point p such that all the boundary points of P are visible from p.

Triangulation

\square After deleting a vertex and associated triangles create 1 or 2 loops
$\square 1$ loop

- Simple or Boundary Vertex
$\square 2$ loops
- Interior Edge Vertex

Triangulation

\square A triangulation of set of points in the plane is a partition of the convex hull to triangles whose vertices are the points, and are empty of other points.
\square There are an exponential number of triangulations of a point set.

Definition: the minimal convex set containing a set of points P.

Triangulation

ㅁ Formal Definition

- maximal planar subdivision
\square a subdivision S such that no edge connecting two vertices can be added to S without destroying its planarity
- triangulation of set of points P
\square a maximal planar subdivision whose vertices are elements of P

Triangulation

\square Outer polygon must be convex hull
\square Internal faces must be triangles, otherwise they could be triangulated further

convex hull boundary

Triangulation

\square For P consisting of n points, all triangulations contain $2 n-2-k$ triangles and $3 n-3-k$ edges

- $n=$ number of points in P
- $k=$ number of points on convex hull of P

convex hull boundary

Recursive Splitting Triangulation

\square A split plane orthogonal to average plane is determined.

\square If two loops do not overlap, the split plane is acceptable.

Recursive Splitting Triangulation

\square Best splitting plane is determined using an aspect ratio:
minimum distance of the loop vertices to the split line the length of the split line
\square Maximum aspect ratio gives best splitting plane.

Piecewise Linear Interpolation

\square The height of a point p inside a triangle is determined by the height of the triangle vertices, and the location of p.
\square The result depends on the triangulation.

Barycentric Coordinates

\square Any point inside a triangle can be expressed uniquely as a convex combination of the triangle vertices.

$$
\begin{aligned}
& p=a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{3} \\
& a_{i}=\frac{A_{i}}{A_{1}+A_{2}+A_{3}} \\
& a_{i} \geq 0, a_{1}+a_{2}+a_{3}=1
\end{aligned}
$$

Quality Triangulation

\square Let $\mathrm{A}(T)=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right)$ be the angle vector in the triangulation T, in increasing order.
$\square \mathrm{A}(T)>\mathrm{A}\left(T^{\prime}\right)$ iff there exists an i such that $\alpha_{j}=\alpha_{j}^{\prime}$ for all $j<i \quad \alpha_{i}>\alpha_{i}^{\prime}$
\square Best triangulation is the triangulation that is andle aptimal, 9 hos the larges angle y ector.

- Maximizes minimum angre.

Thales' Theory

\square Let C be a circle, and / be a line intersecting C at points a and b. Let p, q, r and s be points lying on the same side of l, where p and q are on C, r inside C and s outside C. Then:

Improving a Triangulation

\square Consider two adjacent triangles of T :
\square If the two triangles form a convex quadrilateral, we could have an alternative triangulation by performing an edge flip on their shared edge.

illegal

Illegal Edges

\square Lemma: An edge is illegal iff one of its opposite vertices is inside the circle defined by the other three vertices.
\square Proof: By Thales' theorem.

Illegal Edges

\square Theorem: A Delaunay triangulation does not contain illegal edges.
\square Corollary: A triangle is Delaunay iff the circle through its vertices is empty of other sites (the empty-circle condition).
\square Corollary: The Delaunay triangulation is not unique if more than three sites are co-circular.

Delaunay Graph \& Voronoi Diagram

- Delaunay Graph of a set of points P is

 the dual graph of the Voronoi Diagram of P

Definition: the partitioning of a plane with points P into convex polygons such that each polygon contains exactly one generating point and every point in a given polygon is closer to its generating point than to any other.

Delaunay Graph

\square Constructing Delaunay Graph by connecting the adjacent vertices sharing an edge.

Note: no two edges cross; Delaunay Graph is a planar graph.

Delaunay Triangulation

\square Some sets of more than 3 points of Delaunay graph may lie on the same circle.
\square These points form empty convex polygons, which can be triangulated.
\square Delaunay Triangulation is a triangulation obtained by adding 0 or more edges to the Delaunay Graph.

Pros and Cons

\square Pros:

- Efficient
- Simple to implement and use
\square Few input parameters to control quality
- Reasonable approximation
- Works on very large meshes
- Preserves topology
- Vertices are a subset of the original mesh
\square Cons:
- Error is not bounded
\square Local error evaluation causes error to accumulate

Edge Collapse Algorithm

\square Simplification operation:

- Pair contraction
\square Error metric:
- distance, pseudo-global
\square Simplifies also topology

Pros and Cons

\square Pros

- Error is bounded
- Allows topology simplification
- High quality result
- Quite efficient
\square Cons
- Difficulties along boundaries
- Difficulties with coplanar planes
- Introduces new vertices not present in the original mesh

Special Cases

\square Modification of topology of a closed structure

\square Topological 'holes' problem

Special Cases

\square Foldover problem

\square Topological inconsistency problem

Vertex Tree \& Active Triangle List

\square The Vertex Tree

- represents the entire model
- a hierarchical clustering of vertices
- queried each frame for updated scene
- The Active Triangle List
- represents the current simplification
- list of triangle to be displayed

The Vertex Tree

\square Each vertex tree node contains:

- a subset of model vertices
- a representative vertex or repvert
\square Folding a node collapses its vertices to the repvert
\square Unfolding a node splits the repvert back into vertices

Vertex Tree Example

Triangles in Active List

Vertex Tree

Vertex Tree Example

Vertex Tree Example

Triangles in Active List

Vertex Tree

Vertex Tree Example

Triangles in Active List

Vertex Tree

Vertex Tree Example

Triangles in Active List
Vertex Tree

Vertex Tree Example

Triangles in Active List
Vertex Tree

Vertex Tree Example

Triangles in Active List
Vertex Tree

Vertex Tree Example

Triangles in Active List
Vertex Tree

Vertex Tree Example

Triangles in Active List
Vertex Tree

Vertex Tree Example

Triangles in Active List
Vertex Tree

Vertex Tree Example

Triangles in Active List
Vertex Tree

Vertex Tree Example

Triangles in Active List
Vertex Tree

Vertex Tree Example

Triangles in Active List
Vertex Tree

The Vertex Tree: Folding \& Unfolding

The Vertex Tree: Tris \& Subtris

Tris: triangles that change shape upon folding Subtris: triangles that disappear completely

