Geometric Modeling

Bing-Yu Chen
National Taiwan University
The University of Tokyo

Surface Parameterization

\square Introduction
\square Applications
\square What is Parameterization?
\square Parameterization Methods

Problem

\square 1-1 mapping from domain to surface \square Original application:

- Texture mapping
\square Images have a natural parameterization
- Goal: map onto surfaces
\square Geometry processing
- Approximation
- Remeshing

- Data fitting
\square Input: Piecewise (PL) triangular meshes

Introduction

\square A parameterization of a surface is a one-to-one mapping from a suitable domain to the surface.

Introduction

\square In general, the parameter domain itself will be a surface.
\square Constructing a parameterization means mapping a surface into another.
\square Usually the surfaces are either represented by or approximated by triangular meshes and the mappings are piecewise linear.

Applications

\square Scattered data fitting.
\square Reparameterization of Spline surfaces
\square Texture-mapping
\square Mesh compression
\square Surface approximations \& remeshing

What is Parameterization?

What is Parameterization?

\square How to get \mathbf{P} from \mathbf{S} ?

- for each vertex of \boldsymbol{S}, find its (u, v)
- from (u, v) of P, map image to \boldsymbol{S}
\square A parameterization of a surface is a mapping $\rho:(x, y, z)->(u, v)$ from 3D space to 2D space

Problem Definition

\square Given a surface (mash) S in R^{3} and a domain D find $\rho: D \leftrightarrow S$ (one-to-one)

Recall: Applications

\square Texture-mapping

- $\rho:(x, y, z)->(u, v)$ from 3D to 2D
\square Remeshing

$$
\rho^{-1}:(u, v)->(x, y, z) \text { from 2D to 3D }
$$

Typical Domains

sub-domain of R^{2}

- genus-0 + boundary
sphere
- closed genus-0
base mesh
- all (closed) models

Applications

texture mapping

morphing

reconstruction

Texture Mapping

\square Real life objects not uniform in terms of color
\square Texturing - define color for each point on object surface
\square Map 2D texture to model surface:

- Have texture pattern defined over (u, v) domain (Image)
- Assign (u,v) coordinates to each point on object surface

Morphing

\square Morphing requires one-to-one correspondence between the surfaces of the two models

Normal / Bump Mapping

Remeshing \& Surface Fitting

More Applications

Mesh Parameterization (2D)

\square Problem definition:

- Input:
triangulated surface mesh in 3D
- Output:
- valid 2D mesh with same connectivity \& minimal metric distortion
- Mapping defined by vertex correspondence + barycentric coordinates
- Validity - no inverted (overlapping) triangles

Parameterization in 2D

\square Can do only for genus 0 surfaces with boundary
\square Metrics preserved fully only for developable surfaces (Gaussian curvature $=0$)

Distortion

\square Function of second fundamental form

$$
J=\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)=\left(\begin{array}{ll}
\left(\frac{\partial f}{\partial u}\right)^{2} & \frac{\partial f}{\partial u} \frac{\partial f}{\partial v} \\
\frac{\partial f}{\partial u} \frac{\partial f}{\partial v} & \left(\frac{\partial f}{\partial v}\right)^{2}
\end{array}\right)
$$

\square Isometry (0-distortion) if J is identity matrix
\square Components measure

- Shear (angles)
- Stretch (lengths)
- Conformality: angles + equal stretch

Mapping Properties

\square Validity: no folded over triangles
\square Distortion - preserve (as mush as possible) lengths, angles, and areas

- isometric (length-preserving) mappings
- conformal (angle-preserving) mappings
- equiareal (area-preserving) mappings
\square (Theorem)
isometric \Leftrightarrow conformal + equiareal

Barycentric Combination

$$
\begin{aligned}
\square \mathbf{p} & =\sum \lambda_{i} \mathbf{p}_{i}, \\
i & =1 \ldots n, \sum \lambda_{i}=1
\end{aligned}
$$

i.e., a combination of its neighbors

Barycentric Combination

Choose $\mathbf{u}_{n+1}, \ldots, \mathbf{u}_{N}$ to be the vertices of any K-sided convex polygon in an anticlockwise sequence.

For each $i \in\{1, \ldots, n\}$, choose any set of real numbers $\lambda_{i, j}$ for $j=1, \ldots, N$ such that

$$
\lambda_{i, j}=\left\{\begin{array}{ll}
>0 & (i, j) \in E \\
0 & (i, j) \notin E
\end{array} \quad \sum_{j=1}^{N} \lambda_{i, j}=1\right.
$$

and define $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$ to be the solution of the linear system of equations.

$$
\mathbf{u}_{i}=\sum_{j=1}^{N} \lambda_{i, j} \mathbf{u}_{j}
$$

Barycentric Combination

$$
\mathbf{u}_{i}=\sum_{j=1}^{N} \lambda_{i, j} \mathbf{u}_{j} \Rightarrow \mathbf{u}_{i}-\sum_{j=1}^{n} \lambda_{i, j} \mathbf{u}_{j}=\sum_{j=n+1}^{N} \lambda_{i, j} \mathbf{u}_{j}
$$

By considering the two components u_{i} and v_{i} of \mathbf{u}_{i} separately this is equivalent to the matrix equation

$$
\mathbf{A u}=\mathbf{b}
$$

where the matrix \mathbf{A} is $n \times n$ having elements

$$
a_{i, j}= \begin{cases}1 & i=j \\ -\lambda_{i, j} & i \neq j\end{cases}
$$

2D Barycentric Embeddings

\square Fix 2D boundary to convex polygon
\square Define embedding as a solution of

$$
\begin{array}{ll}
\mathbf{W} x=b_{x} \\
\mathbf{W} y=b_{y}
\end{array} \quad w_{i j}=\left\{\begin{array}{ll}
<0 & (i, j) \in E \\
-\sum_{j \neq i} w_{i j} & (i, i) \\
0 & \text { otherwise }
\end{array}\right\}
$$

- \mathbf{W} is symmetric: $w_{i j}=w_{j i}$
- weights $w_{i j}$ control parameterization shape

Weights - Uniform (Tutte)

\square Set

$$
w_{i j}=1 \quad\left(\lambda_{i, j}=\frac{1}{d_{i}}\right)
$$

\square No shape information - equilateral triangles
\square Fastest to solve

Weights - Shape Preserving (Floater)

For each $l \in\left\{1, \ldots, d_{i}\right\}, \overrightarrow{\mathbf{p}_{i}}$ will intersect $\overline{\mathbf{p}_{r(l)}} \mathbf{p}_{r(l)+l}$, then we can have $\mathbf{p}=\delta_{1} \mathbf{p}_{l}+\delta_{2} \mathbf{p}_{r(l)}+\delta_{3} \mathbf{p}_{r(l)+1} \quad \delta_{1}+\delta_{2}+\delta_{3}=1$

Define $\mu_{k, l \prime}$ for $k=1, \ldots, d_{i}$, by $\mu_{l, l}=\delta_{1}$, $\mu_{r(l), l}=\delta_{2}, \mu_{r(l)+1, l}=\delta_{3}$, and $\mu_{k, l}=0$ otherwise. Then for each l we now find

$$
\mathbf{p}=\sum_{k=1}^{d_{i}} \mu_{k, l} \mathbf{p}_{k} \quad \sum_{k=1}^{d_{i}} \mu_{k, l}=1
$$

Finally define $\lambda_{i, j}=\frac{1}{d_{i}} \sum_{l=1}^{d_{i}} \mu_{j, l}$

Weights - Harmonic Mapping

\square Quasi - conformal : minimize angular distortion
\square Locally, preserving angles preserves distances (ratios)
\square For fixed boundary have unique harmonic map which minimizes conformal energy

- Rieman theorem: any C^{1} continuous surface in R^{3} can be mapped conformally to fixed domain in R^{2}
- Nearly true for meshes

Weights - Harmonic Mapping

- Approximate harmonic map for fixed boundary
\square Represent as configuration of springs on mesh edges

$$
E(v)=\frac{1}{2} \sum_{(i, j)} w_{i j}\left\|v_{i}-v_{j}\right\|^{2}
$$

- Spring coefficients

$$
w_{i j}=\frac{L_{i 1}^{2}+L_{j 1}^{2}-L_{i j}^{2}}{A_{1}}+\frac{L_{i 2}^{2}+L_{j 2}^{2}-L_{i j}^{2}}{A_{2}}
$$

$$
=\frac{\cot \left(\alpha_{i j}\right)+\cot \left(\beta_{i j}\right)}{2}
$$

$L_{i j}$ - edge Fength in 3D
$A_{i j k}$ - triangle area in 3D
$\alpha_{i j}$ and $\beta_{i j}$ - opposing angles in 3D

Weights - Conformal Mapping

\square Represent as configuration of springs on mesh edges

$$
E(v)=\sum_{(i, j)} w_{i j}\left\|u_{i}-u_{j}\right\|^{2}
$$

$\square \quad$ Spring coefficients

$$
w_{i j}=\cot \left(\alpha_{i j}\right)+\cot \left(\beta_{i j}\right)
$$

$\square \alpha_{i j}$ and $\beta_{i j}$ - opposing angles in 3D

Barycentric Formulation

$\square E(v)$ minimum reached when gradient equal 0

$$
\frac{\partial E(v)}{\partial v_{i}}=\sum_{j} w_{i j}\left(v_{i}-v_{j}\right)=0
$$

\square Barycentric embedding formulation
\square Can have negative weights - does not guarantee validity

Weights - Mean Value

\square Set

$$
w_{i j}=\frac{\left(\tan \left(\gamma_{i j} / 2\right)+\tan \left(\delta_{i j} / 2\right)\right) / 2}{\left\|v_{i}-v_{j}\right\|}
$$

\square Result visually identical to conformal
\square No negative weights - always valid

Comparison

Practical Implementation

\square Boundary

- Popular options: Square, circle, triangle
- Application specific
\square Reconstruction - rectangle
\square Mapping to base mesh-triangle
\square Spreading points along boundary
\square Cord length
\square Solve $\mathbf{W} x=b_{x}$

$$
\mathbf{W} y=b_{y}
$$

- Right hand side determined from boundary vertices

Practical Implementation

\square Solving linear system expensive $\left(O\left(n^{3}\right)\right)$
\square Use iterative solution:

- Get initial guess for interior nodes
- While conditions not met:
\square Set each interior node to weighted average of neighbors:

$$
v_{i}=\frac{1}{\sum_{(i, j)} w_{i j}} \sum_{(i, j)} w_{i j} v_{j}
$$

- Stopping conditions:
\square Convergence: vertices do not move
- Exceed maximal number of iterations
- Parameterization is valid
\square Solution exists \& is reached thanks to matrix structure

Fixed vs. Free Boundary

\square Fixed

- Useful when boundary fixed a priory (e.g. mapping to base mesh)
- Increase distortion
\square Free
- Typically less distortion

Local Unfolding

\square While not all mesh flattened

- Select seed triangle \& map as is to 2D
- Define front - boundary of unfolded patch
- Assign cost to each vertex adjacent to boundary-amount of distortion caused by mapping it to 2D
- Map best current vertex to 2D (if cost below threshold), add it to front \& recompute adjacent costs

Local Unfolding

\square Advantages

- Bounded distortion
- Simple
- Drawback
- Generate long seams parameterization/texture discontinuities

Angle Based Flattening (ABF)

\square Fact:

- Triangular 2D mesh is defined by its angles
\square Define problem in angle space
\square Angle based formulation:
- Distortion as function of angles
- Validity - set of angle constraints

Constrained Minimization

\square Objective: minimize (relative) deviation of angles

$$
F(\alpha)=\sum_{i, j} w_{i}^{j}\left(\alpha_{i}^{j}-\beta_{i}^{j}\right)^{2}
$$

\square Initial choice for weights:

$$
w_{i}^{j}=\beta_{i}^{j-2}
$$

Constraints

$$
\left.\left.\begin{array}{l}
g^{1}(\alpha) \equiv \alpha_{i}^{j} \geq \varepsilon \\
g^{2}(\alpha) \equiv \alpha_{i}^{1}+\alpha_{i}^{2}+\alpha_{i}^{3}=\pi \\
g^{3}(\alpha) \equiv \sum_{k} \alpha_{i}^{j(k)}=2 \pi \\
g^{4}(\alpha) \equiv \prod_{k} \sin \left(\alpha_{i}^{j(k)-1}\right)-\prod_{k} \sin \left(\alpha_{i}^{j(k)+1}\right)=0 \\
\frac{l_{1}}{l_{2}} \cdots \frac{l_{6}}{l_{1}}=\frac{\sin \left(\alpha_{1}\right)}{\sin \left(\alpha_{2}\right)} \\
\sin \left(\alpha_{1}\right) \\
\sin \left(\alpha_{2}\right)
\end{array}\right) \frac{\sin \left(\alpha_{6}\right)}{\sin \left(\alpha_{1}\right)}\right)
$$

Solution

\square Use Lagrange Multipliers
$F^{*}(\alpha, \mu)=F(\alpha)+\mu_{1} g^{2}(\alpha)+\mu_{2} g^{3}(\alpha)+\mu_{3} g^{4}(\alpha)$
\square Solve the min-max problem (minimum on α, maximum on μ)
\square Reached when all derivatives are zero

- Have non-linear system of equations
\square Use Newton method to solve

ABF Summary

\square Advantages

- No fixed boundary - less distortion
- No flipped triangles
- Proven to converge to solution for any valid input
\square Drawbacks
- Expensive - solve non linear system
- Linear sub-systems can't be solved iteratively FAST
- Can have boundary overlaps
- Can't handle multiple boundary loops

