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Surface Parameterization 

 Introduction 

 Applications 

 What is Parameterization? 

 Parameterization Methods 



Problem 

 1-1 mapping from domain to surface 

 Original application: 
 Texture mapping 

 Images have a 
natural parameterization 

 Goal: map onto surfaces 

 Geometry processing 
 Approximation 

 Remeshing 

 Data fitting 

 Input: Piecewise (PL) triangular meshes 



Introduction 

 A parameterization of a surface is a 
one-to-one mapping from a suitable 
domain to the surface. 



Introduction 

 In general, the parameter domain 
itself will be a surface. 

 Constructing a parameterization 
means mapping a surface into 
another. 

 Usually the surfaces are either 
represented by or approximated by 
triangular meshes and the mappings 
are piecewise linear. 



Applications 

 Scattered data fitting. 

 Reparameterization of Spline surfaces 

 Texture-mapping 

 Mesh compression 

 Surface approximations & remeshing 



What is Parameterization? 

 G(V,E,F) 

 S(G,X), X={xiR3} 

 P(G,U), U={uiR2} 
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What is Parameterization? 

 How to get P from S ? 
 for each vertex of S, find its (u,v) 
 from (u,v) of P, map image to S 

 A parameterization of a surface is a 
mapping : (x,y,z)->(u,v) from 3D space to 
2D space 
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Problem Definition 

 Given a surface (mash) S in R3 and a 
domain D find : DS (one-to-one) 
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Recall: Applications 

 Texture-mapping 

 : (x,y,z) -> (u,v)  from 3D to 2D 

 

 Remeshing 

 -1: (u,v) -> (x,y,z) from 2D to 3D 



Typical Domains 

sub-domain of R2 

- genus-0 + boundary 

base mesh 

- all (closed) models 

sphere 

- closed genus-0 



Applications 

texture mapping 

remeshing 

morphing 

reconstruction 



Texture Mapping 

 Real life objects not uniform in terms of color 

 Texturing - define color for each point on object surface 

 Map 2D texture to model surface: 

 Have texture pattern defined over (u,v) domain (Image) 

 Assign (u,v) coordinates to each point on object surface 

u 
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Morphing 

 Morphing requires one-to-one 
correspondence between the surfaces 
of the two models 

../../gm05/ppt/head_venus.mpeg


Normal / Bump Mapping 

650K faces 29K faces normal map normal mapped 
simplified mesh 



Remeshing & Surface Fitting 



More Applications 



Mesh Parameterization (2D) 

 Problem definition: 
 Input: 

 triangulated surface mesh in 3D 

 Output: 

 valid 2D mesh with same 
connectivity & minimal metric 
distortion 
 Mapping defined by vertex 

correspondence + barycentric 
coordinates 

 Validity – no inverted 
(overlapping) triangles 



Parameterization in 2D 

 Can do only for genus 0 surfaces with 
boundary 

 Metrics preserved fully only for 
developable surfaces (Gaussian 
curvature = 0) 



Distortion 

 Function of second fundamental form 

 

 

 

 

 Isometry (0-distortion) if   is identity matrix 

 Components measure 
 Shear (angles) 

 Stretch (lengths) 

 Conformality: angles + equal stretch 
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Mapping Properties 

 Validity: no folded over triangles 

 

 Distortion – preserve (as mush as 
possible) lengths, angles, and areas 
 isometric (length-preserving) mappings 

 conformal (angle-preserving) mappings 

 equiareal (area-preserving) mappings 

 

 (Theorem) 
isometric  conformal + equiareal 



Barycentric Combination 

   
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Barycentric Combination 

Choose               to be the vertices of any K-sided 
convex polygon in an anticlockwise sequence. 

 

For each              , choose any set of real 
numbers     for              such that 

 

 

and define            to be the solution of the linear 
system of equations.  
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Barycentric Combination 

 

 

By considering the two components    and    of    
separately this is equivalent to the matrix 
equation 

 

where the matrix    is        having elements 
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2D Barycentric Embeddings 

 Fix 2D boundary to convex polygon 

 Define embedding as a solution of 

 

 

 

 

     is symmetric:   

 weights    control parameterization shape 
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Weights – Uniform (Tutte) 

 Set 

 

 No shape information 

 equilateral triangles 

 Fastest to solve 
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Weights – Shape Preserving (Floater) 

For each               ,      will intersect 
            , then we can have 

 

 

Define     , for              , by           , 
             ,               , and            
otherwise. Then for each   we now 
find 

 

 

Finally define 

p 

p1 

p2 

p3 

p4 

p5 

p6 

p 

pl 

Pr(l) 

Pr(l)+1 

{1,..., }il d lp p

( ) ( ) 1r l r l p p

1 2 ( ) 3 ( ) 1l r l r l     p p p p
1 2 3 1    

,k l 1,..., ik d , 1l l 

( ), 2r l l  ( ) 1, 3r l l   , 0k l 
l

,

1

id

k l k

k




p p ,

1

1
id

k l

k






, ,

1

1 id

i j j l

lid
 



 



Weights – Harmonic Mapping 

 Quasi – conformal : minimize angular 
distortion 

 Locally, preserving angles preserves 
distances (ratios) 

 For fixed boundary have unique harmonic 
map which minimizes conformal energy 

 Rieman theorem: any C1 continuous surface in 
R3 can be mapped conformally to fixed domain 
in R2 

 Nearly true for meshes 



Weights – Harmonic Mapping 

 Approximate harmonic map for fixed boundary 
 Represent as configuration of springs on mesh edges 

 
 
 

 Spring coefficients 
 
 
 
 
 
    - edge length in 3D 
    - triangle area in 3D 
   and    - opposing angles in 3D 
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Weights – Conformal Mapping 

 Represent as configuration of springs on mesh edges 
 
 
 

 Spring coefficients 
 
 
  and    - opposing angles in 3D 

2

( , )

( ) ij i j

i j

E v w u u 

cot( ) cot( )ij ij ijw   

ij
ij

iv
jv

ij

ij

iu
ju



Barycentric Formulation 

      minimum reached 
when gradient equal 0 

 

 

 Barycentric embedding 
formulation 

 Can have negative 
weights – does not 

guarantee validity 
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Weights – Mean Value 

 Set 

 

 

 Result visually identical to conformal 

 No negative weights – always valid 

(tan( / 2) tan( / 2)) / 2ij ij

ij

i j

w
v v

 



iv

jvij

ij



Comparison 

Tutte Mean Value Harmonic 



Practical Implementation 

 Boundary 
 Popular options: Square, circle, triangle 

 Application specific 

 Reconstruction – rectangle 

 Mapping to base mesh– triangle 

 Spreading points along boundary 

 Cord length 

 Solve 

 
 

 Right hand side determined from boundary vertices 
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Practical Implementation 

 Solving linear system expensive (O(n3)) 

 Use iterative solution: 

 Get initial guess for interior nodes 

 While conditions not met: 
 Set each interior node to weighted average of 

neighbors: 

 

 

 

 Stopping conditions: 
 Convergence: vertices do not move 

 Exceed maximal number of iterations 

 Parameterization is valid 

 Solution exists & is reached thanks to matrix structure 
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Fixed vs. Free Boundary 

 Fixed 

 Useful when boundary fixed a priory 
(e.g. mapping to base mesh) 

 Increase distortion 

 Free 

 Typically less distortion 



Local Unfolding 

 While not all mesh flattened 

 Select seed triangle & map as is to 2D 

 Define front - boundary of unfolded 
patch 

 Assign cost to each vertex adjacent to 
boundary–amount of distortion caused 
by mapping it to 2D 

 Map best current vertex to 2D (if cost 
below threshold), add it to front & 
recompute adjacent costs 



Local Unfolding 

 Advantages 

 Bounded distortion 

 Simple 

 Drawback 

 Generate long seams –
parameterization/texture discontinuities 



Angle Based Flattening (ABF) 

 Fact: 

 Triangular 2D mesh is defined by its angles 

 Define problem in angle space 

 Angle based formulation: 

 Distortion as function of angles 

 Validity - set of angle constraints 



Constrained Minimization 

 Objective: minimize (relative) deviation 
of angles 
 

 Initial choice for weights: 
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Constraints 

1

2 1 2 3

3 ( )

4 ( ) 1 ( ) 1

( )

( )

( ) 2

( ) sin( ) sin( ) 0

j

i

i i i

j k

ik

j k j k

i i

k k

g

g

g

g

  

    

  

   

 

   

 

  



  1l 2l

3l
4l5l

6l

12

1 1

2 2

6 61 1

2 1 2 1

sin( )

sin( )

sin( )sin( )
... ...

sin( ) sin( )

l

l

ll

l l







 







Solution 

 Use Lagrange Multipliers 

 

 

 Solve the min-max problem 
(minimum on   , maximum on  ) 

 Reached when all derivatives are zero 

 Have non-linear system of equations 

 Use Newton method to solve 
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ABF Summary 

 Advantages 
 No fixed boundary – less distortion 

 No flipped triangles 

 Proven to converge to solution for any valid 
input 

 Drawbacks 
 Expensive – solve non linear system 

 Linear sub-systems can’t be solved 
iteratively FAST 

 Can have boundary overlaps 

 Can’t handle multiple boundary loops 


