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Surface Parameterization

Introduction
Applications
What is Parameterization?
Parameterization Methods




Problem

1-1 mapping from domain to surface

Original application:

B Texture mapping

[0 Images have a
natural parameterization

B Goal: map onto surfacesy
Geometry processing
B Approximation

B Remeshing

B Data fitting

Input: Piecewise (PL) triangular meshes




Introduction

A parameterization of a surface is a
one-to-one mapping from_ a suitable
domain to the surface.




Introduction

In general, the parameter domain
itself will be a surface.

Constructing a parameterization
means mapping a surface into
another.

Usually the surfaces are either
represented by or approximated by
triangular meshes and the mappings
are piecewise linear.




Applications

Scattered data fitting.
Reparameterization of Spline surfaces
[exture-mapping

Mesh compression

Surface approximations & remeshing




What is Parameterization?
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What is Parameterization?
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How to get P from S ?
B for each vertex of S, find its (u,v)

m from (u,v) of P, map image to S

A parameterization of a surface is a
mapping p: (X,Y,z)->(u,v) from 3D space to
2D space




Problem Definition

iven a surface (mash) S in R3 and a
omain D find p: DS (one-to-one)




Recall: Applications

[exture-mapping
® p: (X,¥,2) -> (u,v) from 3D to 2D

Remeshing
m ol (u,v)->(x,y,z) from 2D to 3D




Typical Domains

sub-domain of R?
- genus-0 + boundary

d

base mesh
- all (closed) models




Applications

texture mapping morphing
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Texture Mapping

[0 Real life objects not uniform in terms of color
[0 Texturing - define color for each point on object surface
O Map 2D texture to model surface:
B Have texture pattern defined over (u,v) domain (Image)
B Assign (u,v) coordinates to each point on object surface
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Morphing

Morphing requires one-to-one
correspondence between the surfaces
of the two models

Siggraph

/ 99 Siggraph 99
EEEEEENENENBE

Siggraph

S
B

I ‘I(

Siggraph Siggraph Siggraph



../../gm05/ppt/head_venus.mpeg

Normal / Bump Mapping

650K faces normal map 29K faces normal mapped
simplified mesh




Remeshing & Surface Fitting




More Applications




Mesh Parameterization (2D)

Problem definition:

B Input:
0 triangulated surface mesh in 3D
B Output:

0 valid 2D mesh with same
connectivity & minimal metric
distortion

B Mapping defined by vertex
correspondence + barycentric
coordinates

B Validity — no inverted
(overlapping) triangles




Parameterization in 2D

Can do only for genus 0 surfaces with
boundary

Metrics preserved fully only for
developable surfaces (Gaussian
curvature = 0)




Distortion

Function of/secopd fund\amental form
of of of
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Isometry (0O-distortion) if J is identity matrix

Components measure

B Shear (angles)
B Stretch (lengths)
B Conformality: angles + equal stretch




Mapping Properties

Validity: no folded over triangles

Distortion — preserve (as mush as
possible) lengths, angles, and areas
B isometric (length-preserving) mappings
B conformal (angle-preserving) mappings
B equiareal (area-preserving) mappings

(Theorem)
isometric < conformal + equiareal




Barycentric Combination

i.e., @ combination of its neighbors




Barycentric Combination

Choose u__,,...,u, to be the vertices of any K-sided
convex polygon in an anticlockwise sequence.

For each 1 €{],...,n}, choose any set of real
numbers 4, ;forj=1...,N such that

[>0 (i j)eE Vg
ﬂ“_{o (i,j) 2 E JZ E

and define U;,...,U_ to be the solution of the linear
system of equations.




Barycentric Combination

N

N
:Zl: JUJSU—Z%UJ—Z i,jY;
=

j=n+1

By considering the two components u.and v, of u,
separately this is equivalent to the matrix

equation
Au=Db

where the matrix A isnxn having elements
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2D Barycentric Embeddings

Fix 2D boundary to convex polygon
Define embedding as a solution of

Wx =b, <0 (!,_J)EE
Wy =b, Wy =1=p Wy (i)

J#i

o

0 otherwise

B Wis symmetric: w, =w;
B weightsw; control parameterization shape




Weights — Uniform (Tutte)
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Weights — Shape Preserving (Floater)

A

For eachl e{l,...,d.}, P,Pwill intersect
PrPriy.1, then we can have

p=op +52pr(l) +§3pr(l)+1 o, +0,+0,=1
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Weights — Harmonic Mapping

Quasi — conformal : minimize angular
distortion

Locally, preserving angles preserves
distances (ratios)

For fixed boundary have unique harmonic
map which minimizes conformal energy

B Rieman theorem: any C! continuous surface in
R3 can be mapped conformally to fixed domain
in R2

B Nearly true for meshes




Weights — Harmonic Mapping

[0 Approximate harmonic map for fixed boundary
[0 Represent as configuration of springs on mesh edges

E(v) :%Z\Nij HVi _VjH2
(i,])
O Sprinlc_ilzcoigficiﬁ?ts FRRTRT
Wij: |1+ j1 Ij+ |2+ ]2 1)
A A
cot(ey; ) +cot(f;)

N |_ij - edge Fength in 3D
B A, - triangle area in 3D
uo, and /Bij_ opposing angles in 3D




Weights — Conformal Mapping

[0 Represent as configuration of springs on mesh edges
2
E(v) = UZJ;WU' Hui _uiH ij
0 Spring coefficients

Vi V.
W, = cot(¢; ) +cot(f5;) \é/ |
® o;and S,- opposing angles in 3D i >

U Uj




Barycentric Formulation

<

"" N

T e N

R T £\
e AN B

PSRRI Ao

15 eSS A e

E(v) minimum reached
when gradient equal O

T ""!\!H 3% %“mﬁﬂ
OE (v e
sty
——= > W.(v.—Vv.)=0 B oAt
ij \ Vi j LN KA

T

DY \
I gﬂ.ﬁ'&mﬂﬁ“-

Barycentric embedding
formulation

Can have negative
weights — does not

~guarantee validity




Weights — Mean Value

Set

_ (tan(y, /2) +tan(o; /2))12 |, %,

1]
v,

Result visually ic

No negative weights — always valid
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Comparison
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Practical Implementation

Boundary
B Popular options: Square, circle, triangle
B Application specific

[0 Reconstruction — rectangle

[0 Mapping to base mesh- triangle

[0 Spreading points along boundary
0 Cord length

Solve Wx=h

Wy =b,

B Right hand side determined from boundary vertices




Practical Implementation

O Solving linear system expensive (O(n3))
[0 Use iterative solution:
B Get initial guess for interior nodes

B While conditions not met:

[0 Set each interior node to weighted average of
neighbors:

vi—Z pRAT

J (i, )
(i,])

B Stopping conditions:
O Convergence: vertices do not move
0 Exceed maximal number of iterations
[0 Parameterization is valid

[0 Solution exists & is reached thanks to matrix structure




Fixed vs. Free Boundary

Fixed

B Useful when boundary fixed a priory
(e.g. mapping to base mesh)

B Increase distortion

Free
B Typically less distortion




Local Unfolding

While not all mesh flattened
B Select seed triangle & map as is to 2D

B Define front - boundary of unfolded
patch

B Assign cost to each vertex adjacent to
boundary—amount of distortion caused
by mapping it to 2D

B Map best current vertex to 2D (if cost

below threshold), add it to front &
recompute adjacent costs




Local Unfolding

Advantages

B Bounded distortion
B Simple

Drawback

B Generate long seams -
parameterization/texture discontinuities




Angle Based Flattening (ABF)

Fact:
B Triangular 2D mesh is defined by its angles

Define problem in angle space N
. o BAS
Angle based formulation: Al
SRR
B Distortion as function of angles '

B Validity - set of angle constraints Sl




Constrained Minimization

Objective: minimize (relative) deviation
of angles Fla)=S W (e - B)
i ]

Initial choice for Weights:

' | —2
VViJ :ﬂij




Constraints

g'(a)=al 2¢

g (@)= +a’ +a’ =n

0*(@)=Y, ) =2

g*(a) =] [sin(e!™™) -] [sin(e!™) =0
k k

,  sin(a,)
, sin(a,)
ls  sin(e,) sin(a;)
, 7l sin(a,) U sin(ay)




Solution

Use Lagrange Multipliers

F(a, 1) =F(a) + 1,9° (@) + 1,9°(a) + 1,9 (@)

Solve the min-max problem
(Mminimum ona , maximum onx)

Reached when all derivatives are zero
Have non-linear system of equations
Use Newton method to solve




ABF Summary

Advantages

B No fixed boundary - less distortion

B No flipped triangles

B Proven to converge to solution for any valid
iInput

Drawbacks

B Expensive — solve non linear system

B Linear sub-systems can't be solved
iteratively FAST

B Can have boundary overlaps
Can’t handle multiple boundary loops




