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Surface Parameterization 

 Introduction 

 Applications 

 What is Parameterization? 

 Parameterization Methods 



Problem 

 1-1 mapping from domain to surface 

 Original application: 
 Texture mapping 

 Images have a 
natural parameterization 

 Goal: map onto surfaces 

 Geometry processing 
 Approximation 

 Remeshing 

 Data fitting 

 Input: Piecewise (PL) triangular meshes 



Introduction 

 A parameterization of a surface is a 
one-to-one mapping from a suitable 
domain to the surface. 



Introduction 

 In general, the parameter domain 
itself will be a surface. 

 Constructing a parameterization 
means mapping a surface into 
another. 

 Usually the surfaces are either 
represented by or approximated by 
triangular meshes and the mappings 
are piecewise linear. 



Applications 

 Scattered data fitting. 

 Reparameterization of Spline surfaces 

 Texture-mapping 

 Mesh compression 

 Surface approximations & remeshing 



What is Parameterization? 

 G(V,E,F) 

 S(G,X), X={xiR3} 

 P(G,U), U={uiR2} 
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What is Parameterization? 

 How to get P from S ? 
 for each vertex of S, find its (u,v) 
 from (u,v) of P, map image to S 

 A parameterization of a surface is a 
mapping : (x,y,z)->(u,v) from 3D space to 
2D space 
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Problem Definition 

 Given a surface (mash) S in R3 and a 
domain D find : DS (one-to-one) 
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Recall: Applications 

 Texture-mapping 

 : (x,y,z) -> (u,v)  from 3D to 2D 

 

 Remeshing 

 -1: (u,v) -> (x,y,z) from 2D to 3D 



Typical Domains 

sub-domain of R2 

- genus-0 + boundary 

base mesh 

- all (closed) models 

sphere 

- closed genus-0 



Applications 

texture mapping 

remeshing 

morphing 

reconstruction 



Texture Mapping 

 Real life objects not uniform in terms of color 

 Texturing - define color for each point on object surface 

 Map 2D texture to model surface: 

 Have texture pattern defined over (u,v) domain (Image) 

 Assign (u,v) coordinates to each point on object surface 
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Morphing 

 Morphing requires one-to-one 
correspondence between the surfaces 
of the two models 

../../gm05/ppt/head_venus.mpeg


Normal / Bump Mapping 

650K faces 29K faces normal map normal mapped 
simplified mesh 



Remeshing & Surface Fitting 



More Applications 



Mesh Parameterization (2D) 

 Problem definition: 
 Input: 

 triangulated surface mesh in 3D 

 Output: 

 valid 2D mesh with same 
connectivity & minimal metric 
distortion 
 Mapping defined by vertex 

correspondence + barycentric 
coordinates 

 Validity – no inverted 
(overlapping) triangles 



Parameterization in 2D 

 Can do only for genus 0 surfaces with 
boundary 

 Metrics preserved fully only for 
developable surfaces (Gaussian 
curvature = 0) 



Distortion 

 Function of second fundamental form 

 

 

 

 

 Isometry (0-distortion) if   is identity matrix 

 Components measure 
 Shear (angles) 

 Stretch (lengths) 

 Conformality: angles + equal stretch 
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Mapping Properties 

 Validity: no folded over triangles 

 

 Distortion – preserve (as mush as 
possible) lengths, angles, and areas 
 isometric (length-preserving) mappings 

 conformal (angle-preserving) mappings 

 equiareal (area-preserving) mappings 

 

 (Theorem) 
isometric  conformal + equiareal 



Barycentric Combination 
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Barycentric Combination 

Choose               to be the vertices of any K-sided 
convex polygon in an anticlockwise sequence. 

 

For each              , choose any set of real 
numbers     for              such that 

 

 

and define            to be the solution of the linear 
system of equations.  
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Barycentric Combination 

 

 

By considering the two components    and    of    
separately this is equivalent to the matrix 
equation 

 

where the matrix    is        having elements 
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2D Barycentric Embeddings 

 Fix 2D boundary to convex polygon 

 Define embedding as a solution of 

 

 

 

 

     is symmetric:   

 weights    control parameterization shape 
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Weights – Uniform (Tutte) 

 Set 

 

 No shape information 

 equilateral triangles 

 Fastest to solve 
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Weights – Shape Preserving (Floater) 

For each               ,      will intersect 
            , then we can have 

 

 

Define     , for              , by           , 
             ,               , and            
otherwise. Then for each   we now 
find 

 

 

Finally define 
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Weights – Harmonic Mapping 

 Quasi – conformal : minimize angular 
distortion 

 Locally, preserving angles preserves 
distances (ratios) 

 For fixed boundary have unique harmonic 
map which minimizes conformal energy 

 Rieman theorem: any C1 continuous surface in 
R3 can be mapped conformally to fixed domain 
in R2 

 Nearly true for meshes 



Weights – Harmonic Mapping 

 Approximate harmonic map for fixed boundary 
 Represent as configuration of springs on mesh edges 

 
 
 

 Spring coefficients 
 
 
 
 
 
    - edge length in 3D 
    - triangle area in 3D 
   and    - opposing angles in 3D 
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Weights – Conformal Mapping 

 Represent as configuration of springs on mesh edges 
 
 
 

 Spring coefficients 
 
 
  and    - opposing angles in 3D 
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Barycentric Formulation 

      minimum reached 
when gradient equal 0 

 

 

 Barycentric embedding 
formulation 

 Can have negative 
weights – does not 

guarantee validity 
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Weights – Mean Value 

 Set 

 

 

 Result visually identical to conformal 

 No negative weights – always valid 
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Comparison 

Tutte Mean Value Harmonic 



Practical Implementation 

 Boundary 
 Popular options: Square, circle, triangle 

 Application specific 

 Reconstruction – rectangle 

 Mapping to base mesh– triangle 

 Spreading points along boundary 

 Cord length 

 Solve 

 
 

 Right hand side determined from boundary vertices 
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Practical Implementation 

 Solving linear system expensive (O(n3)) 

 Use iterative solution: 

 Get initial guess for interior nodes 

 While conditions not met: 
 Set each interior node to weighted average of 

neighbors: 

 

 

 

 Stopping conditions: 
 Convergence: vertices do not move 

 Exceed maximal number of iterations 

 Parameterization is valid 

 Solution exists & is reached thanks to matrix structure 
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Fixed vs. Free Boundary 

 Fixed 

 Useful when boundary fixed a priory 
(e.g. mapping to base mesh) 

 Increase distortion 

 Free 

 Typically less distortion 



Local Unfolding 

 While not all mesh flattened 

 Select seed triangle & map as is to 2D 

 Define front - boundary of unfolded 
patch 

 Assign cost to each vertex adjacent to 
boundary–amount of distortion caused 
by mapping it to 2D 

 Map best current vertex to 2D (if cost 
below threshold), add it to front & 
recompute adjacent costs 



Local Unfolding 

 Advantages 

 Bounded distortion 

 Simple 

 Drawback 

 Generate long seams –
parameterization/texture discontinuities 



Angle Based Flattening (ABF) 

 Fact: 

 Triangular 2D mesh is defined by its angles 

 Define problem in angle space 

 Angle based formulation: 

 Distortion as function of angles 

 Validity - set of angle constraints 



Constrained Minimization 

 Objective: minimize (relative) deviation 
of angles 
 

 Initial choice for weights: 
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Constraints 

1

2 1 2 3

3 ( )

4 ( ) 1 ( ) 1

( )

( )

( ) 2

( ) sin( ) sin( ) 0

j

i

i i i

j k

ik

j k j k

i i

k k

g

g

g

g

  

    

  

   

 

   

 

  



  1l 2l

3l
4l5l

6l

12

1 1

2 2

6 61 1

2 1 2 1

sin( )

sin( )

sin( )sin( )
... ...

sin( ) sin( )

l

l

ll

l l







 







Solution 

 Use Lagrange Multipliers 

 

 

 Solve the min-max problem 
(minimum on   , maximum on  ) 

 Reached when all derivatives are zero 

 Have non-linear system of equations 

 Use Newton method to solve 
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ABF Summary 

 Advantages 
 No fixed boundary – less distortion 

 No flipped triangles 

 Proven to converge to solution for any valid 
input 

 Drawbacks 
 Expensive – solve non linear system 

 Linear sub-systems can’t be solved 
iteratively FAST 

 Can have boundary overlaps 

 Can’t handle multiple boundary loops 


