
Geometric Modeling

Bing-Yu Chen
National Taiwan University
The University of Tokyo

Surface Parameterization

 Introduction

 Applications

 What is Parameterization?

 Parameterization Methods

Problem

 1-1 mapping from domain to surface

 Original application:
 Texture mapping

 Images have a
natural parameterization

 Goal: map onto surfaces

 Geometry processing
 Approximation

 Remeshing

 Data fitting

 Input: Piecewise (PL) triangular meshes

Introduction

 A parameterization of a surface is a
one-to-one mapping from a suitable
domain to the surface.

Introduction

 In general, the parameter domain
itself will be a surface.

 Constructing a parameterization
means mapping a surface into
another.

 Usually the surfaces are either
represented by or approximated by
triangular meshes and the mappings
are piecewise linear.

Applications

 Scattered data fitting.

 Reparameterization of Spline surfaces

 Texture-mapping

 Mesh compression

 Surface approximations & remeshing

What is Parameterization?

 G(V,E,F)

 S(G,X), X={xiR3}

 P(G,U), U={uiR2}

S

x

y

z P

u

v

graph surface triangulation
(mesh)

paramerization

G

S

x

y

z

What is Parameterization?

 How to get P from S ?
 for each vertex of S, find its (u,v)
 from (u,v) of P, map image to S

 A parameterization of a surface is a
mapping : (x,y,z)->(u,v) from 3D space to
2D space

P

u

v

Problem Definition

 Given a surface (mash) S in R3 and a
domain D find : DS (one-to-one)

u

v

Recall: Applications

 Texture-mapping

 : (x,y,z) -> (u,v) from 3D to 2D

 Remeshing

 -1: (u,v) -> (x,y,z) from 2D to 3D

Typical Domains

sub-domain of R2

- genus-0 + boundary

base mesh

- all (closed) models

sphere

- closed genus-0

Applications

texture mapping

remeshing

morphing

reconstruction

Texture Mapping

 Real life objects not uniform in terms of color

 Texturing - define color for each point on object surface

 Map 2D texture to model surface:

 Have texture pattern defined over (u,v) domain (Image)

 Assign (u,v) coordinates to each point on object surface

u

v

Morphing

 Morphing requires one-to-one
correspondence between the surfaces
of the two models

../../gm05/ppt/head_venus.mpeg

Normal / Bump Mapping

650K faces 29K faces normal map normal mapped
simplified mesh

Remeshing & Surface Fitting

More Applications

Mesh Parameterization (2D)

 Problem definition:
 Input:

 triangulated surface mesh in 3D

 Output:

 valid 2D mesh with same
connectivity & minimal metric
distortion
 Mapping defined by vertex

correspondence + barycentric
coordinates

 Validity – no inverted
(overlapping) triangles

Parameterization in 2D

 Can do only for genus 0 surfaces with
boundary

 Metrics preserved fully only for
developable surfaces (Gaussian
curvature = 0)

Distortion

 Function of second fundamental form

 Isometry (0-distortion) if is identity matrix

 Components measure
 Shear (angles)

 Stretch (lengths)

 Conformality: angles + equal stretch

2

2

f f f

a b u u v
J

b c f f f

u v v

    
  
          

            
J

Mapping Properties

 Validity: no folded over triangles

 Distortion – preserve (as mush as
possible) lengths, angles, and areas
 isometric (length-preserving) mappings

 conformal (angle-preserving) mappings

 equiareal (area-preserving) mappings

 (Theorem)
isometric  conformal + equiareal

Barycentric Combination



 i.e., a combination of its neighbors

,

1... , 1

i i

ii n







 





p p

p

1p

2p

3p4p5p

6p

Barycentric Combination

Choose to be the vertices of any K-sided
convex polygon in an anticlockwise sequence.

For each , choose any set of real
numbers for such that

and define to be the solution of the linear
system of equations.

1,...,n Nu u

{1,..., }i n

,i j 1,...,j N

,

0 (,)

0 (,)
i j

i j E

i j E


 
 


,

1

1
N

i j

j






1,..., nu u

,

1

N

i i j j

j




u u

Barycentric Combination

By considering the two components and of
separately this is equivalent to the matrix
equation

where the matrix is having elements

, , ,

1 1 1

N n N

i i j j i i j j i j j

j j j n

  
   

     u u u u u

iu
iv iu

Au b

A n n

,

,

1
i j

i j

i j
a

i j


 

 

2D Barycentric Embeddings

 Fix 2D boundary to convex polygon

 Define embedding as a solution of

 is symmetric:

 weights control parameterization shape

x

y

x b

y b





W

W

0 (,)

(,)

0

ij ij

j i

i j E

w w i i

otherwise




 


 






ijw

W ij jiw w

Weights – Uniform (Tutte)

 Set

 No shape information

 equilateral triangles

 Fastest to solve

1ijw  ,

1
i j

id

 

 
 

Weights – Shape Preserving (Floater)

For each , will intersect
 , then we can have

Define , for , by ,
 , , and
otherwise. Then for each we now
find

Finally define

p

p1

p2

p3

p4

p5

p6

p

pl

Pr(l)

Pr(l)+1

{1,..., }il d lp p

() () 1r l r l p p

1 2 () 3 () 1l r l r l     p p p p
1 2 3 1    

,k l 1,..., ik d , 1l l 

(), 2r l l  () 1, 3r l l   , 0k l 
l

,

1

id

k l k

k




p p ,

1

1
id

k l

k






, ,

1

1 id

i j j l

lid
 



 

Weights – Harmonic Mapping

 Quasi – conformal : minimize angular
distortion

 Locally, preserving angles preserves
distances (ratios)

 For fixed boundary have unique harmonic
map which minimizes conformal energy

 Rieman theorem: any C1 continuous surface in
R3 can be mapped conformally to fixed domain
in R2

 Nearly true for meshes

Weights – Harmonic Mapping

 Approximate harmonic map for fixed boundary
 Represent as configuration of springs on mesh edges

 Spring coefficients

 - edge length in 3D
 - triangle area in 3D
 and - opposing angles in 3D

2

(,)

1
()

2
ij i j

i j

E v w v v 

2 2 2 2 2 2

1 1 2 2

1 2

cot() cot()

2

i j ij i j ij

ij

ij ij

L L L L L L
w

A A

 

   
 




ijL

ijkA

ij
ij

ijL
iv

jv

1iL 1jL

2jL2iL

1A

2A

ij

ij

Weights – Conformal Mapping

 Represent as configuration of springs on mesh edges

 Spring coefficients

 and - opposing angles in 3D

2

(,)

() ij i j

i j

E v w u u 

cot() cot()ij ij ijw   

ij
ij

iv
jv

ij

ij

iu
ju

Barycentric Formulation

 minimum reached
when gradient equal 0

 Barycentric embedding
formulation

 Can have negative
weights – does not

guarantee validity

()
() 0ij i j

ji

E v
w v v

v


  




()E v

Weights – Mean Value

 Set

 Result visually identical to conformal

 No negative weights – always valid

(tan(/ 2) tan(/ 2)) / 2ij ij

ij

i j

w
v v

 



iv

jvij

ij

Comparison

Tutte Mean Value Harmonic

Practical Implementation

 Boundary
 Popular options: Square, circle, triangle

 Application specific

 Reconstruction – rectangle

 Mapping to base mesh– triangle

 Spreading points along boundary

 Cord length

 Solve

 Right hand side determined from boundary vertices

x

y

x b

y b





W

W

Practical Implementation

 Solving linear system expensive (O(n3))

 Use iterative solution:

 Get initial guess for interior nodes

 While conditions not met:
 Set each interior node to weighted average of

neighbors:

 Stopping conditions:
 Convergence: vertices do not move

 Exceed maximal number of iterations

 Parameterization is valid

 Solution exists & is reached thanks to matrix structure

(,)

(,)

1
i ij j

i jij

i j

v w v
w

 


Fixed vs. Free Boundary

 Fixed

 Useful when boundary fixed a priory
(e.g. mapping to base mesh)

 Increase distortion

 Free

 Typically less distortion

Local Unfolding

 While not all mesh flattened

 Select seed triangle & map as is to 2D

 Define front - boundary of unfolded
patch

 Assign cost to each vertex adjacent to
boundary–amount of distortion caused
by mapping it to 2D

 Map best current vertex to 2D (if cost
below threshold), add it to front &
recompute adjacent costs

Local Unfolding

 Advantages

 Bounded distortion

 Simple

 Drawback

 Generate long seams –
parameterization/texture discontinuities

Angle Based Flattening (ABF)

 Fact:

 Triangular 2D mesh is defined by its angles

 Define problem in angle space

 Angle based formulation:

 Distortion as function of angles

 Validity - set of angle constraints

Constrained Minimization

 Objective: minimize (relative) deviation
of angles

 Initial choice for weights:

2

,

() ()j j j

i i i

i j

F w   

1N

1f

3

1

2N 3N

4N
4N

1N

2N
3N

2f
2f

1f

1

1 2

1
1

1

3

1

2

1

(4)

2

j

(4)

2

j

2j j

i iw  

Constraints

1

2 1 2 3

3 ()

4 () 1 () 1

()

()

() 2

() sin() sin() 0

j

i

i i i

j k

ik

j k j k

i i

k k

g

g

g

g

  

    

  

   

 

   

 

  



  1l 2l

3l
4l5l

6l

12

1 1

2 2

6 61 1

2 1 2 1

sin()

sin()

sin()sin()
... ...

sin() sin()

l

l

ll

l l







 





Solution

 Use Lagrange Multipliers

 Solve the min-max problem
(minimum on , maximum on)

 Reached when all derivatives are zero

 Have non-linear system of equations

 Use Newton method to solve

* 2 3 4

1 2 3(,) () () () ()F F g g g           

 

ABF Summary

 Advantages
 No fixed boundary – less distortion

 No flipped triangles

 Proven to converge to solution for any valid
input

 Drawbacks
 Expensive – solve non linear system

 Linear sub-systems can’t be solved
iteratively FAST

 Can have boundary overlaps

 Can’t handle multiple boundary loops

