
Animation Model Simplifications

Fu­Chung Huang∗ Bing­Yu Chen† Yung­Yu Chuang‡ Ming Ouhyoung‡

National Taiwan University
∗jonash@cmlab.csie.ntu.edu.tw †robin@ntu.edu.tw ‡{cyy,ming}@csie.ntu.edu.tw

ABSTRACT
In this paper, we propose a new framework for the rep-
resentation of deforming meshes by only updating neces-
sary changes of the connectivity. The deforming meshes,
which is also known as time-varying surfaces, are often con-
structed with static connectivity. To progressively represent
the deforming meshes with level-of-details, people can sim-
plify the meshes independently to obtain good simplifica-
tion meshes but total different connectivity for each frame.
On the other hand, people can also simplify the meshes
while keeping their static connectivity, but this constraint
makes the simplified meshes distorted. Hence, we present a
feature-adaptive simplification scheme, which takes all time-
dependent information into consideration. Through the ap-
plication of one-dimensional Haar wavelet, we successfully
quantize the costs of all edges of the deforming meshes.
Then, we apply a global optimization to minimize the meshes’
distortion while maximizing the temporal coherence. The
optimization is hard in terms of computational complexity,
and we therefore exploit the advantages of genetic algorithm
together with dynamic programming to solve this problem.
The result makes the progressive deforming meshes repre-
sented without updating the connectivity rapidly and have
good simplification meshes for each frame.

1. INTRODUCTION
To date, more high resolution 3D animated models are re-
quired to present important details and fine structures, how-
ever, sometimes such high resolution models are un-necessary
and undesired. Mesh simplification is a process to remove
such un-necessary or redundant data from a high resolution
3D model. Hence people can get a sequence of 3D models
with continuous level-of-details (LOD) through this process
by removing the vertices, edges, or faces from the original
3D model. However, to remove the vertices, edges, or faces
from the 3D model usually makes the simplified model dis-
torted. Various metrics were then proposed to measure the
deviation from the original mesh and the simplified one, so
that the distortion of the simplified model can be minimized.

In the past years, many mesh simplification methods for
simplifying a static 3D model have been proposed. How-
ever, the 3D model with motion data, or so-called deform-
ing meshes or time-varying surfaces, is more widely used in
many fields, like on-line games, animations, etc. Therefore,
how to provide a method similar with these mesh simpli-
fication methods but working for the deforming meshes is
necessary.

To simplify the deforming meshes, some previous methods
focused on preserving static connectivity, i.e., the connectiv-
ity of the deforming meshes in all frames remains unchanged
in all resolutions. The static connectivity, like the meta-
mesh used in 3D metamorphosis, aggregates the features of
all frames in one model, where subsequent simplification is
applied. However, such adaptation is inadequate and the re-
sults are often not satisfactory. Figures 1 (c) and (d) show
the example, which is a 3D morphing sequence from a horse
to a man originally. Since the connectivity of the meshes in
all frames in Figure 1 (c) is the same, but the features of a
horse may not be the features of a man, the simplified model
shown in Figure 1 (c) has distortion in the mouth area. On
the other hand, Figure 1 (d) is our result which does not
keep the connectivity the same and has no such problem.

In contrast to early work using static connectivity, recent
methods start to change the connectivity adaptively and
dynamically to improve the quality of the resulting meshes.
These methods start with the model in the first frame, and
incrementally update the connectivity so that the model in
the next frame is well-approximated. In order to provide an
appealing simplified mesh, great amount of updates is in-
evitable, and so does the popping effect. If great constraints
on the temporal coherence, which measures the consistency
of connectivity of meshes from frame-to-frame, are imposed,
errors may propagate accordingly, and the result will behave
like a first-frame-connectivity approximation. The funda-
mental problem is that the model in either the first or arbi-
trary frame does not represent a good compromise between
meshes distortion and connectivity updates.

In this paper, we propose a similar approach using dynami-
cally changing connectivity, and achieve a better result than
previous work. Under this framework, the models in each
frame are simplified separately using Quadric Error Metrics
(QEM) [9], which contracts a pair of vertices and collapses
an edge as a basic operation to reduce the mesh primitives.
Then, the popping effect problem is eliminated by solving



(a) (b)

(c) (d)

Figure 1: (a) and (b) are snapshots of an anima-
tion of a sine wave, which spread from the center to
the outer of the rectangle. (a) shows the result of
Direct-QEM and (b) shows our result; both with the
same number of polygons and under the same con-
dition of simplification. In our method, additional
connectivity is preserved for the next few frames
just around the wave, whereas Direct-QEM does
not. (c) and (d) show one of the simplified frame
of a 3D morphing sequence with (c) static connec-
tivity and (d) dynamic connectivity, where (d) out-
performs in the quality of the simplified mesh in this
frame.

an optimization problem. Hence, our problem is defined
as: minimize meshes distortion while maximize temporal co-
herence. In simple words, our goal is to find a sequence
of meshes which approximate good compact version of the
original meshes and the amount of work spent on updating
frame-to-frame connectivity is minimized.

A trivial solution to this problem may consist of Nm pos-
sibilities, where N is the number of vertices and m is the
number of frames. Randomized algorithm can assist the
search. In order to solve the optimization problem, we di-
vide it into two sub-problems. The first finds a feasible set
of solutions and the second search the best solution within
the set found by the first sub-problem. To find a feasible set
of solutions, we use the concepts of one-dimensional Haar
wavelet decomposition and vertex tree which is widely used
in terrain rendering. The edge costs in temporal dimension
are treated as a signal, where we apply wavelet decomposi-

tion. By removing high frequency wavelets, the rest provides
a coherent quantization. The errors are dispersed to nearby
frames so that adaptation to a feature can be prepared in
advance. The process of edge-collapse simplification in each
frame implicitly constructs vertex trees. Each branch in the
tree represents an edge-collapse and then we search an op-
timal combination using these branches.

For each iterating simplification, we choose a branch of the
tree, or an edge-collapse, in each frame and these branches
together form a solution to our problem. Solution found in
this way does not represent a good one if the selections are
not taken carefully and optimal solution is also hard to be
found. As for the second sub-problem, we exploit the genetic
algorithm (GA). Implicit parallelism, an important property
of GA, searches the solution simultaneously by guessing and
improving several feasible solutions at the same time. A se-
ries of recombination produce potentially better solutions,
and mutations reinforce the search. Convergence is acceler-
ated by integrating dynamic programming, where the feasi-
ble solutions reach the local minimum faster.

In this paper, our major contributions are:

• Propose a framework that simplifies deforming meshes
dynamically with improvement on the temporal coher-
ence. One-dimensional Haar wavelet decomposition is
used to assist the quantization.

• Develop an energy function that captures the impor-
tance of both meshes distortion and temporal coher-
ence at the same time.

• Solve the energy function with the assist of genetic al-
gorithm and accelerate the convergence using dynamic
programming.

2. RELATED WORK

2.1 Multiresolution Mesh
One common technique in reducing data is multiresolution.
There are a plethora of papers have been published to solve
this problem, notably using re-meshing and simplification.
Various approaches regarding re-meshing are meant to opti-
mize a good re-sampling [8][5] over the original mesh surface;
this branch is, however, not yet applied to time-varying sur-
faces.

As for simplification, vertex-removal [18], vertex-clustering
[4], and edge-collapsing [9][10][16] fall into this category.
These techniques typically choose a primitive causing the
least distortion measured as proposed, and conduct primi-
tive elimination operation. Traditional mesh simplification
algorithm works fine on a single static model, yet the adap-
tation, when directly applied to deforming model, can lead
to catastrophe.

2.2 Static Connectivity on Deforming Models
Traditional animation simplifications use a single connectiv-
ity to approximate all frame models. [17] adapts QEM algo-
rithm by constructing a meta-mesh which sums all frames
quadric error metrics. The meta-mesh uses the aggregated
errors as a guide to simplify itself, and the same process is



applied to all frames models. The resulted animation works
quite well at medium resolution, yet manifest distortion can
be easily seen at low resolution. [7] makes an extension
by weighing possible configuration of poses with probabil-
ities. With articulated meshes, skeleton transformation is
incorporated into standard QEM algorithm, and user must
specified probability distribution on joint for weighing. [20]
also uses QEM as base simplification module. By extract-
ing high frequency transformation, simplification is applied
to base mesh and results are acquired by inverse transforma-
tion on simplified base. Applying single connectivity to all
frames produce moderate approximation. Using this adap-
tation, very simple data structure is used for the represen-
tation and the quality is satisfactory in general. A potential
limitation is posed in the simplified connectivity, where un-
necessary information at unimportant area is used in some
frames, while real important features at certain frames are
described by fewer indispensable surface descriptors. The
phenomena can be easily shown when extreme simplifica-
tion is applied, as shown in Figure 2.

(a) (b) (c)

Figure 2: An comparison of Direct-QEM, our
method, and DSD. The Direct-QEM approximate
the best shape of the original dog model. The tail
and front leg in our method behave similar to Direct-
QEM but has superior temporal coherence. DSD,
on the other hand, shows inferior approximation.
The jaw and the forelimb are missing, and the tail
and the back are simplified poorly.

2.3 Dynamic Connectivity on Deforming Mod­

els
[19] designs a scheme for changing connectivity meshes sim-
plification. Time-dependent Directed Acyclic Graph (TDAG)
is introduced by merging individual simplification on each
frame into a unified graph. TDAG is capable of handling
geometry deformation and topology modification. Major
drawback inherits from the non-incremental construction
and time-inefficient traversal at retrieving queries of up-
dates. Frame to frame coherence is preserved by taking
history of decimation into account, subsequent frame can
be affected by inadequate previous frame approximate, and
such phenomena may propagate throughout the entire se-
quence.

The work most representing ours is [14], where it uses edge-
swap as the major update operation. Next frame simplifi-
cation can be obtained by a sequence of edge-swaps from
the simplified model of previous frame. Inadequate prop-
agation is overcome by applying only valid and beneficial
swap operation. Visually appealing animation is obtained
by their hierarchy improvement and updating procedure.
Huge amount of update operation will, however, be present
at extreme deforming models, and can not be overcome by
further propagate updates to more advance frames. Lack of
control over the meshes quality and temporal coherence is a
problem.

2.4 Meshes Data Compression
Another way to compact the sequence of deforming model
is through data compression. General compressing tools
have poor performance; some researchers consequently de-
velop advanced techniques to compress meshes. [15] pro-
poses compression of 3D animation by decomposing time-
varying geometries to SVG matrices. Matrix V is further
decomposed into multiplication of transformation matrices.
Also the coherence in the rows and columns are exploited
for decomposition. Using information decomposed previ-
ously, prediction together with quantized residuals restores
the original meshes. [1] use Singular Value Decomposition to
find principle components of an animation sequence. Loss-
less or lossy compression is controlled by either preserving
all components or discarding some less important informa-
tion. [11] shows how to use predictors, ELP and Replica, to
compress meshes. Perfect prediction can be achieved when
deforming model follows either simple translation or rigid
body motion respectively. In extension to geometry image,
[2] use RGB as XYZ coordinates to compress time-varying
deforming model as video sequence. After parameteriza-
tion, original topology information is transformed into grids,
where multi-resolution is done by scaling the resolution of
the video. Advanced techniques on video compression can
also be applied. Recent publication [12] automatically finds
bones and vertex weights, by using transformation identi-
fied, their work enable efficient hardware rendering. Meshes
data compression performs excellent on compacting data
than general compression tools, yet data size is not reduced
at rendering time and varying amount of additional compu-
tation is spent.

3. ALGORITHM
Our intuition is that if the models in consecutive frames
have similar edge-collapse costs, their simplification process
may be similar, which can result in near identical vertex
trees. The near identical vertex trees guide us easier to
find solutions which can minimize meshes distortion while
maximize temporal coherence. Our algorithm is divided into
two phases consequently:

1. Construct the near identical vertex trees for models in
each frame.

2. In each vertex tree, iteratively select a valid vertices
pair for contraction from the full resolution. The se-
lections are made to complete the two objectives de-
scribed previously.

The rest of this section is organized as follows. In Section
3.1, we first introduce how the improvement on vertex trees
construction will be done by using one-dimensional Haar
wavelet decomposition. In Section 3.2, a formulation of
an energy function incorporating the meshes distortion and
temporal coherence will be given, and a trivial solution using
dynamic programming is presented. In Section 3.3, a better
solution to the above formulation is enhanced by using ge-
netic algorithm (GA). The power of implicit parallelism finds
multiple feasible solutions at the same time. Hybridization
with dynamic programming accelerates the convergence to
a local minimum.



3.1 Vertex Tree Construction
In [9], QEM models the distortion cost of a vertex as the
quadric distances from its neighboring planes. For a de-
forming model, the moving vertices cause the orientation of
planes changed consequently. Several optimal vertex posi-
tions can be determined at each time stamp for an edge-
collapse operation. The quadric metrics of a vertex v at
time stamp i is identified as Qv,i.

In [17] and some other similar papers, the edge-collapse cost
of an edge (v1, v2) during the iterative contraction is equal
to the sum of the contraction errors in all time stamps:

Qv′ =
X

t
v
′
t

T
(Qv1,t

+ Qv2,t
)v′

t,

where vt means the newly generated vertex in time stamp
t due to QEM calculation. This formulation treats multi-
valued pair contraction as single-valued, and thus a sin-
gle decimation sequence is applied to the deforming meshes
of all frames, as if they are approximated by one feature-
aggregated model.

Instead of applying only one decimation sequence to all
frames, we simplify the deforming meshes of each frame sep-
arately, and apply additional quantization to the quadric
error metrics. Because the difference between the quadric
error metrics of the consecutive frames Qv,i and Qv,i+1 may
be slight or excessive as the model deformed, the structure
of the vertex trees may vary differently, if the mesh simpli-
fication was applied to the deforming meshes in a straight-
forward manner. Such observation is also described in [15]
and the variation of the quadric error metrics is shown as
the blue line in Figure 3.

Figure 3: The blue line indicates how the cost of
an edge-collapse changing in each frame. The red
line shows the result after applying wavelet quanti-
zation. Noises are removed by discarding high fre-
quency wavelets.

Incoherent structure can lead to huge amount of updates
and obvious popping artifacts at rendering. To solve this
problem, we provide an optimization solution to smooth the
incoherent structure based on an one-dimensional Haar func-
tion and genetic algorithm with dynamic programming. The
one-dimensional Haar function is compounded of two func-
tions, which is a mother scaling function Φ(x) and a mother
wavelet function Ψ(x), together with a series of coefficients.
The original one dimensional function or image in a series of
coefficient times scaling basis function can be transformed
into a single scaling basis function plus a series of coefficient
times wavelet basis function, which describe high frequency
information of the original image.

The transformation has one advantage that the transformed
function still lies in the original domain, unlike Fourier trans-
formation in frequency domain, and frequencies are expressed
in an increasing order. Different treatments can be made on
the new coefficients for different purposes. Hence, we use
an one-dimensional Haar wavelet decomposition due to its
base functions exhibit box-like orthogonality, on which our
quantization is dependent. Another advantage is that the
function values are disseminated at a low-frequency support,
and feature areas in latter frames can be prepared in ad-
vance. The result of quantization is exemplified as the red
line in Figure 3.

By discarding high-frequency wavelet coefficients with a spec-
ified level, the quantization is completed, and based on the
quantization the coherent structures of vertex trees within
the support can be built. Our simplification scheme is com-
petitive in that the features are preserved at the needed
frames, where the static-connectivity scheme suffers, as shown
in Figure 4.

(a) (b) (c)

Figure 4: The comparison of feature adaptive
schemes of (a) First-Frame-Static, (b) Deformation
Sensitive Decimation, and (c) ours. The toes are the
last frame of the horse to man morphing sequence,
and our method adaptively preserves more details
then other methods.

Our algorithm is as follows:

1. Compute the groups for every edge.

2. Initialize quadric error metrics for every frame.

3. Apply one-dimensional Haar wavelet quantization to
every edge according to the groups in Step 1.

4. Contract edges iteratively in each frame. Errors of
contracted and degenerated edges are set to zero, and
apply the Haar wavelet quantization again to the edges
whose errors in other frames have been changed.

Note that re-sampling is required if the number of frames
does not match 2n, edges contracted are preferred to that
of degenerated in other frames. One thing worth to note
is that if all wavelets are discarded, our algorithm perform
exactly the same as [17].



3.2 Energy Function Formulation
After the construction of the vertex trees, we will reorder the
decimation sequence of each frame. Some previous methods
consider only two consecutive frames at a time; we instead
incorporate distortion and coherence as an energy function
of all frames as the following function:

E = α
X

t
Qv,t + (1 − α)∗ξ(Level)∗

X
t
Update(vft, vft+1, vt, vt+1)

2
.

This energy function states that errors are the summation of
distortion cost of vt at each frame plus the changes of quadric
error metrics in updates cost of vertex fronts vft from frame
to frame, which can be positive or negative indicating that
the decimation of vt and vt+1 in time t and t+1 causing the
change in the updates is beneficial or hazardous. The vertex
fronts vft here means a set of currently visible vertices in
time t. The quadratic term Qv,t penalizes the peak of con-
nectivity updates accumulated in certain frames. ξ(Level)
is an exponential adjusting function, which adapts the unit
of update cost to distortion error, and also reflects how dis-
tortion cost grows. We use the averaged costs in decimation
sequences of all frames generated in the initial phase to fit
the function. The result is an averaged distortion costs to
level of details curve. Serious impulse noise is present in the
error curve fitted and median filter can be used to reduce
noises. Update(vft, vft+1, vt, vt+1) is a function that mea-
sures how the two edge-collapses vt and vt+1 in time slots t

and t + 1 can cause the connectivity updates from vertex-
front vft in t to vertex-front vft+1 in t + 1. The graphical
illustration is shown in Figure 5.

 

v
1
v
2
v
3
v
4 v

5

v
6

v
7

v
8

v
9

v
1
v
2
v
3
v
4 v

5

v
6

v
7

v
8

v
9

Figure 5: Vertex trees of consecutive frames t and
t + 1. They share the same full resolution vertices,
yet the vertex fronts are slightly different. If an
edge-collapse selection on t is V7 on time t and V6

on t + 1, the evaluation of Updates () return −2 in-
dicating benefits. If V7 is selected on time t, a ben-
efit is gained, but may be counterbalanced by the
selection of V8 on time t + 1. Original updates on
connectivity are two, one on refinement of V6 and
one on coarsening of V7.

Then, we use dynamic programming to solve this formula-
tion intuitively, by first selecting a set of edge-collapse can-
didate, and compute a best combination that minimize the
energy function for each simplification iteration. The algo-
rithm is as the follows:

1. Collect S, a set of arbitrary edge-collapse candidates.

2. For each frame, a subset St is derived from S, by the
intersection of S and available candidates in frame t.

3. Run optimization algorithm

4. Best solution can be found by starting from the least
value in f[n] and traced backwardly.

In Step 1 of the above algorithm, set S is generated through
the least distortion cost collected from each frame without
duplication. Performance of the above algorithm is bounded
by the Update() function. Hence, we use dynamic program-
ming to enhance the speed of calculation. Dynamic pro-
gramming provides fast and approximate solution for our
energy function only if that S is chosen well. The search
space is limited by the candidate set S, where the edge-
collapses with least distortion cost in each frame are used as
initial guess. We later exploit the power of genetic algorithm
for global solution search.

3.3 Genetic Algorithm
In Section 3.2, we utilize dynamic programming to find a
feasible solution to our energy function. A limitation is im-
posed by the candidate set found in Step 1. In this section,
we introduce the general genetic algorithm and explain how
to modify the general one to fit our specific use. The general
genetic algorithm [6] is given by:

1. Initialize a population of chromosome.

2. Evaluate each chromosome in the population.

3. Create new chromosomes by mating parents; apply
mutation and recombination as the parent chromo-
some mate.

4. Delete members of the population to make room for
the new chromosomes.

5. Evaluate the new chromosome and insert them to the
population.

6. If time is up, stop and return the best chromosome; if
not, go to Step 3.

Original genetic algorithm encodes chromosome by bit-string,
yet other encodings like alphabetic or real numbers may
suffice. We concatenate edge-collapse of each frame in a se-
quence as the encoding. Evaluation of chromosomes is given
by a fitness function, where our energy function is very ap-
propriate for this purpose, and this is why we use genetic
algorithm instead of other discrete combinatorial optimiza-
tion scheme like simulated annealing or tabu search.

Initial population is given by mutating the very first chro-
mosome we created from the one used in the previous sub-
section. The mutation of a chromosome is randomly re-
placing an edge-collapse in an arbitrary position by another
edge-collapse candidate. The switch randomly selects one
of the first n least cost edge-collapses of the model in that
time slot, where n is a user specified parameter, and we use
100.

Two-point crossover recombination replaces the original one-
point scheme, used in general genetic algorithm, and the



points are selected at the highest gradient point in the chro-
mosome. The gradient captures how the energy function ac-
cumulates from each frame. High gradient occurs where the
edge-collapse in time stamps t and t + 1 cause connectivity
to increase/decrease or change of distortions dramatically.

The mating of two chromosomes is done by linear normal-
ization of the fitness function and random selection. We sort
chromosomes in their fitness function value, assign ranking
value to replace the original fitness value, and use roulette
wheel for random selection.

Genetic algorithm exhibits an excellent performance, yet we
also must note that simply use dynamic programming may
work as well, in that temporal coherence is not a great
concern because the initial solutions have provided good
guesses. However if strong constraint is imposed, dynamic
programming perform poorly.

4. RESULTS
In this section, all of the results were running on a notebook
PC with an Intel Pentium M 1.6GHz CPU and 2.0GB RAM.
The parameter α in our energy function through out this pa-
per is set to 0.5, unless otherwise specified. In Section 3.3,
the population size is set to 20, with crossover probability
of 0.95 and 0.1 for run-time mutation probability. The ini-
tial population is generated using mutated least-distortion
sequence, with mutation probability set to 0.2. In order to
improve performance, elitism is used. The search, for most
of the time, converges within a hundred run, and we set the
search to be 100 times.

A comparison of genetic algorithm with random selection is
also conducted. In order to make it fare to collate, chromo-
somes generated in genetic algorithm and random selection
are the same, where search-runs multiply population size is
total 2000 here. Our experiments show that genetic algo-
rithm outperform random selection.

Figure 6: Various methods compared in RMS mea-
suring meshes distortion.

First in Figure 6, a comparison with other schemes is demon-
strated. We have implemented the Deformation Sensitive
Decimation, First-Frame-Static approximation, and the ”Av-
erage” approximation. Apparently our result has good re-
sult at approximating the original deforming meshes, and
the First-Frame-Static is obviously a bad choice for sim-
plifying animating sequence. The result can also be seen
in Figure 1. For drastically deforming sequence, the horse
collapsing animation exemplifies importance of our method,
and comparison for every level of details can be found in
Figures 7 and 8. The distortion measuring tool we use is
Metro [3], and average the result of two way measurement.

Figure 7: The comparison of our method with static
connectivity schemes. As meshes start coarsening,
the distortion of static scheme increases faster than
ours.

(a) (b)

Figure 8: The result of horse-collapose animation
at 26th frame by using (a) Deformation Sensitiv-
ity Decimation using static connectivity scheme and
(b) our method. Our method not only preserves
necessary details in advance as in Figure 1 but also
provides good approximation.

In Figure 9, we show an illustration of how control is done
on the number of updates. GA is an excellent choice for
optimization when great constraint is imposed on temporal
coherence.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we presented an algorithm for simplifying the
deforming meshes with changing connectivity dynamically.
In our method, we use an one-dimensional Haar wavelet
function to quantize the quadric error metrics and genetic
algorithm with dynamic programming to find the best com-
bination of a set of edge-collapse operations which minimizes
distortion while maximizing temporal coherence. Hence, we
can obtain a simplified deforming meshes with updating only
necessary connectivity.

Some animation techniques, such as key-framing and skin-
ning, usually require the connectivity to be static, one of
our future work can addresses this problem by incorporat-
ing dynamically adaptive connectivity with key-framing or
skinning.

One extension to this work is to re-design the energy func-
tion by putting a third term to measure the perceptional



Figure 9: Our method versus Direct-QEM in num-
ber of updates. As the level of details decreasing,
the time spent on the updating connectivity is very
huge, and sometimes even exceed the cost of re-
transmitting a whole new mesh.

popping effects. Throughout this paper we assume that re-
ducing the numbers of updates can eliminate popping ef-
fects implicitly. Imagining that a connectivity update oc-
curs at completely flatten plan and curved surface. The
former is undoubtedly less easy to be perceived, yet the two
cases evaluated to be equal in our function. Another issue is
that popping effects are perceived at the vertex front level,
whereas the updating happens throughout the entire ver-
tex tree hierarchy. It is inadequate to simply measure the
connectivity change at vertex front level or put the entire
simplified structure into consideration.

A very tentative future work relies on the segmentation
of spatial-temporal domain. By explicitly segmenting the
surface into drastically deforming parts and less deforming
parts, the simplification can treats these areas differently,
and thus better coherent structure may be built and easier
control on optimization can be done. This extension can be
incorporated with the existing work [13].

6. ACKNOWLEDGEMENTS
We wish to thank Robert W. Sumner and Jovan Popović for
providing the galloping horse and collapsing horse anima-
tions. Thanks also give to Alla Sheffer for the horse-to-man
morphing data. We thank Scott Kircher and Michael Gar-
land for generously sharing the BigCape deforming model.
This work was partially supported by the National Science
Council of Taiwan under the numbers: 92-2218-E-002-056,
93-2213-E-002-084, and 94-2213-E-002-097.

7. REFERENCES
[1] M. Alexa and W. Müller. Representing animations by

principal components. Computer Graphics Forum
(Proceedings of Eurographics 2000), 19(3):411–418,
2000.

[2] H. M. Bricen̋o, P. V. Sander, L. McMillan, S. Gortler,
and H. Hoppe. Geometry videos: a new representation
for 3d animations. In Proceedings of the 2003 ACM
SIGGRAPH/Eurographics Symposium on Computer
Animation, pages 136–146, 2003.

[3] P. Cignoni, C. Rocchini, and R. Scopigno. Metro:
measuring error on simplified surfaces. Computer

Graphics Forum, 17(2):167–174, 1998.

[4] J. Cohen, A. Varshney, D. Manocha, G. Turk,
H. Weber, P. Agarwal, F. Brooks, and W. Wright.
Simplification envelopes. In ACM SIGGRAPH 1996
Conference Proceedings, pages 119–128, 1996.

[5] D. Cohen-Steiner, P. Alliez, and M. Desbrun.
Variational shape approximation. ACM Transactions
on Graphics (SIGGRAPH 2004 Conference
Proceedings), 23(3):905–914, 2004.

[6] L. Davis. Handbook of Genetic Algorithms. van
Nostrand Reinhold, 1991.

[7] C. DeCoro and S. Rusinkiewicz. Pose-independent
simplification of articulated meshes. In Proceedings of
the 2005 Symposium on Interactive 3D Graphics and
Games, pages 17–24, 2005.

[8] M. Eck, T. DeRose, T. Duchamp, H. Hoppe,
M. Lounsbery, and W. Stuetzle. Multiresolution
analysis of arbitrary meshes. In ACM SIGGRAPH
1995 Conference Proceedings, pages 173–182, 1995.

[9] M. Garland and P. S. Heckbert. Surface simplification
using quadric error metrics. In ACM SIGGRAPH
1997 Conference Proceedings, pages 209–216, 1997.

[10] H. Hoppe. Progressive meshes. In ACM SIGGRAPH
1996 Conference Proceedings, pages 99–108, 1996.

[11] L. Ibarria and J. Rossignac. Dynapack: space-time
compression of the 3d animations of triangle meshes
with fixed connectivity. In Proceedings of the 2003
ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, pages 126–135, 2003.

[12] D. L. James and C. D. Twigg. Skinning mesh
animations. ACM Transactions on Graphics
(SIGGRAPH 2005 Conference Proceedings),
24(3):399–407, 2005.

[13] S. Katz and A. Tal. Hierarchical mesh decomposition
using fuzzy clustering and cuts. ACM Transactions on
Graphics (SIGGRAPH 2003 Conference Proceedings),
22(3):954–961, 2003.

[14] S. Kircher and M. Garland. Progressive
multiresolution meshes for deforming surfaces. In
Proceedings of the 2005 ACM
SIGGRAPH/Eurographics Symposium on Computer
Animation, pages 191–200, 2005.

[15] J. E. Lengyel. Compression of time-dependent
geometry. In Proceedings of the 1999 Symposium on
Interactive 3D Graphics, pages 89–95, 1999.

[16] P. Lindstrom and G. Turk. Fast and memory efficient
polygonal simplification. In IEEE Visualization 1998
Conference Proceedings, pages 279–286, 1998.

[17] A. Mohr and M. Gleicher. Deformation sensitive
decimation. Technical report, University of Wisconsin,
2003.



[18] W. J. Schroeder, J. A. Zarge, and W. E. Lorensen.
Decimation of triangle meshes. ACM Computer
Graphics (SIGGRAPH 1992 Conference Proceedings),
26(2):65–70, 1992.

[19] A. Shamir, C. Bajaj, and V. Pascucci.
Multi-resolution dynamic meshes with arbitrary
deformations. In IEEE Visualization 2000 Conference
Proceedings, pages 423–430, 2000.

[20] A. Shamir and V. Pascucci. Temporal and spatial
level of details for dynamic meshes. In Proceedings of
the ACM Symposium on Virtual Reality Software and
Technology, pages 77–84, 2001.


