
1

減少視覺混淆之互動式網路視覺化系統減少視覺混淆之互動式網路視覺化系統減少視覺混淆之互動式網路視覺化系統減少視覺混淆之互動式網路視覺化系統

Ambiguity-Reducing for Interactive Network Visualization 劉俊良 國立台灣大學

being31@cmlab.csie.ntu.edu.tw

陳炳宇 國立台灣大學

robin@ntu.edu.tw

Fig. 1. Ambiguity-Free Edge-Bundling. In the left figure, the graph using straight-line edges has edge ambiguity problem. In the right figure,
after deploying our ambiguity-free edge-bundling, the graph becomes clear with less edge ambiguity problem.

ABSTRACT

In this paper, we present an ambiguity-free edge-bundling

approach for interactively visualizing graph or network data. To

visualize a large graph or network dataset, the edges used to

represent the relationship between the nodes are usually very

dense. Due to the dense edges and huge amount of nodes, the

graph or network is usually hard to be read or used according to

the cluttered edge crossing or occlusion. To increase the

readability and aesthetical niceness of the edge layout while

decreasing the visual ambiguity, we introduce an ambiguity-free

edge bundling framework to reduce the visual clutter caused by

the edges and also improve the user’s perceptual consistency of

graph or network visualization and the actual data’s relation. In

our network visualization system, we use an efficient and generic

quadtree structure that can be applied in conjunction with existing

graph or network visualization systems. To provide the user an

easy-to-use interactive user interface, we also introduce a novel

detail-on-demand concept to make the user to be able to control

the level-of-details regionally by painting the graph or network.

Keywords

Network visualization, graph visualization, edge bundling, curved

edge, visual clutter, edge aggregation, level of detail, detail on

demand.

1. Introduction
Visualizing network data as a graph is a common and well-known

approach. A graph typically consists of some nodes and some

edges connected the nodes to represent the relationship between

them. The scalability of a graph is a practical concern when

visualizing the network data. To increase the scale or size of the

graph implies that more nodes and more edges are added into the

graph to represent more information of the network data, so the

graph should have more information either explicitly or implicitly.

However, due to the limited display space, to increase the scale or

size of the graph also makes the density of it become much more

dense, which occurs several critical challenges, since a dense

graph with a large amount of nodes and edges is usually hard to

be recognized and used according to the cluttered edge crossing or

occlusion [7].

Drawing the entire network data contained thousands or millions

of nodes may provide the user an indication of the overview or a

specific location concept within it, but this also makes it much

difficult to comprehend further and causes misinterpretation due

to the cluttered edge crossing or occlusion of the dense graph or

network [20]. However, since most of the network data have

small-world characteristics [12, 23, 21], it is possible to cluster

some nodes and edges with highly connected relationship to

decrease the density of the graph while still preserving the

overview of it. Through the level-of-detail approach as that

provided by many previous methods, the user may perceive the

details of the network data, but without considering the visual

clutter, the graph may still be hard to be recognized.

To increase the readability and aesthetical niceness of the edge

layout while decreasing the visual ambiguity, we introduce an

ambiguity free edge-bundling framework in this paper to reduce

2

the visual clutter caused by the edges and also improve the user’s

perceptual consistency of the graph or network visualization and

the actual data’s relation. Our target is to improve the graph

layout for a reasonable graph scale of the network data with small-

world characteristics.

Some previous graph layout algorithms focused on the node

placement in order to improve the space utilization, but in our

observation, most of the visual clutter and relation

misinterpretation were caused by inappropriate edge layout style.

The main issues of improper edge layout are as the follows:

� Dense edge crossings cause most of the visual clutter and

waste the display space.

� Edges passing near to the unrelated nodes cause relation

misinterpretation on visual perception, called as edge

ambiguity. (Fig. 2(a))

� Edges with both of similar gradient and geometrical

position decrease the recognition ability of individual

relationships. (Fig. 2(b))

Fig. 2 shows some edge ambiguity cases. In Fig. 2(a), the red

node is too close to the green edge that causes incorrect visual

perception of additional relationship with the two green nodes. In

Fig. 2(b), due to the similar edge gradient, it is hard to recognize

if the green node connects to the blue node or the purple one.

Although there are some previous edge-bundling methods could

help to reduce the visual clutter, without considering the actual

relationship of the nodes, the adjusted graph may still has edge

ambiguity problem. As shown in Fig. 2(c), although the red and

green edges are bundled to prevent the visual clutter, the red

edges are still hard to be recognized as Fig. 2(b) and the green

edge causes another kind of visual clutter as Fig. 2(a). The visual

clutter caused by cluttered edges significantly decreases the

readability of the graph, and more importantly, inappropriate edge

layout decreases the consistency between the user’s visual

perception and the actual relation data. In order to make the graph

or network visualization to convey the information as effectively

and accurately as possible, a good edge representation is needed.

(a) (b) (c)

Fig. 2. Some edge ambiguity cases. (a) The red node is too

close to the green edge that causes incorrect visual perception

of additional relationship with the two green nodes. (b)

Comparing to the black-crossing edge-pair, the red-crossing

edge-pair is harder to discriminate which two nodes are

connected. (c) Edge bundling without considering the actual

relationship of the nodes will cause another kind of visually

ambiguity.

Through our ambiguity-free edge-bundling framework, our

network visualization system can be used to visualize the middle

size, unstructured, and small-world graphs with a more aesthetic

edge layout. Our ambiguity-free edge-bundling framework

improves the effects that the user can perceive the individual

relationships represented by the edges more accurately, since the

edges that have the same target or source nodes are merged and an

ambiguity-free mechanism is introduced to avoid the edge

ambiguity problem. Our framework uses a quadtree structure to

overcome the time complexity issue, so the user can easily interact

with our graph layout in real-time. To provide the user an easy-to-

use interactive user interface, we also introduce a novel detail-on-

demand concept to make the user to be able to control the level-

of-details regionally by painting the graph or network directly.

2. Related Work
Visual clutter in graph or network visualization has been widely

studied. Many methods have been proposed to alleviate the visual

clutter when the node and edge densities are increased in the

graph visualization, since the visual clutter is particularly

troublesome if the users want to incorporate readability

considerations in graph layout [16]. A very good survey on

general visual clutter reduction techniques can be found in [4].

Existing visual clutter reduction techniques can be categorized

into three approaches: node adjustment, edge curving, and

distortion oriented methods. Node adjustment approach

rearranges the nodes’ positions to minimize the edge density,

crossing, and occlusion to avoid the content confusion. However,

this approach cannot adapt well in practical use, since it is quite

difficult to obtain an appropriate rearrangement with dense edges

[3, 7]. In addition, it may not be suitable if the nodes’ positions

have semantic meanings, e.g. the nodes represent the cities on the

map. Another attractive approach, distortion-oriented methods,

distorts the nodes’ positions or sizes while still maintaining the

user’s mental map model [13]. Through these methods, the user

can interactively use a fish-eye-like tool to enlarge some regional

areas of the graph or network to check the details of the

interesting or cluttering areas. Many extensive methods have been

presented in the fields of information visualization [9, 10, 5, 6],

human-computer interaction [19, 11], etc.

The edge curving approach can be divided into two categories:

edge bundling and edge dispersing. The edge dispersing approach

disperses the edges away from one local region, so the underlying

pattern can be revealed. EdgeLens [24] provides the user to

interactively bend the edges away from one’s focus without

altering the nodes’ positions, and then further opens up a

sufficient space to disambiguate the relationship between the

nodes and edges. Another promising approach to reduce the visual

clutter is to reduce the excessive edges. Based on visually

bundling the adjacency edges and preserving more space for

distinguishing, edge bundling approach merges the edges that

share the specific criteria. FlowMap Layout [15] proposed by

Phan et al.has an encouraging result on specific graphs. They use

hierarchical binary clustering on a set of nodes, positions, and

flow data, and then route the edges which share the common

destination into single- or multisource graphs. Hierarchical Edge

Bundle [8] proposed by Holten is designed for visualizing the

dataset containing both of adjacency relationship and hierarchical

structure. To draw the edge linked two leafs, the edge is curved

according to the path connecting two nodes on the hierarchical

tree structure, and then it bundles the edges together if these edges

3

share the common path segment on the hierarchical tree. Qu et al.

[17] proposed a novel edge-clustering method for node-link

diagram. They cluster the edges together based on the

intersections with the edges in the Delaunay triangulated mesh of

nodes, and hence may produce zigzag edges. Cui et al. [2]

proposed a similar edge clustering method based on the nodes’

geometrical information. The significant difference from Qu et al.

[17] is that they use a uniform grid structure to sample the control

points, and further generating the control mesh to guide the edge

curving. However, it aggravates another edge ambiguity problem

as shown in Fig. 2(c).

3. System Design and Overview
While an edge represents the adjacency relationship, it also

introduces incorrect relationship if the edge was inappropriately

closed to some unrelated nodes. Fig. 3 illustrates some possible

edge ambiguity cases in a three-node graph. If we use straight-line

edges to form the graph as shown in Fig. 3(a), it comes out that

the middle node seems to have the individual relationships with

the upper node and the lower one, respectively. However, if we

use curves to represent the edges, several configurations can be

revealed as shown in Fig. 3(b) ~ Fig. 3(e). Besides these cases,

even though the straight-line green edge shown in Fig. 2(a) does

not actually overlap the red node, it is still difficult to discriminate

the real connection from the node-edge nearness. Another case is

that, if two straight-line edges shared no common node but cross

with each other at an acute angle, it is difficult to rapidly interpret

which two nodes are connected or not as the red edges shown in

Fig. 2(b). Acute crossing angles cause more visual confusion

when rapid visual interpretation is needed [22]. This also happens

in curved edge layout if two curved-edges were inappropriately

bundled as the red curved-edges shown in Fig. 2(c).

(a) (b) (c) (d) (e)

Fig. 3. The ambiguity caused by straight-line edge style.

When linking the nodes by straight-lines, the graphs shown in

(b) ~ (e) will all become (a).

Our observation for a good curved-edge layout reveals three

common characteristics: (1) the curvature of each point on the

curved-edge should be as small as possible; (2) the curved-edges

could alleviate the edge ambiguity arising from the straight-line

edges; (3) merging curved-edges to open up more display space

without causing further edge ambiguity should be taken into

consideration. Keeping the curvature of the curved-edge small

could make the edge smoother and easy to track, and the rest

characteristics are aimed to reduce the visual clutter caused by

dense and crossing edges while maintaining the consistency

between the visual cognition and real data’s relationship. Our

framework attempts to achieve these characteristics, and also

provides the user an efficient and real-time curved-edge layout.

For some applications, the nodes’ positions have semantic

meanings, such as the geometric information of the cities on a

map. Hence, in this case, the geometric attributes should be

retained without noticeable displacement. In other cases, the

dataset may only contain the adjacency relationship, e.g. social

network data. In order to make our framework more generic to

adapt to existing graph layouts and relation dataset, we assume

that the nodes’ positions in the input graph or network have

already been decided. If the dataset has no position information in

advance, a force-based model [1] is first applied to compute the

initial nodes’ positions.

Fig. 4. The system overview.

Fig. 4 illustrates the overview of our system. We use a quadtree

[18] structure to decompose two dimensional display space

according to the nodes’ positions in the input graph, and this tree

data-structure enhances the efficiency in the following steps. Our

system consists of five major steps: (1) quadtree construction and

occupying detection (Sec. 4.1), (2) edge ambiguity avoiding (Sec.

4.2), (3) curved edge bundling (Sec. 4.3), (4) rendering (Sec. 5.1),

and (5) interaction (Sec. 5.2). The quadtree construction and

occupying detection step constructs a quadtree structure by using

the nodes in the input graph and detects each edge in the graph

that what quadtree cells it passes through. The edge ambiguity

avoiding step detects if there exists edges passing nearby one or

more unrelated nodes, and routes these edges away from the

unrelated nodes in local region. The curved-edge bundling step

geometrically bundles the edges together while taking the edge

ambiguity into consideration to open up more space, and further

enhances the visual discrimination between the related nodes and

unrelated ones. Finally, the rendering and interaction steps

provide the final visualization and interactive control for the user.

4. Ambiguity-Free Edge Bundling

4.1 Quadtree Construction and Occupying

Detection
In order to achieve real-time interaction, an efficient data structure,

quadtree, is first deployed. Each node of the input graph is first

inserted into a quadtree structure according to its position. Fig.

4

5(a) simply illustrates the result after inserting five nodes into a

quadtree in two dimensional spaces. Here we define two types of

the quadtree cells: RedCell and GreenCell. A RedCell means that

it contains exactly one node in its local region, and a GreenCell

means that it contains nothing and is available for further use.

Since the width of the RedCell may be too large to waste too

much space, after inserting the nodes into the quadtree, we further

subdivide the RedCell to a proper width to release much more

GreenCells. Fig. 5(b) illustrates the result after conducting the

subdivision, so the nodes can be put into a RedCell with a proper

width compared to the original result shown in Fig. 5(a).

(a) (b)

Fig. 5. Occupying detection with a quadtree structure. (a) The

original quadtree structure after inserting five nodes. (b) The cells

occupied by the nodes are subdivided to be a proper width.

After constructing the quadtree cell map, we need to analyze the

occupied state of each edge in the straight-line style on the cell

map. If one edge on the cell map occupied only GreenCells, that

means it potentially does not have edge ambiguity problem. On

the other hand, if one edge occupied one or more RedCells, the

edge ambiguity problem may occur in those RedCell regions. The

basic idea of our approach is that the curved-edge must route and

bypass the RedCells detected in the straight-line mode. Moreover,

in each GreenCell on the cell map, we detect what edges pass

through it, and if two or more passed edges share the common

nodes, they are bundled together in the local region. The bypass

and bundle effects are controlled as local as possible, since the

shortest path from one node to the other one is a straight-line.

4.2 Edge Ambiguity Avoiding
As mentioned in Sec. 3, an edge passes inappropriately close to

some unrelated nodes will cause the edge ambiguity problem and

further provides incorrect relationship between the nodes. To

avoid the edge ambiguity, we enforce the curved-edge to bypass

these nodes. In Sec. 4.1, we have constructed a quadtree cell map

and detected the cells occupied by each node and edge. If there is

one RedCell which has already been occupied by a node but still

passed by one edge, we first calculate the projection point 'P of

the RedCell’s center P on the edge, and then according to the

vector 'PP
�����

, we spread out two circular sectors in two directions

'PP
�����

 and 'P P
�����

for searching the candidates of bypassing

GreenCells. The central angle θ and radiuses
1r and

2r of the

two circular sectors are determined by Eq. (1). Fig. 6(a) illustrates

the idea for searching the bypassing GreenCell candidates.

()

()

() LLlp

pLkr

pLkr

Ll

2/

1**

**

*/

2

1

+=

−=

=

= πθ

 (1)

where k is a user specified detection range (suggested value:

1, ...,4), 'l PP=
�����

 is the distance between P and 'P , and L

is the width of the occupied RedCell.

In Sec. 3, we mentioned that one of the characteristics of good

curved-edge layout is keeping the curvature of each point on the

curve as small as possible. To achieve this, we calculate all of the

turning angles of all GreenCell candidates iGC . Each turning

angle iθ is formed by the cell center of iGC , preGreenCell, and

postGreenCell, where the preGreenCell and postGreenCell are

determined from the list of the GreenCells occupied by the same

edge according to the projection points of the cell centers on the

edge. After calculating all of the turning angles of all candidates,

we select the one which has the maximal turning angle to be our

bypassing GreenCell. Fig. 6(b) illustrates the idea for determining

the best candidate for curved-edge bypassing.

(a) (b)

Fig. 6. Edge-ambiguity avoiding. (a) Searching bypassing

GreenCell candidates. (b) The best bypassing GreenCell is

decided by selecting the candidate with the largest turning angle.

In this example, 3θ is the best candidate.

4.3 Curved-Edge Bundling
In Sec. 3, we mentioned that the visual clutter in most graph

layouts is caused by dense edges. Hence, we bundle the edges

together to open up more space for better visual discrimination

while avoiding information losing or visual confusion after edge

bundling. To prevent bundled edges losing their information of

source or target nodes visually, two or more edges can be bundled

together only if they satisfy the condition that each of them shares

a common node. This condition guarantees that, even if two edges

are geometrically close, they will not be bundled together.

Otherwise, it may generate additional incorrect relationship. Fig.

2(c) illustrates the additional incorrect relationship between the

node pairs after bundling the edges without common node

condition.

5

We use Catmull-Rom spline which has a well local control

property as our curve model. To curve one edge, we add control

points to the edge’s spline model and it will guarantee that each

control point will be hit smoothly. In Sec. 4.2, we have decided

the bypassing GreenCells, the control points of the bypassing

GreenCells are calculated as:

()()' r r b bCP P L L L PP= + + + ∗
����

 (2)

where CP is the control point of the spline, P is the center point

of the occupied RedCell, 'P is the projection point of P on the

edge, bP is the center point of the bypassing GreenCell, and

rL and bL Lb are the width of the occupied RedCell and

bypassing GreenCell, respectively.

To bundle the edges together, we enforce the edges to pass

through the specific control points. For every GreenCell that the

edge passed, we check whether the GreenCell has other passed

edges that share common nodes with the edge or not. If it does,

we use Eq. (2) to calculate one control point and add it to the

edge’s spline model. After calculating all of the control points of

one edge, we sort these control points according to their

projection points on the straight-line edge, then the control points

are aligned in correct sequence for constructing the spline.

5. Rendering and Interaction

5.1 Rendering
In most cases, we cannot avoid the existence of curves’

overlapping. In order to make the dense curves as clear as

possible, we draw the curves with different alpha values. In high

level of view, it is apparent that long curves occupied larger

amounts of screen space. In this case, we should draw the long

curves with a lower opacity than the short curves, and this is also

a better visualization since the user mostly tries to construct the

overview of the whole graph in high level of view, in which lower

drawing opacity of the long curves helps to emphasize the short

curves and further enlarges the amount of edges that the user

perceives. On the contrary, in lower level of view of the graph, the

user now is mostly trying to discriminate the distinct relationship

between different node pairs. Since a long curve takes more

cognitive effort to ascertain which two nodes are connected, in

this case, drawing long curves with higher opacity can help to

perceive the information quicker.

(a) (b) (c)

Fig. 7. The level-of-detail control. One region is simplified by

merging the underlying connected nodes. (a) The original uniform

graph. (b) After modifying the detail map, the connected nodes in

one cell are combined if the number of connected nodes is greater

than a user-specified value. (c) The result after merging the nodes

further which have been combined already.

5.2 Interaction
In our network visualization system, an interactive level-of-detail

mechanism is also provided to enable a comprehensible

visualization for dealing with a common small-world issue. Many

real world relation datasets have the small-world characteristics

[12], such as social network data, bibliographic reference data,

software structure data, etc. The small-world characteristics come

out a high degree of clustering in graph, and make the graph have

a small average path length comparing to other random graphs of

the same scale or size. The frequent occurrence of high-degree

clustering always makes the graph incomprehensible. Hence, we

use an interactive level-of-detail mechanism that only modifies the

visual representation of the clustered and small average curve

length subgraph without losing their underlying relationships

while providing the user the control of detail-on-demand.

(a)

(b)

Fig. 8. The comparison between the original graph layout with

small-world characteristics and the result of merging high-

degree clustering nodes. (a) In traditional graph layout, small-

world characteristics make the graph more difficult to

comprehend. (b) After the user interactively modifying the level-

6

of-detail map, it is easier to comprehend the graph within a

specific level of view.

In the interaction process, the user can paint a level-of-detail map

on display space. For example, if the user wants one local region

to be simpler to provide a higher level of view, he or she can just

use the mouse cursor to click on that local region to make the

local level-of-detail map sparser; on the contrary, he or she can

also make the local level-of-detail map denser if the local details

are needed. After the level-of-detail map has been modified, our

system checks each cell on the level-of-detail map to meet our

detail criterion. If one cell contains more than a specific number

of connected nodes, we will combine those connected nodes into

a larger parent node, apply a simple graph layout to its child

nodes, and converge their edges which connect to the nodes

outside the cell. The connected nodes are defined as the nodes

which are connected to the others in the same cell.

Fig. 7(a) and Fig. 7(b) illustrate the idea of the level-of-detail map,

the user can modify the level-of-detail map and our system will

further combine the nodes below the same cell. A circular layout

is used to simplify the subgraph in one parent node, and the parent

node can also be combined by the higher-level parent node if it

meets the detail criteria under one cell. Fig. 7(c) illustrates the

result that the nodes are combined multiply. Moreover, if the user

wants to visualize the details of the combined nodes later, it can

be done by modifying the level-of-detail map in the specific

region, and our system will check whether there exists a parent

node that occupied more than one cell in the level-of- detail map,

and then release the combined nodes for one combined level. We

can also use this method to alleviate the visual clutter caused by

small-world characteristics. Fig.8(b) illustrates that it is easier to

comprehend the modified representation of graph comparing with

the original one shown in Fig.8(a) with several high-degree

clustering nodes.

In each interaction step, we also use a quadtree data-structure to

partition our display space and analyze the nodes deployment. It

demonstrated high performance with the scale of hundreds of

nodes and force-based layout. It can provide real-time interaction

by using a desktop PC with a Intel Core-2 1.66 GHz CPU and

2GB memory.

6. Result and Discussion
Fig. 9 shows the visualization result of an academic social

network in Taiwan which contains 2,450 professors as the nodes

and 2,622 co-advise relationship as the edges. If we use straight-

line edges to visualize this graph which has the small-world

characteristics, it is hard to comprehend at the first look since

there are a lot of edge-node over-passing. After bundling the

edges together while considering the edge ambiguity, it is easier

to get the real connection between the nodes without too much

visual efforts.

In Fig. 10, a co-authorship network of scientists working on

network theory and experiment is visualized. The network data

was provided by [14] which contains 1,589 nodes and 2,742

edges. The graph has highly local-community property that there

exists a lot of near completed subgraphs. Hence, we interactively

combine these communities, and without edge gathering at small

region, it is easier for learning higher level of view. The user can

further drill down for more details, and further release the

communities on demand.

In Sec. 4.1, we subdivided the RedCell to make the cell width as

small as possible to release much more GreenCells. In our

observation, if the cell width is too small, the edge-bundling

mechanism will produce a frequent-turning curve layout, as know

as zigzag curve. The zigzag curves will cause the visual clutter in

which it is difficult to perceive the connection between two nodes.

On the contrary, if the cell width is too large, the edge ambiguity

avoiding mechanism might take less effect due to the missing of

bypassing cell detection. In our experiment, the maximum cell

width 'L should be decided with consideration of both the node

amount on the display and the area of the display space, which

can be formulated as the following equation:

()' / 4L O A N=

where A is the area of available display space and N is the

number of nodes. In some cases, the average node width would be

greater than the suggested maximum cell width, which means the

probability of the curved-edges passing near the nodes’ bound

might be high. In this case, our edge ambiguity avoiding

mechanism will not work well due to the insufficiency of

available display space. However, in general cases, the suggested

maximum cell width is larger than the average node width in

which our edge ambiguity avoiding mechanism performs well.

7. Conclusion and Future Work
Graph representation is a common and well-known approach to

visualize network data. In this paper, we present a generic and

efficient ambiguity-free edge-bundling method to improve the

edge layout which plays an important rule to indicate the

relationship between the nodes. Our contributions can be listed as

the following:

� By applying ambiguity-free edge-bundling, it is easier for

the user to perceive the relationship between the nodes with

less ambiguity.

� The user can discriminate between distinct edges with less

visual loading.

� No interactive effort is needed. The bundled curved-edge

layout is automatically generated according to the

deployment of nodes and edges.

� A novel detail-on-demand concept is also presented that the

user can customize the distribution of level-of-details on

display, a.k.a. level-of-detail map. This concept provides

more degree of freedom that how deep the user wants to see

in a specified local region.

In the future, we will make efforts on improving the proper

quadtree cell width to adapt to different density of nodes and

edges locally. By considering the local deploying properties, the

overall performance of ambiguity-free edge-bundling will be

better. In addition, in each curved and bundled edge, we can

further improve the routing algorithm to perform more aesthetic

curved-edge layout. This might be achieved by extending the

detection of ambiguity bypassing and deciding the route path

based on both of bundling and bypassing variables simultaneously.

7

8. REFERENCES
[1] J. Barnes and P. Hut. A hierarchical O(N log N) force-

calculation algorithm. Nature, 324(6096):446–449, 1986.

[2] W. Cui, H. Zhou, H. Qu, P. C. Wong, and X. Li. Geometry-

based edge clustering for graph visualization. IEEE

Transactions on Visualization and Computer Graphics,

14(6):1277–1284, 2008. (Information Visualization 2008

Conference Proceedings).

[3] P. Eades and R. Tamassia. Algorithms for drawing graphs:

An annotated bibliography. Technical report, 1988.

[4] G. Ellis and A. Dix. A taxonomy of clutter reduction for

information visualisation. IEEE Transactions on

Visualization and Computer Graphics, 13(6):741–748, 2007.

(Information Visualization 2007 Conference Proceedings).

[5] G. W. Furnas. The fisheye view: a new look at structured

files. In Readings in information visualization: using vision

to think, pages 312–330. Morgan Kaufmann Publishers,

1999.

[6] E. R. Gansner, Y. Koren, and S. C. North. Topological

fisheye views for visualizing large graphs. IEEE

Transactions on Visualization and Computer Graphics,

11(4):457–468, 2005.

[7] I. Herman, G. Melanc﹐on, and M. Scott Marshall.

Visualiation and navigation in information visualization: A

survey. IEEE Transactions on Visualization and Computer

Graphics, 6(1):24–43, 2000.

[8] D. Holten. Hierarchical edge bundles: Visualization of

adjacency relations in hierarchical data. IEEE Transactions

on Visualization and Computer Graphics, 12(5):741–748,

2006. (Information Visualization 2006 Conference

Proceedings).

[9] T. A. Keahey and E. L. Robertson. Techniques for non-linear

magnification transformations. In IEEE Information

Visualization 1996 Conference Proceedings, pages 38–45,

1996.

[10] T. A. Keahey and E. L. Robertson. Nonlinear magnification

fields. In IEEE Information Visualization 1997 Conference

Proceedings, pages 51–58, 1997.

[11] Y. K. Leung and M. D. Apperley. A review and taxonomy of

distortionoriented presentation techniques. ACM

Transactions on Computer-Human Interaction, 1(2):126–

160, 1994.

[12] S. Milgram. The small world problem. Psychology Today,

1(1):60–67,1967.

[13] K.Misue, P. Eades,W. Lai, and K. Sugiyama. Layout

adjustment and the mental map. Journal of Visual Languages

and Computing, 6(2):183–210, 1995.

[14] M. E. J. Newman. Finding community structure in networks

using the eigenvectors of matrices. Physical Review E,

74(3):036104, 2006.

[15] D. Phan, L. Xiao, R. Yeh, P. Hanrahan, and T. Winograd.

Flow map layout. In IEEE Information Visualization 2005

Conference Proceedings, pages 219–224, 2005.

[16] H. C. Purchase. Effective information visualisation: a study

of graph drawing aesthetics and algorithms. Interacting with

Computers, 13(2):147–162, 2000.

[17] H. Qu, H. Zhou, and Y.Wu. Controllable and progressive

edge clustering for large networks. In Graph Drawing 2006

Conference Proceedings, pages 399–404, 2006.

[18] H. Samet. The quadtree and related hierarchical data

structures. ACM Computing Surveys, 16(2):187–260, 1984.

[19] M. Sarkar and M. H. Brown. Graphical fisheye views of

graphs. In ACM CHI 1992 Conference Proceedings, pages

83–91, 1992.

[20] Z. Shen, K.-L. Ma, and T. Eliassi-Rad. Visual analysis of

large heterogeneous social networks by semantic and

structural abstraction. IEEE Transactions on Visualization

and Computer Graphics, 12(6):1427–1439, 2006.

[21] F. van Ham and J. J. van Wijk. Interactive visualization of

small world graphs. In IEEE Information Visualization 2004

Conference Proceedings, pages 199–206, 2004.

[22] C. Ware, H. Purchase, L. Colpoys, and M. McGill. Cognitive

measurements of graph aesthetics. Information Visualization,

1(2):103–110, 2002.

[23] D. J. Watts. Small Worlds: The Dynamics of Networks

Between Order and Randomness. Princeton University Press,

1999.

[24] N. Wong, S. Carpendale, and S. Greenberg. Edgelens: An

interactive method for managing edge congestion in graphs.

In IEEE Information Visualization 2003 Conference

Proceedings, pages 51–58, 2003.

8

Fig. 9. The result of visualizing an academic social network in Taiwan which contains 2,450 nodes and 2,662 edges.

Fig. 10. The result of visualizing a co-authorship network of scientists working on network theory and experiment. The network contains
1,589 nodes and 2,742 edges.

