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Fig. 1. Ambiguity-Free Edge-Bundling. In the left figure, the graph using straight-line edges has edge ambiguity problem. In the right figure, 
after deploying our ambiguity-free edge-bundling, the graph becomes clear with less edge ambiguity problem. 

 
ABSTRACT 

In this paper, we present an ambiguity-free edge-bundling 

approach for interactively visualizing graph or network data. To 

visualize a large graph or network dataset, the edges used to 

represent the relationship between the nodes are usually very 

dense. Due to the dense edges and huge amount of nodes, the 

graph or network is usually hard to be read or used according to 

the cluttered edge crossing or occlusion. To increase the 

readability and aesthetical niceness of the edge layout while 

decreasing the visual ambiguity, we introduce an ambiguity-free 

edge bundling framework to reduce the visual clutter caused by 

the edges and also improve the user’s perceptual consistency of 

graph or network visualization and the actual data’s relation. In 

our network visualization system, we use an efficient and generic 

quadtree structure that can be applied in conjunction with existing 

graph or network visualization systems. To provide the user an 

easy-to-use interactive user interface, we also introduce a novel 

detail-on-demand concept to make the user to be able to control 

the level-of-details regionally by painting the graph or network.   

Keywords 

Network visualization, graph visualization, edge bundling, curved 

edge, visual clutter, edge aggregation, level of detail, detail on 

demand. 

1. Introduction 
Visualizing network data as a graph is a common and well-known 

approach. A graph typically consists of some nodes and some 

edges connected the nodes to represent the relationship between 

them. The scalability of a graph is a practical concern when 

visualizing the network data. To increase the scale or size of the 

graph implies that more nodes and more edges are added into the 

graph to represent more information of the network data, so the 

graph should have more information either explicitly or implicitly. 

However, due to the limited display space, to increase the scale or 

size of the graph also makes the density of it become much more 

dense, which occurs several critical challenges, since a dense 

graph with a large amount of nodes and edges is usually hard to 

be recognized and used according to the cluttered edge crossing or 

occlusion [7]. 

Drawing the entire network data contained thousands or millions 

of nodes may provide the user an indication of the overview or a 

specific location concept within it, but this also makes it much 

difficult to comprehend further and causes misinterpretation due 

to the cluttered edge crossing or occlusion of the dense graph or 

network [20]. However, since most of the network data have 

small-world characteristics [12, 23, 21], it is possible to cluster 

some nodes and edges with highly connected relationship to 

decrease the density of the graph while still preserving the 

overview of it. Through the level-of-detail approach as that 

provided by many previous methods, the user may perceive the 

details of the network data, but without considering the visual 

clutter, the graph may still be hard to be recognized. 

To increase the readability and aesthetical niceness of the edge 

layout while decreasing the visual ambiguity, we introduce an 

ambiguity free edge-bundling framework in this paper to reduce 
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the visual clutter caused by the edges and also improve the user’s 

perceptual consistency of the graph or network visualization and 

the actual data’s relation. Our target is to improve the graph 

layout for a reasonable graph scale of the network data with small-

world characteristics. 

Some previous graph layout algorithms focused on the node 

placement in order to improve the space utilization, but in our 

observation, most of the visual clutter and relation 

misinterpretation were caused by inappropriate edge layout style. 

The main issues of improper edge layout are as the follows: 

� Dense edge crossings cause most of the visual clutter and 

waste the display space. 

� Edges passing near to the unrelated nodes cause relation 

misinterpretation on visual perception, called as edge 

ambiguity. (Fig. 2(a)) 

� Edges with both of similar gradient and geometrical 

position decrease the recognition ability of individual 

relationships. (Fig. 2(b)) 

Fig. 2 shows some edge ambiguity cases. In Fig. 2(a), the red 

node is too close to the green edge that causes incorrect visual 

perception of additional relationship with the two green nodes. In 

Fig. 2(b), due to the similar edge gradient, it is hard to recognize 

if the green node connects to the blue node or the purple one. 

Although there are some previous edge-bundling methods could 

help to reduce the visual clutter, without considering the actual 

relationship of the nodes, the adjusted graph may still has edge 

ambiguity problem. As shown in Fig. 2(c), although the red and 

green edges are bundled to prevent the visual clutter, the red 

edges are still hard to be recognized as Fig. 2(b) and the green 

edge causes another kind of visual clutter as Fig. 2(a). The visual 

clutter caused by cluttered edges significantly decreases the 

readability of the graph, and more importantly, inappropriate edge 

layout decreases the consistency between the user’s visual 

perception and the actual relation data. In order to make the graph 

or network visualization to convey the information as effectively 

and accurately as possible, a good edge representation is needed.  

 

(a) (b) (c) 

Fig. 2. Some edge ambiguity cases. (a) The red node is too 

close to the green edge that causes incorrect visual perception 

of additional relationship with the two green nodes. (b) 

Comparing to the black-crossing edge-pair, the red-crossing 

edge-pair is harder to discriminate which two nodes are 

connected. (c) Edge bundling without considering the actual 

relationship of the nodes will cause another kind of visually 

ambiguity. 

 

Through our ambiguity-free edge-bundling framework, our 

network visualization system can be used to visualize the middle 

size, unstructured, and small-world graphs with a more aesthetic 

edge layout. Our ambiguity-free edge-bundling framework 

improves the effects that the user can perceive the individual 

relationships represented by the edges more accurately, since the 

edges that have the same target or source nodes are merged and an 

ambiguity-free mechanism is introduced to avoid the edge 

ambiguity problem. Our framework uses a quadtree structure to 

overcome the time complexity issue, so the user can easily interact 

with our graph layout in real-time. To provide the user an easy-to-

use interactive user interface, we also introduce a novel detail-on-

demand concept to make the user to be able to control the level-

of-details regionally by painting the graph or network directly. 

2. Related Work 
Visual clutter in graph or network visualization has been widely 

studied. Many methods have been proposed to alleviate the visual 

clutter when the node and edge densities are increased in the 

graph visualization, since the visual clutter is particularly 

troublesome if the users want to incorporate readability 

considerations in graph layout [16]. A very good survey on 

general visual clutter reduction techniques can be found in [4].  

Existing visual clutter reduction techniques can be categorized 

into three approaches: node adjustment, edge curving, and 

distortion oriented methods. Node adjustment approach 

rearranges the nodes’ positions to minimize the edge density, 

crossing, and occlusion to avoid the content confusion. However, 

this approach cannot adapt well in practical use, since it is quite 

difficult to obtain an appropriate rearrangement with dense edges 

[3, 7]. In addition, it may not be suitable if the nodes’ positions 

have semantic meanings, e.g. the nodes represent the cities on the 

map. Another attractive approach, distortion-oriented methods, 

distorts the nodes’ positions or sizes while still maintaining the 

user’s mental map model [13]. Through these methods, the user 

can interactively use a fish-eye-like tool to enlarge some regional 

areas of the graph or network to check the details of the 

interesting or cluttering areas. Many extensive methods have been 

presented in the fields of information visualization [9, 10, 5, 6], 

human-computer interaction [19, 11], etc. 

The edge curving approach can be divided into two categories: 

edge bundling and edge dispersing. The edge dispersing approach 

disperses the edges away from one local region, so the underlying 

pattern can be revealed. EdgeLens [24] provides the user to 

interactively bend the edges away from one’s focus without 

altering the nodes’ positions, and then further opens up a 

sufficient space to disambiguate the relationship between the 

nodes and edges. Another promising approach to reduce the visual 

clutter is to reduce the excessive edges. Based on visually 

bundling the adjacency edges and preserving more space for 

distinguishing, edge bundling approach merges the edges that 

share the specific criteria. FlowMap Layout [15] proposed by 

Phan et al.has an encouraging result on specific graphs. They use 

hierarchical binary clustering on a set of nodes, positions, and 

flow data, and then route the edges which share the common 

destination into single- or multisource graphs. Hierarchical Edge 

Bundle [8] proposed by Holten is designed for visualizing the 

dataset containing both of adjacency relationship and hierarchical 

structure. To draw the edge linked two leafs, the edge is curved 

according to the path connecting two nodes on the hierarchical 

tree structure, and then it bundles the edges together if these edges 
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share the common path segment on the hierarchical tree. Qu et al. 

[17] proposed a novel edge-clustering method for node-link 

diagram. They cluster the edges together based on the 

intersections with the edges in the Delaunay triangulated mesh of  

nodes, and hence may produce zigzag edges. Cui et al. [2] 

proposed a similar edge clustering method based on the nodes’ 

geometrical information. The significant difference from Qu et al. 

[17] is that they use a uniform grid structure to sample the control 

points, and further generating the control mesh to guide the edge 

curving. However, it aggravates another edge ambiguity problem 

as shown in Fig. 2(c).   

3. System Design and Overview 
While an edge represents the adjacency relationship, it also 

introduces incorrect relationship if the edge was inappropriately 

closed to some unrelated nodes. Fig. 3 illustrates some possible 

edge ambiguity cases in a three-node graph. If we use straight-line 

edges to form the graph as shown in Fig. 3(a), it comes out that 

the middle node seems to have the individual relationships with 

the upper node and the lower one, respectively. However, if we 

use curves to represent the edges, several configurations can be 

revealed as shown in Fig. 3(b) ~ Fig. 3(e). Besides these cases, 

even though the straight-line green edge shown in Fig. 2(a) does 

not actually overlap the red node, it is still difficult to discriminate 

the real connection from the node-edge nearness. Another case is 

that, if two straight-line edges shared no common node but cross 

with each other at an acute angle, it is difficult to rapidly interpret 

which two nodes are connected or not as the red edges shown in 

Fig. 2(b). Acute crossing angles cause more visual confusion 

when rapid visual interpretation is needed [22]. This also happens 

in curved edge layout if two curved-edges were inappropriately 

bundled as the red curved-edges shown in Fig. 2(c). 

 

(a) (b) (c) (d) (e) 

Fig. 3. The ambiguity caused by straight-line edge style. 

When linking the nodes by straight-lines, the graphs shown in 

(b) ~ (e) will all become (a). 

 

Our observation for a good curved-edge layout reveals three 

common characteristics: (1) the curvature of each point on the 

curved-edge should be as small as possible; (2) the curved-edges 

could alleviate the edge ambiguity arising from the straight-line 

edges; (3) merging curved-edges to open up more display space 

without causing further edge ambiguity should be taken into 

consideration. Keeping the curvature of the curved-edge small 

could make the edge smoother and easy to track, and the rest 

characteristics are aimed to reduce the visual clutter caused by 

dense and crossing edges while maintaining the consistency 

between the visual cognition and real data’s relationship. Our 

framework attempts to achieve these characteristics, and also 

provides the user an efficient and real-time curved-edge layout.  

For some applications, the nodes’ positions have semantic 

meanings, such as the geometric information of the cities on a 

map. Hence, in this case, the geometric attributes should be 

retained without noticeable displacement. In other cases, the 

dataset may only contain the adjacency relationship, e.g. social 

network data. In order to make our framework more generic to 

adapt to existing graph layouts and relation dataset, we assume 

that the nodes’ positions in the input graph or network have 

already been decided. If the dataset has no position information in 

advance, a force-based model [1] is first applied to compute the 

initial nodes’ positions. 

 

 

Fig. 4. The system overview. 

 

Fig. 4 illustrates the overview of our system. We use a quadtree 

[18] structure to decompose two dimensional display space 

according to the nodes’ positions in the input graph, and this tree 

data-structure enhances the efficiency in the following steps. Our 

system consists of five major steps: (1) quadtree construction and 

occupying detection (Sec. 4.1), (2) edge ambiguity avoiding (Sec. 

4.2), (3) curved edge bundling (Sec. 4.3), (4) rendering (Sec. 5.1), 

and (5) interaction (Sec. 5.2). The quadtree construction and 

occupying detection step constructs a quadtree structure by using 

the nodes in the input graph and detects each edge in the graph 

that what quadtree cells it passes through. The edge ambiguity 

avoiding step detects if there exists edges passing nearby one or 

more unrelated nodes, and routes these edges away from the 

unrelated nodes in local region. The curved-edge bundling step 

geometrically bundles the edges together while taking the edge 

ambiguity into consideration to open up more space, and further 

enhances the visual discrimination between the related nodes and 

unrelated ones. Finally, the rendering and interaction steps 

provide the final visualization and interactive control for the user. 

4. Ambiguity-Free Edge Bundling 

4.1 Quadtree Construction and Occupying 

Detection 
In order to achieve real-time interaction, an efficient data structure, 

quadtree, is first deployed. Each node of the input graph is first 

inserted into a quadtree structure according to its position. Fig. 



4 

 

5(a) simply illustrates the result after inserting five nodes into a 

quadtree in two dimensional spaces. Here we define two types of 

the quadtree cells: RedCell and GreenCell. A RedCell means that 

it contains exactly one node in its local region, and a GreenCell 

means that it contains nothing and is available for further use. 

Since the width of the RedCell may be too large to waste too 

much space, after inserting the nodes into the quadtree, we further 

subdivide the RedCell to a proper width to release much more 

GreenCells. Fig. 5(b) illustrates the result after conducting the 

subdivision, so the nodes can be put into a RedCell with a proper 

width compared to the original result shown in Fig. 5(a). 

 

(a) (b) 

Fig. 5. Occupying detection with a quadtree structure. (a) The 

original quadtree structure after inserting five nodes. (b) The cells 

occupied by the nodes are subdivided to be a proper width. 

 

After constructing the quadtree cell map, we need to analyze the 

occupied state of each edge in the straight-line style on the cell 

map. If one edge on the cell map occupied only GreenCells, that 

means it potentially does not have edge ambiguity problem. On 

the other hand, if one edge occupied one or more RedCells, the 

edge ambiguity problem may occur in those RedCell regions. The 

basic idea of our approach is that the curved-edge must route and 

bypass the RedCells detected in the straight-line mode. Moreover, 

in each GreenCell on the cell map, we detect what edges pass 

through it, and if two or more passed edges share the common 

nodes, they are bundled together in the local region. The bypass 

and bundle effects are controlled as local as possible, since the 

shortest path from one node to the other one is a straight-line. 

4.2 Edge Ambiguity Avoiding 
As mentioned in Sec. 3, an edge passes inappropriately close to 

some unrelated nodes will cause the edge ambiguity problem and 

further provides incorrect relationship between the nodes. To 

avoid the edge ambiguity, we enforce the curved-edge to bypass 

these nodes. In Sec. 4.1, we have constructed a quadtree cell map 

and detected the cells occupied by each node and edge. If there is 

one RedCell which has already been occupied by a node but still 

passed by one edge, we first calculate the projection point 'P of 

the RedCell’s center P on the edge, and then according to the 

vector 'PP
�����

, we spread out two circular sectors in two directions 

'PP
�����

 and 'P P
�����

for searching the candidates of bypassing 

GreenCells. The central angle θ  and radiuses 
1r  and 

2r  of the 

two circular sectors are determined by Eq. (1). Fig. 6(a) illustrates 

the idea for searching the bypassing GreenCell candidates. 
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where k is a user specified detection range (suggested value: 

1, ...,4), 'l PP=
�����

 is the distance between P and 'P  , and L  

is the width of the occupied RedCell. 

In Sec. 3, we mentioned that one of the characteristics of good 

curved-edge layout is keeping the curvature of each point on the 

curve as small as possible. To achieve this, we calculate all of the 

turning angles of all GreenCell candidates iGC . Each turning 

angle iθ  is formed by the cell center of iGC , preGreenCell, and 

postGreenCell, where the preGreenCell and postGreenCell are 

determined from the list of the GreenCells occupied by the same 

edge according to the projection points of the cell centers on the 

edge. After calculating all of the turning angles of all candidates, 

we select the one which has the maximal turning angle to be our 

bypassing GreenCell. Fig. 6(b) illustrates the idea for determining 

the best candidate for curved-edge bypassing. 

 

(a) (b) 

Fig. 6. Edge-ambiguity avoiding. (a) Searching bypassing 

GreenCell candidates. (b) The best bypassing GreenCell is 

decided by selecting the candidate with the largest turning angle. 

In this example, 3θ  is the best candidate. 

4.3 Curved-Edge Bundling 
In Sec. 3, we mentioned that the visual clutter in most graph 

layouts is caused by dense edges. Hence, we bundle the edges 

together to open up more space for better visual discrimination 

while avoiding information losing or visual confusion after edge 

bundling. To prevent bundled edges losing their information of 

source or target nodes visually, two or more edges can be bundled 

together only if they satisfy the condition that each of them shares 

a common node. This condition guarantees that, even if two edges 

are geometrically close, they will not be bundled together. 

Otherwise, it may generate additional incorrect relationship. Fig. 

2(c) illustrates the additional incorrect relationship between the 

node pairs after bundling the edges without common node 

condition. 
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We use Catmull-Rom spline which has a well local control 

property as our curve model. To curve one edge, we add control 

points to the edge’s spline model and it will guarantee that each 

control point will be hit smoothly. In Sec. 4.2, we have decided 

the bypassing GreenCells, the control points of the bypassing 

GreenCells are calculated as:  

( )( )' r r b bCP P L L L PP= + + + ∗
����

 (2) 

where CP is the control point of the spline, P is the center point 

of the occupied RedCell, 'P  is the projection point of P on the 

edge, bP  is the center point of the bypassing GreenCell, and 

rL and bL Lb are the width of the occupied RedCell and 

bypassing GreenCell, respectively.  

To bundle the edges together, we enforce the edges to pass 

through the specific control points. For every GreenCell that the 

edge passed, we check whether the GreenCell has other passed 

edges that share common nodes with the edge or not. If it does, 

we use Eq. (2) to calculate one control point and add it to the 

edge’s spline model. After calculating all of the control points of 

one edge, we sort these control points according to their 

projection points on the straight-line edge, then the control points 

are aligned in correct sequence for constructing the spline. 

5. Rendering and Interaction 

5.1 Rendering 
In most cases, we cannot avoid the existence of curves’ 

overlapping. In order to make the dense curves as clear as 

possible, we draw the curves with different alpha values. In high 

level of view, it is apparent that long curves occupied larger 

amounts of screen space. In this case, we should draw the long 

curves with a lower opacity than the short curves, and this is also 

a better visualization since the user mostly tries to construct the 

overview of the whole graph in high level of view, in which lower 

drawing opacity of the long curves helps to emphasize the short 

curves and further enlarges the amount of edges that the user 

perceives. On the contrary, in lower level of view of the graph, the 

user now is mostly trying to discriminate the distinct relationship 

between different node pairs. Since a long curve takes more 

cognitive effort to ascertain which two nodes are connected, in 

this case, drawing long curves with higher opacity can help to 

perceive the information quicker. 

 

(a) (b) (c) 

Fig. 7. The level-of-detail control. One region is simplified by 

merging the underlying connected nodes. (a) The original uniform 

graph. (b) After modifying the detail map, the connected nodes in 

one cell are combined if the number of connected nodes is greater 

than a user-specified value. (c) The result after merging the nodes 

further which have been combined already. 

5.2 Interaction 
In our network visualization system, an interactive level-of-detail 

mechanism is also provided to enable a comprehensible 

visualization for dealing with a common small-world issue. Many 

real world relation datasets have the small-world characteristics 

[12], such as social network data, bibliographic reference data, 

software structure data, etc. The small-world characteristics come 

out a high degree of clustering in graph, and make the graph have 

a small average path length comparing to other random graphs of 

the same scale or size. The frequent occurrence of high-degree 

clustering always makes the graph incomprehensible. Hence, we 

use an interactive level-of-detail mechanism that only modifies the 

visual representation of the clustered and small average curve 

length subgraph without losing their underlying relationships 

while providing the user the control of detail-on-demand.  

(a) 

(b) 

Fig. 8. The comparison between the original graph layout with 

small-world characteristics and the result of merging high-

degree clustering nodes. (a) In traditional graph layout, small-

world characteristics make the graph more difficult to 

comprehend. (b) After the user interactively modifying the level-
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of-detail map, it is easier to comprehend the graph within a 

specific level of view. 

In the interaction process, the user can paint a level-of-detail map 

on display space. For example, if the user wants one local region 

to be simpler to provide a higher level of view, he or she can just 

use the mouse cursor to click on that local region to make the 

local level-of-detail map sparser; on the contrary, he or she can 

also make the local level-of-detail map denser if the local details 

are needed. After the level-of-detail map has been modified, our 

system checks each cell on the level-of-detail map to meet our 

detail criterion. If one cell contains more than a specific number 

of connected nodes, we will combine those connected nodes into 

a larger parent node, apply a simple graph layout to its child 

nodes, and converge their edges which connect to the nodes 

outside the cell. The connected nodes are defined as the nodes 

which are connected to the others in the same cell.  

Fig. 7(a) and Fig. 7(b) illustrate the idea of the level-of-detail map, 

the user can modify the level-of-detail map and our system will 

further combine the nodes below the same cell. A circular layout 

is used to simplify the subgraph in one parent node, and the parent 

node can also be combined by the higher-level parent node if it 

meets the detail criteria under one cell. Fig. 7(c) illustrates the 

result that the nodes are combined multiply. Moreover, if the user 

wants to visualize the details of the combined nodes later, it can 

be done by modifying the level-of-detail map in the specific 

region, and our system will check whether there exists a parent 

node that occupied more than one cell in the level-of- detail map, 

and then release the combined nodes for one combined level. We 

can also use this method to alleviate the visual clutter caused by 

small-world characteristics. Fig.8(b) illustrates that it is easier to 

comprehend the modified representation of graph comparing with 

the original one shown in Fig.8(a) with several high-degree 

clustering nodes. 

In each interaction step, we also use a quadtree data-structure to 

partition our display space and analyze the nodes deployment. It 

demonstrated high performance with the scale of hundreds of 

nodes and force-based layout. It can provide real-time interaction 

by using a desktop PC with a Intel Core-2 1.66 GHz CPU and 

2GB memory. 

6. Result and Discussion 
Fig. 9 shows the visualization result of an academic social 

network in Taiwan which contains 2,450 professors as the nodes 

and 2,622 co-advise relationship as the edges. If we use straight-

line edges to visualize this graph which has the small-world 

characteristics, it is hard to comprehend at the first look since 

there are a lot of edge-node over-passing. After bundling the 

edges together while considering the edge ambiguity, it is easier 

to get the real connection between the nodes without too much 

visual efforts. 

In Fig. 10, a co-authorship network of scientists working on 

network theory and experiment is visualized. The network data 

was provided by [14] which contains 1,589 nodes and 2,742 

edges. The graph has highly local-community property that there 

exists a lot of near completed subgraphs. Hence, we interactively 

combine these communities, and without edge gathering at small 

region, it is easier for learning higher level of view. The user can 

further drill down for more details, and further release the 

communities on demand. 

In Sec. 4.1, we subdivided the RedCell to make the cell width as 

small as possible to release much more GreenCells. In our 

observation, if the cell width is too small, the edge-bundling 

mechanism will produce a frequent-turning curve layout, as know 

as zigzag curve. The zigzag curves will cause the visual clutter in 

which it is difficult to perceive the connection between two nodes. 

On the contrary, if the cell width is too large, the edge ambiguity 

avoiding mechanism might take less effect due to the missing of 

bypassing cell detection. In our experiment, the maximum cell 

width 'L  should be decided with consideration of both the node 

amount on the display and the area of the display space, which 

can be formulated as the following equation: 

( )' / 4L O A N=  

where A is the area of available display space and N is the 

number of nodes. In some cases, the average node width would be 

greater than the suggested maximum cell width, which means the 

probability of the curved-edges passing near the nodes’ bound 

might be high. In this case, our edge ambiguity avoiding 

mechanism will not work well due to the insufficiency of 

available display space. However, in general cases, the suggested 

maximum cell width is larger than the average node width in 

which our edge ambiguity avoiding mechanism performs well. 

7. Conclusion and Future Work 
Graph representation is a common and well-known approach to 

visualize network data. In this paper, we present a generic and 

efficient ambiguity-free edge-bundling method to improve the 

edge layout which plays an important rule to indicate the 

relationship between the nodes. Our contributions can be listed as 

the following: 

� By applying ambiguity-free edge-bundling, it is easier for 

the user to perceive the relationship between the nodes with 

less ambiguity. 

� The user can discriminate between distinct edges with less 

visual loading. 

� No interactive effort is needed. The bundled curved-edge 

layout is automatically generated according to the 

deployment of nodes and edges. 

� A novel detail-on-demand concept is also presented that the 

user can customize the distribution of level-of-details on 

display, a.k.a. level-of-detail map. This concept provides 

more degree of freedom that how deep the user wants to see 

in a specified local region. 

In the future, we will make efforts on improving the proper 

quadtree cell width to adapt to different density of nodes and 

edges locally. By considering the local deploying properties, the 

overall performance of ambiguity-free edge-bundling will be 

better. In addition, in each curved and bundled edge, we can 

further improve the routing algorithm to perform more aesthetic 

curved-edge layout. This might be achieved by extending the 

detection of ambiguity bypassing and deciding the route path 

based on both of bundling and bypassing variables simultaneously. 
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Fig. 9. The result of visualizing an academic social network in Taiwan which contains 2,450 nodes and 2,662 edges. 

 
Fig. 10. The result of visualizing a co-authorship network of scientists working on network theory and experiment. The network contains 
1,589 nodes and 2,742 edges. 


