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ABSTRACT
Speech animation is traditionally considered as important
but tedious work for most applications, especially when tak-
ing lip synchronization (lip-sync) into consideration, because
the muscles on the face are complex and interact dynami-
cally. Although there are several methods proposed to ease
the burden on artists to create facial and speech animation,
almost none are fast and efficient. In this paper, we intro-
duce a framework for synthesizing lip-sync character speech
animation from a given speech sequence and its correspond-
ing text. Starting from training the dominated animeme
models for each kind of phoneme by learning the anima-
tion control signals of the character through an EM-style
optimization approach, and further decomposing the dom-
inated animeme models to the polynomial-fitted animeme
models and corresponding dominance functions while taking
coarticulation into account. Finally, given a novel speech
sequence and its corresponding text, a lip-sync character
speech animation can be synthesized in a very short time
with the dominated animeme models. The synthesized lip-
sync animation can even preserve exaggerated characteris-
tics of the character’s facial geometry. Moreover, since our
method can synthesize an acceptable and robust lip-sync
animation in almost realtime, it can be used for many ap-
plications, such as lip-sync animation prototyping, multilin-
gual animation reproduction, avatar speech, mass animation
production, etc.

1. INTRODUCTION
With the popularity of 3D animation and video games,

facial and speech animations are becoming more important
than ever. Although many technologies have allowed artists
to create high quality character animation, facial and speech
animations are still difficult to sculpt, because the corre-
lation and interaction of the muscles on the face are very
complicated. Some physically-based simulation methods are
provided to approximate the muscles on the face, but the
computational cost is very high. A less flexible but afford-
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able alternative is a performance-driven approach [40, 20,
26], where the motion of an actor is cross-mapped and trans-
ferred to a virtual character (see [32] for further discussion).
This approach gains much success, but the captured per-
formance is difficult to re-use and a new performance is re-
quired each time when creating a new animation or speech
sequence. Manual adjustment is still a popular approach
besides the above two, where artists are requested to adjust
the face model controls frame by frame and compare the
results back and forth.

When creating facial animation, lip synchronization (lip-
sync) speech animation for a character model is more chal-
lenging, which requires much more labor and accuracy in
timing for millisecond-precise key-framing. Given a spoken
script, the artist has to first match the position of the lips at
their supposed position. The transitions from word to word
or phoneme to phoneme are even more important and need
to be adjusted carefully. As opposed to simple articulated
animation which can be key-framed with linear techniques,
the transitions between lip shapes are non-linear and diffi-
cult to model.

The transitions from phoneme to phoneme, or coarticula-
tion, play a major role in facial and speech animation [30,
15]. Coarticulation is the phenomenon where a phoneme
can influence the mouth shape of the previous and next
phonemes. In other words, the mouth shape depends not
only just on the current phoneme itself but also on its con-
text including at least the previous and next phonemes. Fre-
quently this happens when a vowel influences a preceding
or succeding consonant. Some previous methods have tried
to model coarticulation using a strong mathematical frame-
work, or to reduce it to a simpler version, but they are how-
ever complicated or insufficient to produce a faithful model.

In this paper, a framework is proposed to synthesize a lip-
sync character speech animation from a given novel speech
sequence and its corresponding text by generating anima-
tion control signals from the pre-trained dominated ani-
meme models, which are obtained by learning the speech-
to-animation control signals (e.g., the character controls used
in Maya or similar modeling tools) with sub-phoneme accu-
racy for capturing coarticulation faithfully, and further de-
composed to the polynomial-fitted animeme models and cor-
responding dominance functions according to the phonemes
through an EM-style optimization approach. Rather than
using absolute lip shapes for training as some previous work,
the speech-to-animation control signals are used for better
training/synthesis results and animation pipeline integra-
tion. Moreover, once there is no well-adjusted speech-to-



animation control signal, we also provide a method to cross-
map captured lip motion to the character, which can be the
lip-tracking result from a speech video or a 3D lip motion
captured by a motion capture device.
In the synthesis phase, given a novel speech sequence and

its corresponding text, the dominated animeme mod-
els are composed to generate the speech-to-animation con-
trol signals automatically to synthesize a lip-sync charac-
ter speech animation. This process only takes a very short
time and can preserve the character’s exaggerated charac-
teristics. Since the synthesized speech-to-animation control
signals can be used in Maya or similar modeling tools di-
rectly, our framework can be integrated into existing anima-
tion production pipelines easily. Moreover, since our method
can synthesize an acceptable and robust lip-sync animation
in almost realtime, it can be used in many applications for
which prior techniques are too slow, such as lip-sync an-
imation prototyping, multilingual animation reproduction,
avatar speech, mass animation production, etc.

2. RELATED WORK
Face modeling and facial/speech animation generation are

broad topics in computer graphics; [15, 30, 32] provide a
good survey. In this section, we separate the face modeling
and specific modeling for lips in the discussion.

2.1 Facial Animation and Modeling
Most facial animation and modeling methods can be cat-

egorized into parameterized/blend-shape, physically-based,
data-driven, and machine-learning approaches. For parameterized/blend-
shape modeling, faces are parameterized into controls; the
synthesis is done manually or automatically via control ad-
justment. Previous work on linear blend-shape [17, 31, 4],
face capturing/manipulation (FaceIK) [41], and face cloning/cross-
mapping [29, 33, 6, 28, 36] provided a fundamental guideline
for many extensions, however, the limitation of the underly-
ing mathematical framework causes some problems, e.g., the
faces outside the span of examples or parameters cannot be
realistically synthesized, and the technique requires an ex-
cessive number of examples. There are also some methods
for reducing the interference between the blend-shapes [24]
or enhancing the capabilities of cross-mapping to animate
the face models [13].
Physically-based methods simulate the muscles on the face,

and the underlying interaction forms the subtle motion on
the muscles. Previous methods [8, 34] have gained success
in realism. The advantage of the physically-based meth-
ods over the parameterized/blend-shape ones is extensibil-
ity: the faces can be animated more realistically than other
approaches, and the framework allows for interaction with
objects. The muscle-simulation mathematical framework is,
however, very complicated, and hence the cost for preparing
and animating the 3D faces is higher.
Data-driven methods [14] form a database from a given

very large training data set of faces. Subsequent faces are
generated from searching the database with some constraints
such as minimizing the discontinuity between the frames,
and the path contained in the database forms a newly syn-
thesized facial animation. The data-driven methods have to
deal with missing training data or repetitive occurrence of
the same records.
Machine-learning techniques base their capabilities on the

learned statistical parameters from the training samples.

Previous methods [1, 10, 39, 37] employed various mathe-
matical models and can generate new faces from the learned
statistics while respecting the given sparse observations of
the new data.

2.2 Lip-Sync Speech Animation
Many speech animation methods derive from the facial

animation and modeling techniques. The analysis of the
phonemes under the context of speech-to-face correspon-
dence, a.k.a. the viseme, is the subject of much successful
work. Many previous methods addressed this issue with
spline generation, path-finding, or signal concatenation.

Parameterized/blend-shape techniques [3, 2, 9] for speech
animation are the most popular methods because of their
simplicity. Sifakis et al. [35] presented a physical-based ap-
proach to simulate the speech controls based on their previ-
ous work [34] for muscle activation. This method can inter-
act with objects while simulating, but still, the problem is
the simulation cost. Data-driven approaches [5, 14] form a
graph for searching the given sentences. Like similar data-
driven approaches, they used various techniques, such as
dynamic programming, to optimize the searching process.
Nevertheless they still suffer from missing data or dupli-
cate occurrence. Machine-learning methods [18, 7, 16, 22,
38] learn the statistics for phoneme-to-animation correspon-
dence, which is called the animeme.

Löfqvist [25] and Cohen and Massaro [11] provided a key
insight to decompose speech animation signal into target val-
ues and dominance functions to model coarticulation. The
dominance functions are sometimes reduced to a diphone or
triphone model [16] for simplicity. The original framework,
however, shows examples such as a time-locked model or
a look-ahead model that are difficult to explain by either
the diphone or triphone model. Their methods are later ex-
tended by Cosi et al. [12] with shape functions and resistance
functions, which are the basic concept for the animeme.
Some recent methods [35, 22, 38] used the concept of ani-
meme, a shape function, to model the sub-viseme signals to
increase the accuracy of phoneme fitting.

Kim and Ko [22] extended [18] by modeling viseme within
a smaller sub-phoneme range with a data-driven approach.
However coarticulation is modeled via a smooth function
in their regularization with parameters found empirically.
Moreover, it has to resolve conflicting and insufficient records
in the training set. Sifakis et al. [35] extended their previ-
ous work [34] to model the muscle control signal spline (the
animeme, or they call it physemes) for each phoneme and
concatenate these splines for words. Their result shows that
each phoneme has various similar spline with slightly dif-
ference due to coarticulation, which is modeled using linear
cross-fade weighting in a diphone or triphone fashion.

Wampler et al. [38] extended the multilinear face model
[37] to derive new lip-shapes for a single face model. Coar-
ticulation is modeled by minimizing the lips’ position and
forces exerted. However, it is usually unnecessary to sample
the face tensor space to produce a single speech segment.
Moreover, the face tensor space also inherits the curse of di-
mensionality, which is also a difficult topic for facial capture.

We learned from many successful advantages of previous
methods and improved the deficiencies inherited from them.
Cross-mapping eases the pain of 3D capture, and statistics
are learned for constructing the animeme models rather than
simply using them for performance-driven animation. The



analysis in a sub-viseme, or so-called animeme, space has
a significant improvement over the viseme analysis. Our
method also decomposes the dominance function from the
animeme model and extends coarticulation beyond a simple
diphone or triphone model.

3. OVERVIEW
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Figure 1: System flowchart.

Figure 1 shows our system flowchart. The system can
be divided into two phases: training (left) and synthesis
(right). In the training phase, the system takes a captured
lip motion as the input, or directly uses the animation con-
trol signals made by animators. If we choose the lip-tracking
result from a speech video or a 3D lip motion captured by
a motion capture device, the data in the vertex domain will
be cross-mapped to the control signal domain first in Sec-
tion 4. Once there exists an acceptable lip-sync character an-
imation, the previous capture and cross-mapping processes
can be omitted, and the speech-to-animation control signal
of the existed artist-sculpted or captured lip-sync character
animation can be used directly.
Then, the speech captured with the lip motion and its

corresponding text are aligned by using SPHINX-II [21] to
obtain the aligned scripts, which contain the phonemes and
their starting time stamps and durations in the speech. The
aligned scripts and animation control signal Ci are used to
construct the dominated animeme models in Section 5
that can be used for future reconstruction and synthesis.
In the synthesis phase, we take a novel speech and its cor-

responding text as the input and use SPHINX-II again to
align the phonemes in the speech, which are used to query
the animemes and dominance functions to compose the ani-
mation control signal C∗ (Section 5). Finally, the animation
control signal C∗ is used to animate the character model in
Maya or similar modeling tools to generate a lip-sync char-
acter speech animation.

4. CROSS-MAPPING
Although our system input is animation control signals,

to ease the efforts for adjusting the character (lip) model, we
also provide a method to cross-map the captured lip motion

to the animation control signals. After the lip motion is
captured, the key-lip-shapes Lk are identified first, which
can be pointed out by the artist or by using an unsupervised
clustering algorithm, affinity propagation [19]. The key-lip-
shapes Lk are then used to fit the captured lip motion Li

for each frame i by using the Non-Negative Least Square
(NNLS) algorithm [23] to obtain the blending coefficients αi

k.
This process can be expressed as the following constrained
minimization:

min ‖Li −
K
∑

k=1

αi
kLk‖

2, ∀αi
k ≥ 0,

where K is the number of identified key-lip-shapes. The
above clustering and fitting process for the captured lip mo-
tion needs to be performed only once. If the target character
model has some well-defined bases, it is better to assign the
key-lip-shapes to the bases manually, since the blending co-
efficients αi

k can be used as the control signals Ci directly
without further processing.

To cross-map the input captured lip motion to the target
character model (the Character Face Model with Controls
in Figure 1), the identified key-lip-shapes Lk are first used
to guide the artist to adjust the vertices V on the lips of
the target character model to imitate the key-lip-shapes Lk

while keeping the character’s characteristics. The number
of adjusted vertices should be equal to or more than that
of character controls C (i.e., ‖V‖ ≥ ‖C‖) for solving the
constrained minimization in the next paragraph. Then, the
blending coefficients αi

k are used to blend the adjusted lip
vertices Vk for key-lip-shapes Lk to obtain the lip vertices
Vi for each frame i via

Vi =
K
∑

k=1

αi
kVk.

Instead of using the lip vertices Vi for training, for better
training/synthesis results and animation pipeline integra-
tion, the training and synthesizing are performing on charac-
ter controls. Hence, the NNLS algorithm is then used again
to obtain the animation control signal Ci for each frame i by
fitting the lip vertices Vi as the constrained minimization:
min ‖Vi − VCi‖2, where VCi denotes the same lip vertex
set V deformed by the animation control signal Ci and each
character control in Ci is constrained to 0∼1.

5. DOMINATED ANIMEME MODEL
To animate the character (face) model from a given script

(phonemes) as shown in Figure 1, it is necessary to learn the
relationship between the phonemes and the animation con-
trol signal Ci cross-mapped from the captured lip motion,
which called animeme that means the animation represen-
tation of the phoneme. However, due to coarticulation, it
is hard to model the animeme by a simple function, so we
model the animation control signal Ci as a convolution of
two functions: one is the function to fit the animeme, and
the other is its dominance function.

Given an animation control signal Ci and its correspond-
ing phoneme sequence (the aligned scripts in Figure 1), the
signal can be treated as the summation of the animemes
modulated by their dominance functions, which are corre-
sponded with the given phoneme sequence. In mathemati-
cal formulation, the animation control signal Ci can be de-



scribed as:

Ci =
J
∑

j=1

Dj(i)Aj(i), (1)

where j = 1, 2, ..., J is the j-th phoneme in the given phoneme
sequence, Aj(t) and Dj(t) are the function forms of the ani-
meme and its dominance function of the j-th phoneme. Note
that the phonemes farther away from the current phoneme
may have very little contribution to it. In other words, the
influence of modulating dominance functions far from it is
relatively small. Hence, our goal is to construct and model
the animeme Aj(t) and its dominance function Dj(t) for
each phoneme j in the training phase. In the synthesizing
phase, Eq. 1 can also be used to generate the animation con-
trol signal C∗ = Ci for each time step i by a given phoneme
sequence, which can be used to animate the target character
model in Maya or similar modeling tools.

5.1 Animeme Modeling
To solve Eq. 1 for simultaneously obtaining the animeme

Aj(t) and its dominance function Dj(t) for the phoneme
j is difficult. Hence, we first assume that the dominance
function Dj(t) is known and fixed as Di

j and each phoneme
appears in the phoneme sequence exactly only once.
The animeme Aj(t) is modeled as a polynomial function,

so the problem of modeling it is reduced to find the polyno-
mial coefficients a0

j , a
1
j , ..., a

M
j for the animeme Aj(t) as:

Ci =
J
∑

j=1

Di
j

[

M
∑

m=0

am
j (tij)

m

]

, (2)

where sj , dj are the starting time stamp and the duration
of j-th phoneme, and tij = (i− sj)/dj in order to normalize
the duration of the phoneme. In our experiment, we use
M = 4. Since we want to find the coefficients a0

j , a
1
j , ..., a

M
j

for each phoneme j, in a regression manner, we can set the
partial derivative of regression error R with respect to the
m-th coefficient am

j from j-th phoneme to zero. The least
square fitting for regression is:

fi = Ci −
J
∑

j=1

Di
j

[

M
∑

m=0

am
j (tij)

m

]

R = FTF =
n
∑

i=0

(

Ci −
J
∑

j=1

Di
j

[

M
∑

m=0

am
j (tij)

m

])2

, (3)

where F is the column-concatenated vector form for each
element fi. Since the unknowns am

j are linear in F, the
problem is essentially a linear least-square fitting.
By setting all partial derivatives to zero and arranging

Eq. 3, we can obtain the following matrix representation:

D =











D1
1 D1

1t
1
1 · · · D1

1(t
1
1)

M · · · D1
J · · · D1

J(t
1
J)

M

D2
1 D2

1t
2
1 · · · D2

1(t
2
1)

M · · · D2
J · · · D2

J(t
2
J)

M

...
...

. . .
... · · ·

...
. . .

...
Dn

1 Dn
1 t

n
1 · · · Dn

1 (t
n
1 )

M · · · Dn
J · · · Dn

J (t
n
J)

M











A =
[

a0
1 a1

1 · · · aM
1 · · · a0

J · · · aM
J

]T

C =
[

C0 C1 C2 · · · Cn
]T

,

where D is the dominance matrix, A is the coefficient vector
we want to solve, andC is the observed values at each time i,
so the minimum error to the regression fitting can be written
in the standard normal equation with the following matrix
form:

(DTD)A = DTC, (4)

where D is an n× (M × J) matrix, C is an n vector, and A
is an M × J vector to be solved. Since D is a dense matrix,
if we remove the assumption that each phoneme appears
exactly once, J can be very large and makes the matrix D
very huge. Furthermore, because multiple occurrence of a
phoneme has to be fitted to the same value, we can arrange
the multiple occurring terms and make it easier to solve. For
example, if phoneme 1 appears twice as the first and third
phonemes in the phoneme sequence, Eq. 2 becomes:

Ci = Di
11
A11(t

i
11
) +Di

2A2(t
i
2) +Di

12
A12(t

i
12
) + ...

=
[

Di
11

+Di
12

]

a0
1 +

[

Di
11
(ti11) +Di

12
(ti12)

]

a1
1 + ...

+ Di
2a

0
2 +Di

2a
1
2(t

i
2) +Di

2a
2
2(t

i
2)

2 + ..., (5)

where 11 and 12 means the first and second times the phoneme
1 appeared. Note that the polynomial coefficients am

j of the
animeme Aj(t) are the same and independent to the occur-
rence. By the above re-arrangement, we can remove the
original assumption that each phoneme can appear exactly
only once, and rewrite the original entries in matrix D with
the summation of each occurrence h of the same phoneme j
as:

Di
j(t

i
j)

m ⇒
∑

h

Di
jh
(tijh)

m, (6)

where jh denotes the h-th time occurrence of the phoneme
j.

5.2 Dominance Function
In the previous section, we were assuming that the dom-

inance function Dj(t) of j-th phoneme is known and fixed
to estimate the animeme Aj(t). In this section, we describe
how to optimize the dominance function Dj(t) over the re-
gression, given that the animeme is known and fixed as Ai

j .
Some previous literatures [25, 16] described the dominance

function as a bell-shape function. Extending [11], our domi-
nance function Dj(t) is basically modeled by an exponential
function with a Gaussian form. That means, closer to the
middle of the phoneme, the dominance function affects the
lip shape for its own period, while it also simulates the influ-
ence for the previous and next phonemes if the frame moves
toward to its tail. However, if we model the dominance func-
tion Dj(t) with just a Gaussian form, it may also affect the
previous and/or next phonemes strongly.

Hence, the dominance function Dj(t) is modeled as fol-
lows:

Dj(t) =















exp

{

−
(

t−µj

dj×σ1j+ε

)2
}

, |t− µj | <
dj
2
,

exp

{

−
(

t−tb
dj×σ2j+ε

+
tb−µj

dj×σ1j+ε

)2
}

, otherwise,
(7)

where µj and dj are the center and the duration of the
phoneme j in a specific instance of occurrence that is given
by the phoneme sequence, tb = µj ± dj/2 is the starting or
ending time stamp of the phoneme j, ε is a small constant
to prevent dividing by zero, and σ1j and σ2j are the influ-
ence controls which are the unknowns we want to solve. The



first Gaussian form with σ1j stands for the level of keeping
the current phoneme’s own shape, and the other Gaussian
form with σ2j represents the level to affect the neighboring
phonemes.
Here, we want to solve the regression (Eq. 3) again as we

did in the previous section. However, since the parameters
σ1j and σ2j for regression are not linear, it requires more
sophisticated solver and standard Gauss-Newton iterative
solver [27] is used to approach the minimum of regression
error R. As we defined the residual error in the previous
section, the Gauss-Newton algorithm linearizes the residual
error as:

fi = Ci −
J
∑

j=1

Dj(t
i)Ai

j

F(σj + δ) ≈ F(σj) + Jδ, (8)

where ti = i, F is formed by fi but takes the influence
control σj ∈ {σ1j , σ2j} for j-th phoneme as the input, δ
is the updating step for gradient direction of the Gauss-
Newton solver, and J is the Jacobian matrix. Each iteration
of Gauss-Newton algorithm solves a linearized problem to
Eq. 3, and after removing terms that are not dependent on
δ, we get the following:

JT J δ = −JT F

σk+1

j = σk
j + δ. (9)

The Gauss-Newton algorithm repeatedly optimizes the re-
gression error by updating δ to σk

j ∈ {σk
1j , σ

k
2j} at the k-th

iteration, and achieves linear convergence.

5.3 Animeme Construction
In the previous two sections, the estimation of the ani-

meme Aj(t) and the optimization of the dominance function
Dj(t) are described over the regression. Since the entire for-
mulation is not linear and cannot be solved intuitively, we
employed an EM-style strategy that iterates between the es-
timation of the animeme Aj(t) and the optimization of the
dominance function Dj(t).

• The E-step involves estimating the polynomial coeffi-
cients am

j for each animeme Aj(t) by solving a linear
regression using standard normal equation.

• The M-step tries minimizing the regression error to
estimate the influence controls σ1j and σ2j by improv-
ing the non-linear dominance function Dj(t).

When the first time solving for E-step, the initial influ-
ence control parameters σ1j and σ2j involved in Dj(t) are set
to 1. At the M-step, where the Gauss-Newton algorithm
linearizes the function with iteratively updating the influ-
ence controls σ1j and σ2j , all parameters of the polynomial
coefficients am

j are carried from the first half of the iteration.
The EM-style strategy keeps iterating between E-step and
M-step until no more improvement on regression error can
be done. Convergence of optimizing Dj(t) is fast, but the
effect of estimating Aj(t) has more perturbation on σ1j and
σ2j . Generally convergence involves hundreds of iterations,
the process is, however, off-line computation in the training
phase.

Table 1: The models used in this paper and the
accompanying video.

model vertex# face# control#
fat woman 5,234 5,075 7
boy 6,775 6,736 7
old hero 8,883 8,738 8
court lady 1,306 1,307 7

6. RESULT
Figure 2 shows a comparison of the signal fitted by our

dominated animeme model (DAM), Cohen-Massaro model
[11], and the multi-dimensional morphable model (MMM)
[18] with the captured one. Note that the Cohen-Massaro
model is implemented using our dominated animeme model
by setting M = 0 in Eq. 3, i.e., the polynomial form is
changed to only the constant term. The formulation of our
dominance function (Eq. 7) is very similar to the authors’
original form but with the flexible extension that the shapes
of the phonemes can be varied. The reconstruction result
of the Cohen-Massaro model is too smooth at some peaks
of the captured data, such that consecutive phonemes are
greatly influenced, i.e., they span too much. The fitted sig-
nal exhibits low frequency behavior, but the high frequency
features are not as prominent as they should be. In contrast,
our dominated animeme model spans more properly in range
with respect to the training data. The multi-dimensional
morphable model formulates the fitting problem and syn-
thesis as a regulation problem. They fit each phoneme as a
multidimensional Gaussian distribution and form the words
or sentences as a path going through these phoneme re-
gions by minimizing an energy function containing a tar-
get term and a smoothness term. The speech poses using
multi-dimensional morphable model have good timing but
lack prominent features, while our results reach closer to the
peaks of the training data.

The average L2 error norms for our dominated animeme
model (DAM), Cohen-Massaro model, and multi-dimensional
morphable model (MMM) are 0.406, 1.427, and 0.860, re-
spectively. The Cohen-Massaro model produces 251% more
error than our dominated animeme model, and the multi-
dimensional morphable model, though slightly better, still
produces 112% more error. The two kinds of error sources
are: (a) inaccurate and/or imprecise timing; (b) signal strength
is not high enough to be representative. Both errors are im-
portant in modeling coarticulation, but the first one is more
severe, since it can interfere with understanding of the con-
text.

The captured lip motion in the training phase involves 40
sentences, and about 5 minutes of speech context with unbi-
ased content. In most cases, each phoneme occupies about
9∼12 ms., so our training base is sufficient to cover the fit-
ting. In the training phase, constructing the dominated ani-
meme model costs about 50∼60 minutes per control on a
desktop PC with an Intel Core2 Quad Q9400 2.66GHz CPU
and 4GB memory. For synthesizing a lip-sync speech anima-
tion, the animation control signal formed by our dominated
animeme models is generated in realtime. Table 1 shows the
number of vertex, face, and control of each model used in
this paper and the accompanying video, respectively.

Figure 3shows a result of speaking a word - ”homework”.
Different from other performance-driven or data-driven ap-



-0.51

-0.5

-0.49

-0.48

-0.47

-0.46

-0.45

-0.44

0 50 100 150 200 250 300

captureing data Cohen-Massaro MMM DAM

Figure 2: This graph shows a comparison of the signal fitted by Dominated Animeme Model (DAM), Cohen-
Massaro Model, and Multi-dimensional Morphable Model (MMM) with the captured one. The value of
y-axis is one of the coordinate of a feature around lip.

Figure 3: The result of speaking a word - ”homework” and its corresponding phonemes.

proaches, our method is actor and character independent,
so we can use several kinds of characters. Since our dom-
inated animeme model (DAM) and the multi-dimensional
morphable model (MMM) have better signal fitting results
shown in Figure 2, a visual comparison of the two mod-
els is performed as shown in Figure 4 by speaking a word
- ”infringement” using the fat woman model. The close-up
view of the mouth and its corresponding phonemes are also
shown in the figure. By comparing the close-up view of the
mouth, our dominated animeme model can perform better
result than multi-dimensional morphable model, especially
for ′F ′. By extending the phoneme dictionary, our method
can also be used to produce multilingual lip-sync speech an-
imations. Readers should refer to the accompanying video
to see motion dynamics.

7. CONCLUSION AND FUTURE WORK
In this paper, we propose a new framework for synthesiz-

ing a lip-sync character speech animation with a given novel
speech sequence and its corresponding text. Our method
produces fairly nice transitions in time and generates the
animation control parameters that are formed by our domi-
nated animeme model, which is constructed and modeled
from the training data in sub-phoneme accuracy for captur-
ing coarticulation well. Through an EM-style optimization
approach, the dominated animeme model is decomposed to
the polynomial-fitted animeme models and corresponding
dominance functions according to the phonemes. Given a
phoneme sequence, the dominated animeme model is used
to generate the animation control signal to animate the char-

acter model in Maya or similar modeling tools in a very short
time while still keeping the character’s exaggerated charac-
teristics. Moreover, the dominated animeme model is
constructed by the character controls instead of the absolute
lip shapes, so it can perform better training/synthesizing re-
sult and is suitable to be integrated into the existed anima-
tion pipeline.

Even though the quality of the synthesized lip-sync char-
acter speech animation may not be perfect as compared
with that of animation created manually by an artist, the
synthesized animation can still easily be fine-tuned, since
the automatically generated animation control signal is lip-
synchronized and can be used directly in Maya or similar an-
imation tools. Hence, our framework can be integrated into
existed animation production pipelines easily. By extend-
ing the phoneme dictionary, our method can also be used
to produce multilingual lip-sync speech animations easily.
Furthermore, since our method can synthesize an accept-
able and robust lip-sync character animation in almost re-
altime, it can be used for many applications for which prior
methods are inadequate, such as lip-sync animation proto-
typing, multilingual animation reproduction, avatar speech,
mass animation production, etc.

Our model still has some weaknesses, such as that it cur-
rently infers the dynamics of motion solely from the train-
ing data set. If the training data set does not contain
speech similar to the synthesis target, results may be inaccu-
rate. For example, if the training set contains only ordinary
speech, it will be unsuitable for synthesizing a singing char-
acter, because the typical phoneme behavior for song varies



Figure 4: A visual comparison of dominated animeme model (upper) and multi-dimensional morphable model
(lower) by speaking a word - ”infringement”.

greatly from ordinary speech and imposes more challenges
for dynamics modeling.
A second weakness is that in our dominated animeme

model, we used a function of Gaussian form to model the
dominance function. The potential problem is that in song,
certain phonemes may extend indefinitely with dragging sounds.
It is not only difficult for a speech recognizer to identify the
ending time, but also the Gaussian form cannot accommo-
date such effects. One possible solution is to model the dom-
inance function with greater variability and non-symmetric
models.
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[25] A. Löfqvist. Speech Production and Speech Modeling,
chapter Speech as audible gestures, pages 289–322.
Kluwer Academic Print on Demand, 1990.

[26] W.-C. Ma, A. Jones, J.-Y. Chiang, T. Hawkins,
S. Frederiksen, P. Peers, M. Vukovic, M. Ouhyoung,
and P. Debevec. Facial performance synthesis using
deformation-driven polynomial displacement maps.
ACM Transactions on Graphics, 27(5):1–10, 2008.
(SIGGRAPH Asia 2008 Conference Proceedings).

[27] K. Madsen, H. B. Nielsen, and O. Tingleff. Methods
for non-linear least squares problems. Technical
report, Technical University of Denmark, 2004.

[28] K. Na and M. Jung. Hierarchical retargetting of fine
facial motions. Computer Graphics Forum,
23(3):687–695, 2004. (Eurographics 2004 Conference
Proceedings).

[29] J.-Y. Noh and U. Neumann. Expression cloning. In
ACM SIGGRAPH 2001 Conference Proceedings, pages
277–288, 2001.

[30] F. I. Parke and K. Waters. Computer Facial
Animation, 2nd Ed. AK Peters, 2008.

[31] F. Pighin, J. Hecker, D. Lischinski, R. Szeliski, and
D. H. Salesin. Synthesizing realistic facial expressions
from photographs. In ACM SIGGRAPH 1998
Conference Proceedings, pages 75–84, 1998.

[32] F. Pighin and J. P. Lewis. Performance-driven facial
animation: Introduction. In ACM SIGGRAPH 2006
Conference Course Notes, 2006.

[33] H. Pyun, Y. Kim, W. Chae, H. W. Kang, and S. Y.

Shin. An example-based approach for facial expression
cloning. In Proceedings of the 2003 ACM
SIGGRAPH/Eurographics Symposium on Computer
Animation, pages 167–176, 2003.

[34] E. Sifakis, I. Neverov, and R. Fedkiw. Automatic
determination of facial muscle activations from sparse
motion capture marker data. ACM Transactions on
Graphics, 24(3):417–425, 2005. (SIGGRAPH 2005
Conference Proceedings).

[35] E. Sifakis, A. Selle, A. Robinson-Mosher, and
R. Fedkiw. Simulating speech with a physics-based
facial muscle model. In Proceedings of the 2006 ACM
SIGGRAPH/Eurographics Symposium on Computer
Animation, pages 261–270, 2006.

[36] R. W. Sumner and J. Popović. Deformation transfer
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