
三維角色模型之SD風格轉換技術

沈亮岑∗ 羅聖傑∗ 黃群凱∗ 陳炳宇†

國立臺灣大學
∗{olga, forestking, chinkyell}@cmlab.csie.ntu.edu.tw †robin@ntu.edu.tw

ABSTRACT
SD（super-deformed）源於日本漫畫與動畫， 是一種誇張化
角色使其看起來更為可愛的特殊風格。 SD風格化的角色常
被廣泛地應用於各個領域之中， 並常見於許多動畫或是遊戲
裡。 然而， 創造一個SD風格化的三維角色模型常需要專業
技術與大量的時間及功夫。 本論文提出一個將一般的三維角
色模型轉換成具有SD風格的三維角色模型的技術。 我們觀察
到一些SD風格的特性， 並且根據這些特性推導出能量函式並
予以最佳化。 使用者也可以給定一些與身體比例有關的參數
與強化角色特徵來客製化角色。 透過我們的技術， 即使是剛
接觸我們技術的使用者也可以在很短的時間之內創造出一個
視覺上令人感到滿意的SD風格化結果。

Categories and Subject Descriptors
I.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling—Curve, surface, solid, and object repre-
sentations

General Terms
Algorithms

Keywords
SD風格化、三維角色模型、變形、風格轉換

1. INTRODUCTION
Super-deformed, a.k.a. SD or Chibi, is a specific style of
Japanese manga and anime art which exaggerates charac-
ters in the goal of appearing cute and funny. The SD charac-
ters are usually drawn or designed in distorted body propor-
tions to resemble small babies, typically with chubby bod-
ies, stubby limbs and oversized heads. The SD style can be
seen everywhere in Japanese culture, from anime, manga to
advertising. In many video games and CG movies, the char-
acters are sometimes designed in SD style for comedic effect.
The SD style is also applied to manufacture character fig-
ures and some organizations’ mascots. Therefore, designing
a super-deformed counterpart (i.e., SD style) of a normal

character model is a common and important task for visual
artists and graphic designers.

Although the SD style is not clearly defined, it often con-
sists of a number of characteristics. First, the head length
(and also width) of an SD character is normally one-half to
one-third of the character’s height. In contrast, the average
proportion of an adult is about one-seventh. Second, the SD
characters lack of the details of their normal counterparts.
That is, the details such as folds on a jacket are ignored, and
general shapes are favoured. Third, the signature character-
istics are emphasized on the SD version to make them much
more prominent. In fact, creating an SD model usually takes
a professional graphic designers considerable time and effort
to carefully study the character and employ a bunch of edit-
ing operations in order to achieve a visually pleasing result.
In addition, the editing process usually requires a spatially-
varying deformation through all the body parts rather than
a simple scaling. The time-consuming editing process can-
not be reused for alternative design tasks. As a result, the
creation of an SD character model is challenging.

In this thesis, we present a novel technique that gives users
the ability to semi-automatically create an SD version of a
normal 3D character model. Our approach uses an optimiza-
tion guided by some constraints based on the characteristics
of the SD style. A model can be customized by specifying
a small set of parameters related to the body proportions
and the emphasis of the signature characteristics. In addi-
tion, a user can annotate a model by marking a number of
vertices to indicate the signature characteristics. To achieve
this, our system first embeds a predefined skeleton topology
into a given model. Based on the skeleton, the model is
deformed through an optimization such that the body pro-
portions satisfy the user-specified parameters, the details are
smoothed details, and the user-specified signature character-
istics are emphasized. We constraint the body proportions
in the range to satisfy the SD style properties, and thus it
provides an intuitive and simple manner for users to cre-
ate an SD model. Although it requires some interaction, in
practice we have found it relatively efficient and simple to
create an SD model with our technique. Furthermore, our
technique can achieve visually pleasing results in seconds,
it allows users to interactively and iteratively customize the
SD models.

The primary contribution in this thesis is an optimization
approach for creating an SD model of a normal character

Figure 1: The SD models generated with our method. Upper row: the input models. Lower row: the SD
style results. The models form left to right: baseball cap boy, wolf, Milton, dragon, dog, and lion.

that respects the user-specified parameters and constraints
while minimizing a set of energy terms that model the char-
acteristics of the SD style. We demonstrate the effectiveness
of this approach with a number of results.

2. RELATED WORK
Mesh deformation. High quality mesh deformation is be-
coming a prominent field in geometric modeling and com-
puter graphics. In recent years, many shape deformation
techniques have been introduced. Surface-based deforma-
tion techniques [1, 14, 20, 27, 30] regard mesh deformation
as an energy minimization problem. Laplacian coordinate
constraints are often used to preserve mesh details and ma-
nipulate mesh deformation [1, 20, 27]. Huang et al. [14] en-
ables the volume and skeleton constrains. Detail preserva-
tion can be achieved by multi-resolution techniques [4]. It
first decomposes a mesh into a low frequency mesh and high
frequency details, and then manipulates the low frequency
mesh only while adding the details back for showing final
results. In skeleton-based deformation techniques, linear-
blend skinning (LBS) [18, 22] is a standard technique for
character animation. A skeleton is embedded into a target
mesh, and the transformations of each bone are assigned by
animators. The deformed mesh is then obtained by linearly
blending the bones’ transformations.

Geometry processing. Our technique operates on mesh
geometry to produce SD models. Many existing geometry
processing methods relate to our technique, such as mesh
simplification and mesh smoothing. Mesh simplification is
used to reduce the number of vertices and faces of an orig-
inal mesh while approximating the original shape [6, 9, 19,
21]. Mesh smoothing is a common used technique to reduce
the geometry details, and also can be adopted to enhance
the geometry features. Laplacian smoothing is the simplest
method for mesh smoothing, which smooths the mesh ge-
ometry by relocating every vertex to the average position
of its neighbors [11]. Shontz and Vavasis [26] further im-
proved the results by applying weighted Laplacian. Baker [2]
tries to preserve the surface features by estimating normals
and principal curvatures. Eigensatz et al. [10] proposed a
curvature-domain technique to edit the geometry. Although
these geometry processing techniques are powerful for sur-
face editing, they cannot be trivially applied to transfer the
semantic geometry styles.

Artistic style creation. SD style is a popular artistic
style in cartoon production. In practical, many techniques
have been proposed to produce a specific artistic style. Non-
photorealistic rendering (NPR) techniques are developed to
either render a 3D model to an artistic style 2D image [8,13,
17] or convert an image or video to artistic styles [5,7,24,29].

Several 3D model creation techniques allow users to create
a 3D model with a number of 2D strokes. Igarashi et al. [15]
presented a sketching interface that allows users to create
and manipulate 3D models. Nealen et al. [23] improved the
sketching interface by allowing the user-drawn strokes to
serve as handles for geometry controlling. Gingold et al. [12]
presented a system which allows users to create 3D models
by placing primitives and annotations on a 2D image. An-
other technique takes drawings from different views as input,
and combines them to generate a 2.5D cartoon which can
be used to simulate a rotation in 3D [25].

3. SD STYLIZATION
For stylizing a novel character model to generate an SD
model, an optimization approach is designed with respect
to a number of user-specified semantic parameters related
to body proportions, such as

• Head proportion (ρH): the ratio of the height of the
character to the head length. Based on the aesthetic
rules of the SD style, this is usually constrained such
that ρH ∈ [1.5, 5].

• Body-to-feet proportion (ρBF): the ratio of the body
length to the feet length. The range ρBF ∈ [0.3, 5]
is usually used in SD style design. By default, we
maintain the original proportion of the input character
model, but we also retain the feasibility for users to
specify it.

• Body-to-head width proportion (δWB): the ratio of the
body width to the head length. Because the head of
a SD character model is usually bigger than its body,
we constraint its range in [0.3, 1].

In addition, the users can also specify the portion of signa-
ture characteristics by marking a set of vertices. Based on

the user-specified constraints, the embedded skeleton is first
deformed. Then a set of energy functions are developed
based on a careful study of the characteristics of the SD
style, and a weighted least-squares optimization procedure
is adopted to stylize the input model.

In this section, we first describe the definition of the input
character model and the embedded skeleton in Section 3.1.
We then describe the deformation of the embedded skele-
ton with respect to user-specified parameters in Section 3.2.
Finally, the details of the mesh optimization and the en-
ergy formulations based on the deformed skeletal bones are
described in Section 3.3.

3.1 Character Model and Embedded Skeleton
The input to our system is a character model’s triangular
mesh which is represented as M = (V,E) with vertices V
and edges E, where V = {v1,v2, ...vn}, vi ∈ R3 denotes
the vertices’ positions of the input model. N (vi) is used
to denote the one-ring neighbourhoods of vertex vi. Then,
the input model will be stylized to generate a SD model
M′ which has the same connectivity but different geometry
, V′ = {v′1,v′2, ...v′n}, such that the body proportions and
the emphasized signature characteristics can satisfy the user-
specified constraints.

To manipulate a character model, such as human or animal,
professional graphical designers usually tend to adjust its
underlying skeleton. Based on the observation, we define a
number of skeleton templates with different topologies and
embed them into corresponding character models using [3].
Formally, an embedded skeleton is defined as S = (J,B)
with joints J and bones B = {B1, B2, ...Bk}. Each bone is
represented as a line segment Bj = {(1 − t)aj + tbj | t ∈
[0, 1]}, where aj ,bj ∈ J are two joints the bone connects
to. And for each bone, it has bone weight ωBj (v) to ev-
ery vertex v. Corresponding skeletons (e.g., the left upper
arm and the right upper arm) are first refined to the same
length by scaling them to their average length. In order to
achieve semantic adjustment of the character, the bones are
pre-annotated with semantic labels such as head, shoulder,
body, hand, and feet (Figure 2 (a) and (b)). In addition, we
also categorize these bones into two sets manually accord-
ing to their relevance to the character height. In Figure 2
(a) and (b), the bones coloured in red are the set related to
the character height. On the contrary, the bones coloured
in green are not related to the character height. These an-
notations and categories are used to deform the character
model.

3.2 Skeleton Deformation
We observed that body reshaping, such as changing body
height, heavily depends on changing the underlying skeleton.
Therefore, we first deform the skeleton and calculate the tar-
get skeleton S′ = (J′,B′) based on the user-specified param-
eters that are associated with body proportions. Specifically,
the bones annotated as head are fixed, and the remaining
bones are scaled to their target lengths along their original
directions according to the head proportion (ρH), body-to-
feet proportion (ρBF), and body-to-head width proportion
(δWB). Let BB , BS , and BF be the sets of bones annotated
as body, shoulder, and feet, respectively. The deformed joint

Head

Feet Feet

Body

Hand Hand

Shoulder

Head

Feet

Body

Feet Feet

Shoulder

(a) (b)

(c) (d)

Figure 2: The skeleton templates for (a) humans
and (b) quadruped animals with semantic annota-
tions. The skeleton templates of (a) and (b) are
embedded into (c) a human model and (d) a dog
model, respectively.

positions J′ are decided by solving the following equations:
ρH =

L(b′H)+
∑

b′∈BB
L(b′)+

∑
c′∈BF

L(c′)

L(b′
H

)
,

ρBF =
∑

c′∈BB
L(c′)∑

b′∈BF
L(b′) ,

δWB =
∑

b′∈BS
L(b′)

L(b′
H

)
,

(1)

where L(·) refers to the length of a bone, and b′H is the bone
annotated as head.

3.3 Mesh Deformation
After obtaining the deformed skeleton B′ under the user-
specified parameters in the previous section. In this sec-
tion, we introduce our novel SD stylization approach which
reliably deform the input character model to an SD style
model. The deformation of a character body shape requires
the resizing of each body part either along their underlying
skeleton axes (e.g., to increase or decrease height) or along
their orthogonal directions (e.g., to gain or lose weight). As
a result, our technique is based on skeleton-aware model de-
formation which adjusts each body part according to its
corresponding skeletal bones. The deformation process is
formulated as an optimization to compute the optimal de-
formed mesh geometry V′. We then describe the deforma-
tion constraints in details.

3.3.1 Body Proportion Constraint
The body proportion constraint is designed to deform a
model with respect to the deformations of its skeletal bones.
A well-known standard real-time skeleton deformation method

is linear blend skinning (LBS), also called skeletal subspace
deformation [18,22]. Specifically, given a closed mesh M and
its embedded skeleton B, each skeletal bone Bj is assigned
an affine transformation TBj , which are then propagated to
all vertices v on the mesh with linearly blending. Hence, the
skeleton-driven vertices v∗ are computed as

v∗ =
∑

Bj∈B

ωBj (v)TBj (v), (2)

where ωBj (v) is the weight of the bone Bj for the vertex
v. The classic LBS equation works well for animating a
character model. However, to generate an SD model whose
body proportions are usually distorted, the scaling of bones
would result in overly stretching the vertices located beyond
an endpoint of a bone, which has been well described in [16].
Therefore, we adopt a modified LBS function to resolve this
problem.

The transformation of each bone can be decomposed into
translation, scaling, and rotation operators. Because the
deformed skeletal bones obtained from the previous section
do not perform any rotation, the rotation part can be dis-
carded. Hence, the modified equation becomes:

v∗ =
∑

Bj∈B

ωBj (v){aj
′ + (v − aj)+

(v − projBj (v))(Rj − 1) + eBj (v)sBj},
(3)

where aj
′ is the transformed position of the endpoint aj,

sBj = (
||bj

′−aj
′||

||bj−aj||
− 1)(bj − aj) is the stretch vector at bone

Bj , Rj is the ratio of deformed shoulder length to original
shoulder length for all bones exclude the head bone, Rj =
1 for the head bone, ωBj (v) is computed using the heat
equilibrium method presented in [3], and eBj (v) is the end
point weight defined as

eBj (v) =
||projBj

(v)− aj||
||bj − aj||

, (4)

where projBj
(·) refers to the projection of a vertex to its

nearest point on the bone Bj . Notice that the users can
specify and emphasize the signature characteristics by mark-
ing some vertices. This kind of operation can be achieved
by modifying their end point weights eBj (v) (Eq.(4)), and
we will describe this in more details in Section 3.3.4.

Hence, the body proportion energy is formulated by mea-
suring the squared distance between the deformed geometry
v′i ∈ V′ and the skeleton-driven geometry v∗i ∈ V∗ obtained
from Eq.(3) as

Ep =

n∑
i=1

||v′i − v∗i ||2. (5)

3.3.2 Primitive Fitting Constraint
As mentioned before, general shapes such as sphere or cylin-
der are usually used to illustrate SD models. Therefore,
each body part could be resembled by a specific 3D prim-
itive for extreme SD illustration. For example, we can fit
the character’s head to a sphere centred at the midpoint of
the head bone. As shown in Figure 3 (a), we first project
the vertex vi on the sphere to obtain the projected point
pi, and then minimize the distance between them. To avoid

v i
p

i

o

r v k

p
i

v i

proj () v i

proj () v k

p
k

Bj

Bj

r

(a) (b)

Figure 3: Each body part of an SD model could
be fitted to a basic primitive, such as (a) the head
is fitted to a sphere and (b) the limb is fitted to a
capsule shape, respectively.

the vertices which are influenced by other bones exclude the
head bone fitted to the sphere, we set these vertices to the
approximate deformed vertices multiplying associated bone
weights without any modification. Figure 4 illustrates the
relationship between a marked vertex vi and a bone Bj , as
well as the relationship between the deformed vertex v′i and
the deformed bone B′j . Specifically, denote by projBj

(vi)

the projection of the vertex vi to its nearest point on the
bone Bj , we define tBj (vi) as the parameter of projBj

(vi)

in the parametric representation of the bone Bj . That is,
projBj

(v) = aj + (bj − aj)tBj (vi). The deformed vertex

position of head primitive fitting is

pi = ωBHeadv)

{
a′j + (o− aj) + (vi − o)

r

||vi − o||

}
+∑

Bj 6=BHead

ωBj (v)
{

a′j + tBj (v)(b′j − a′j) +Rj(v − projBj
(v))

}
,

(6)
where Rj is the ratio of deformed shoulder length to orig-
inal shoulder length for all bones exclude the head bone
and Rj = 1 for the head bone. And o and r refer to
the center and radius of the sphere, respectively. The ra-
dius r can be found using least square fitting and yield

1∑n
i=1 ωBHead

(vi)

∑n
i=1 ωBHead(vi)||vi − o||. Besides, users

are also allowed to provide the sphere radius for customiza-
tion. Then, the energy function is defined as

EfH =

nH∑
i=1

||v′i − pi||2, (7)

where nH is the number of vertices whose ωBHead(vi) > 0.

The limbs of a character are fitted to a capsule shape as
illustrated in Figure 3 (b). We connect each vertex vi to
its nearest point projBj

(vi) on the bone Bj and find the in-

tersected point on the capsule surface, and then translate it
according to the relationship of original and deformed skele-
ton then get point

pi =
∑

Bj∈B

ωBj (v)
{

a′j + tBj (v)(b′j − a′j) +RjJj(v)(v − projBj
(v))

}
,

(8)
where Jj(v) =

rj
||vi−projBj

(vi)||
for Bj ∈ BL, Jj(v) = 1 for

B j

v i

a j

b j

proj () v i Bj

t ()
Bj

v i

B j

a j

b j

proj () Bj

v i '

v i '

'

'

'

t ()
Bj

v i

(a) (b)

Figure 4: (a) The relationship between a marked
vertex vi and a bone Bj in the original mesh. (b) The
relationship between the deformed marked vertex v′i
and a bone B′j in the deformed mesh.

(a) (b) (c)

Figure 5: The comparison of deforming a character
model (a) without (b) and with (c) the primitive
fitting constraint.

Bj /∈ BL, and BL is the set of bones marked as hand or feet.
The squared distance between vi and pi is minimized as

EfL =

nL∑
i=1

||v′i − pi||2, (9)

where nL is the number of vertices whose ωBj∈BL(vi) > 0.

Figure 5 shows a comparison of the results with and with-
out the head primitive fitting constraint. With the head
primitive fitting constraint (Figure 5 (c)), the head of the
character becomes more circular and cuter than the result
without the constraint (Figure 5 (b)).

3.3.3 Detail Smoothing Constraint
The SD model usually lacks of the details. Therefore, the
detail smoothing constraint is designed to smooth the sur-
face details. Here we operate on the Laplacian coordinates
[27] which uses a set of differentials to describe the mesh
geometry. To reduce the details of the geometry, we min-
imize the Laplacian through the mesh surface. Users are
also allowed to specify the important features that should
be preserved by painting on the surface, and the interaction
alters the importances of vertices. Formally, the energy is
defined as

Es =

n∑
i=1

wvi ||v
′
i −

1

|N (v′i)|
∑

v′
j∈N (v′

i)

v′j ||2, (10)

where wvi refers to the importance of the vertex vi, and
N (vi) is the one-ring neighbourhoods of the vertex vi.

3.3.4 Signature Characteristic Constraint

a j b j a j ^ b j

v p
v q

v r

proj () v q Bj

B j

proj () v p Bj
proj () v r Bj

^

Figure 6: The illustration of the end point weight
computation.

The signature characteristics of a character are critical and
should be preserved or emphasized during the deformation.
However, they are usually related to semantic meanings, and
are not easy to be analysed via low-level features. Instead,
our approach allows users to specify the signature charac-
teristics by marking a number of vertices of the mesh, and
emphasize them either along their underlying skeleton axes
or along their orthogonal directions.

Emphasizing along Skeleton Axes. Emphasizing the
characteristics along their underlying skeleton axes results
in the elongation of the body parts, which highly relates to
the scaling factor of the skeletal bones. As discussed in Sec-
tion 3.3.1, the propagation of each bone’s scaling to vertices
can be controlled via the end point weights eBj (v). As a re-
sult, rather than developing a new energy function, we mod-
ify the computation of the end point weights of Eq.(4), such
that the propagation satisfies the user-specified constraints.
Figure 6 illustrates the setup of the end point weight compu-
tation. The red region indicates the user-specified portion to
emphasize along the bone Bj . We first project the marked
vertices whose ωBj (v) > 0 to the bone Bj , and find âj and

b̂j as the nearest points to aj and bj , respectively. For the
bone Bj , if its bone weights for the marked vertices all are

equal to zero, then set âj = b̂j . The end point weight of
each vertex is computed according to its projected point on
the bone Bj , that is, the projected point may locate on aj âj

(the green vertex vq), âjb̂j (the red vertex vp), or b̂jbj (the
blue vertex vr). Formally, we define D1 as the distance be-
tween aj and âj , D2 represents the distance between aj and

b̂j , and D(v) refers to the distance between the projected
point of the vertex v on bone Bj and aj . The modified end
point weight of a vertex v to the bone Bj is then defined as

eBj (v) =


D(v)+||projBj

(v)−âj ||S

||bj−aj ||+||b̂j−âj ||S
, ifD1 6 D(v) 6 D2

D(v)

||bj−aj ||+||b̂j−âj ||S
, ifD(v) < D1

D(v)+||b̂j−âj ||S
||bj−aj ||+||b̂j−âj ||S

, ifD(v) > D2

(11)
where S is the stretch factor provided by the users.

Emphasizing along Skeleton Orthogonal Directions.
Emphasizing the characteristics along the orthogonal direc-
tions of the underlying skeleton axes results in the amplifica-
tion of the body parts. To achieve this, the users can provide
an enlarge factor SE to indicate how much the marked por-
tion should be emphasized, and the factor are used to control
the distance between each marked vertex to the skeleton. We
hope that after the deformation, the deformed vertex vi can

v i

B j
a j b j

Figure 7: The arrows indicate different distances.
The purple arrow is the distance between the maxi-
mum (the blue arrow) and the minimum (the green
arrow) distances from vertices whose ωBj (vi) > 0 in
the marked region to the bone Bj. The yellow arrow
is the distance between the distance from vertex vi

to the bone Bj (the red arrow) and the minimum
distance.

be adjusted according to the user-specified factor SE while
maintaining its parameters to all bones. We can obtain the
deformed vertex position

v̇ =
∑

Bj∈B

ωBj (v){a′j + tBj (v)(b′j − a′j)+

Rj(v − projBj
(v))(SEdj(v) + 1)},

(12)

where Rj is the ratio of deformed shoulder length to origi-
nal shoulder length for all bones exclude the head bone and
Rj = 1 for the head bone. And tBj (vi) which has been de-
fined in Section 3.3.2 is the parameter of projBj

(vi) in the

parametric representation of the bone Bj . For the bone Bj ,
if its bone weights for the marked vertices all are equal to
zero, then set dj(v) = 0, otherwise dj(v) is the ratio of the
distance between the distance of vertex vi from the bone Bj

and the minimum distance to the distance between the max-
imum and the minimum distances which are the minimum
and maximum distances from vertices whose ωBj (vi) > 0
in the marked region to the bone Bj , respectively. Figure 7
shows the distances. Then, the energy function is defined
for the marked vertices as

Ea =

m∑
i=0

||v′i − v̇i||2, (13)

where m is the number of marked vertice, and ωBj (vi) is
the weight of the bone Bj for the vertex vi.

3.3.5 Total Energy and Optimization
The total energy for the deformation is a weighted sum of
the constraint energies defined in the previous sections.

E = wpEp + wfHEfH + wfLEfL + wsEs + waEa. (14)

We visually experimented and examined the SD stylization
results with different relative weights, and found that a wide
range of weights can work well. The weights used to generate
the results demonstrated in this thesis are wp = 1, wfH =
0.3, wfL = 0.2, ws = 10, and wa = 1.

The total energy is a least-square function and is linear, so
it can be optimized with a linear system. We use the partial
differential equation (PDE) for this energy function and put

(a) (b) (c) (d) (e)

Figure 8: Some curly hair girl model results gener-
ated with different head proportion (ρH) and body-
to-head width proportion (δWB). (a) Input model.
(b) ρH = 1.5, δWB = 0.2. (c) ρH = 2, δWB = 0.4. (d)
ρH = 2.5, δWB = 0.55. (e) ρH = 3 and δWB = 0.65.

(a) (b) (c) (d)

Figure 9: Some results generated with different
body-to-feet proportion (ρBF). (a) Input model. (b)
ρBF = 0.3. (c) ρBF = 1. (d) ρBF = 3.

the equation in the 3n by 3n matrix A and the 3n vectors x
and b, and then solve this sparse linear matrix equation with
the TAUCS [28] library. Notice that none of the constraints
should be satisfied absolutely, because any constraint alone
does not illustrate the properties of the SD style completely.
These constraints conflict with each other, so we tend to find
compromised and optimal solutions among them.

4. RESULTS AND DISCUSSION
In this section, we demonstrate the results of our system on
a number of examples. Our system can generate different
models by specifying different parameters such as head pro-
portion (ρH), body-to-feet proportion (ρBF), and body-to-
head width proportion (δWB). Figure 8 demonstrates some
results generated with different ρH and δWB . The head of
the character model would look bigger with lower ρH and
lower δWB . Figure 9 demonstrates some results generated
with different ρBF . The body of the character model would
be longer with higher ρBF .

Our technique also allows users to emphasize signature char-
acteristics by marking some vertices. Figure 10 shows the
emphasis of the giraffe’s neck by stretching it along the bone
axis. The result with emphasis would exaggerate the sig-
nature characteristics of the giraffe. Figure 11 shows the
emphasis of the camel’s hump by enlarging its hump. Our
technique can be used to customize the SD models by pass-
ing above mentioned factors. Figure 12 demonstrates more
SD results generated by our system.

(a) (b) (c)

Figure 10: The emphasis of the giraffe’s neck. (a)
The input model with user-marked portion (red
area). (b) The SD result without emphasis. (c) The
SD result with emphasis (stretch factor is 1.0).

(a) (b) (c)

Figure 11: The emphasis of the camel’s hump. (a)
The input model with user-marked portion (red
area). (b) The SD result without emphasis. (c) The
SD result with emphasis (enlarging factor 0.5).

Performance. We implemented our method with C++
on CPU. Performance reported for a desktop PC which
equipped with an Intel i7 3.50GHz CPU and 16GB RAM.
The optimization time of some cases presented in the thesis
is shown in Table 1. Basically, the processing time is propor-
tional to vertex number, and it usually takes only seconds
to obtain the result.

Limitation and future work. Dependence on skeleton
can be a limitation, because without correctly embedded
skeleton, the constraints will not guide the deformation cor-
rectly. In addition, our method do not consider the texture
coordinates of the input model. Currently, the texture would
be distorted on the SD models. Two research directions are
worthy of future exploration. First, we would like to explore
the method of handling texture coordinates such that the
texture would not be distorted. Second, the combination of
image abstraction techniques and SD texture stylization is

Model Vertex Number Optimization Time

dog 1,480 0.749s
wolf 4,712 2.48s
lion 5,000 2.527s
giraffe 9,239 4.945s
camel 9,757 4.898s
baseball cap boy 13,336 7.852s
armadillo 25,273 16.287s

Table 1: Timing of several models presented in this
thesis.

also important to produce vivid SD results.

5. CONCLUSION
We have presented an optimization-based technique that en-
ables users to semi-automatically create a character model
with the SD style. Our technique supports the customiza-
tion of the stylized result by specifying a small set of seman-
tic parameters that are directly associated with the charac-
ter body proportions. In addition, the users can also mark
the parts with signature characteristics, and emphasize them
to exaggerate the model. The applications of the proposed
technique are manifold. First, it can be used to transfer
an existing CG movie to SD style, which could provide a
new movie watching experience. Second, it can be efficiently
adapted to customize a 3D character in video games for the
players. In addition, it can be used to manufacture the SD
figures of a normal character. As for future work, we further
consider to transfer the texture on a normal character model
to the SD model, which is challenging due to the modifica-
tion of texture coordinates as well as the texture itself.

6. 致謝
本論文感謝國科會經費補助，計畫編號：NSC98-2221-E-
002-140-MY2。

7. REFERENCES
[1] M. Alexa. Differential coordinates for local mesh

morphing and deformation. The Visual Computer,
19(2-3):105–114, 2003.

[2] T. J. Baker. Identification and preservation of surface
features. In Proceedings of 13th International Meshing
Roundtable, pages 299–310, 2004.

[3] I. Baran and J. Popović. Automatic rigging and
animation of 3D characters. ACM Transactions on
Graphics, 26(3):72:1–72:8, 2007.

[4] M. Botsch and L. Kobbelt. Multiresolution surface
representation based on displacement volumes.
Computer Graphics Forum, 22(3):483–492, 2003.

[5] A. Bousseau, F. Neyret, J. Thollot, and D. Salesin.
Video watercolorization using bidirectional texture
advection. ACM Transactions on Graphics, 26(3),
2007.

[6] P. Cignoni, C. Montani, and R. Scopigno. A
comparison of mesh simplification algorithms.
Computers & Graphics, 22:37–54, 1997.

[7] D. DeCarlo and A. Santella. Stylization and
abstraction of photographs. ACM Transactions on
Graphics, 21(3):769–776, 2002.

[8] O. Deussen and T. Strothotte. Computer-generated
pen-and-ink illustration of trees. In ACM SIGGRAPH
2000 Conference Proceedings, pages 13–18, 2000.

[9] S. Dong, S. Kircher, and M. Garland. Harmonic
functions for quadrilateral remeshing of arbitrary
manifolds. Computer Aided Geometric Design,
22(5):392–423, 2005.

[10] M. Eigensatz, R. W. Sumner, and M. Pauly.
Curvature-domain shape processing. Computer
Graphics Forum, 27(2):241–250, 2008.

[11] D. Field. Laplacian smoothing and Delaunay
triangulations. Communications in Applied Numerical
Methods, 4:709–712, 1988.

Figure 12: A number of SD results generated with our technique. The cases are Luigi, Mario, dog2, armadillo,
and odd guy

[12] Y. Gingold, T. Igarashi, and D. Zorin. Structured
annotations for 2D-to-3D modeling. ACM
Transactions on Graphics, 28(5):148:1–148:9, 2009.

[13] S. Grabli, E. Turquin, F. Durand, and F. X. Sillion.
Programmable rendering of line drawing from 3D
scenes. ACM Transactions on Graphics,
29(2):18:1–18:20, 2010.

[14] J. Huang, X. Shi, X. Liu, K. Zhou, L.-Y. Wei, S.-H.
Teng, H. Bao, B. Guo, and H.-Y. Shum. Subspace
gradient domain mesh deformation. ACM
Transactions on Graphics, 25(3):1126–1134, 2006.

[15] T. Igarashi, S. Matsuoka, and H. Tanaka. Teddy: a
sketching interface for 3D freeform design. In ACM
SIGGRAPH 1999 Conference Proceedings, pages
409–416, 1999.

[16] A. Jacobson, I. Baran, J. Popović, and O. Sorkine.
Bounded biharmonic weights for real-time
deformation. ACM Transactions on Graphics,
30(4):78:1–78:8, 2011.

[17] M. A. Kowalski, L. Markosian, J. D. Northrup,
L. Bourdev, R. Barzel, L. S. Holden, and J. F.
Hughes. Art-based rendering of fur, grass, and trees.
In ACM SIGGRAPH 1999 Conference Proceedings,
pages 433–438, 1999.

[18] J. P. Lewis, M. Cordner, and N. Fong. Pose space
deformation: a unified approach to shape interpolation
and skeleton-driven deformation. In ACM SIGGRAPH
2000 Conference Proceedings, pages 165–172, 2000.

[19] P. Lindstrom. Out-of-core simplification of large
polygonal models. In ACM SIGGRAPH 2000
Conference Proceedings, pages 259–262, 2000.

[20] Y. Lipman, O. Sorkine, D. Cohen-Or, D. Levin,
C. Rössl, and H.-P. Seidel. Differential coordinates for
interactive mesh editing. In Proceedings of Shape
Modeling International 2004, pages 181–190, 2004.

[21] D. Luebke, B. Watson, J. D. Cohen, M. Reddy, and

A. Varshney. Level of Detail for 3D Graphics. Elsevier
Science Inc., New York, NY, USA, 2002.

[22] N. Magnenat-Thalmann, R. Laperrière, and
D. Thalmann. Joint-dependent local deformations for
hand animation and object grasping. In Proceedings of
Graphics Interface 1988, pages 26–33, 1988.

[23] A. Nealen, T. Igarashi, O. Sorkine, and M. Alexa.
FiberMesh: designing freeform surfaces with 3D
curves. ACM Transactions on Graphics,
26(3):41:1–41:8, 2007.

[24] Y. Qu, W.-M. Pang, T.-T. Wong, and P.-A. Heng.
Richness-preserving manga screening. ACM
Transactions on Graphics, 27(5):155:1–155:8, 2008.

[25] A. Rivers, T. Igarashi, and F. Durand. 2.5D cartoon
models. ACM Transactions on Graphics, 29:59:1–59:7,
2010.

[26] S. M. Shontz and S. A. Vavasis. A mesh warping
algorithm based on weighted Laplacian smoothing. In
Proceedings of the 12th International Meshing
Roundtable, pages 147–158, 2003.

[27] O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa,
C. Rössl, and H.-P. Seidel. Laplacian surface editing.
In Proceedings of the 2004 Eurographics/ACM
SIGGRAPH Symposium on Geometry Processing,
pages 175–184, 2004.

[28] S. Toledo. Taucs: A library of sparse linear solvers.
http://www.tau.ac.il/ stoledo/taucs/, 2003.

[29] H. Winnemöller, S. C. Olsen, and B. Gooch. Real-time
video abstraction. ACM Transactions on Graphics,
25(3):1221–1226, 2006.

[30] K. Zhou, J. Huang, J. Snyder, X. Liu, H. Bao, B. Guo,
and H.-Y. Shum. Large mesh deformation using the
volumetric graph Laplacian. ACM Transactions on
Graphics, 24(3):496–503, 2005.

