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Figure 1: Our method transferred the lung from (a) a template model to (b) a patient’s model with respect to the lung CT scanning. Note that
our method not only successfully reconstruct the lung shape (c), but also update the surrounding anatomic structure.

Abstract

正確的內部組織結構的人體虛擬模型對於醫學應用而言相當
重要，例如手術模擬、構造分析等，然而，建構一個三維空
間的精準虛擬模型通常需要有經驗的模型師花費大量的時間
與精力來完成。我們在本篇論文提出了一套半自動化的方法
來更有效率的建構之於特定目標的人體模型，我們不只將人
體樣版模型轉換以符合目標外觀，還結合醫學影像使內部器
官組織更加準確定位。我們透過求得Laplacian變形場來變形
我們的樣版模型，而整套流程將能處理不同的人體醫學內部
結構資料如電腦斷層掃描與核磁共振的切片資料。我們呈現
了幾個變形結果，這些結果展示我們的方法在目標區域的準
確度不只是在視覺上有效，而在醫學上也兼顧其內容的正確
性，而我們也透過兩套不同的Error Metrics來評估我們的變形
結果。

1 Introduction

The widespread of the VR/AR devices has ignited the rapid de-
velopment of high quality virtual content for various applications
including entertainment, education, and healthcare. Among them,
the development of surgical simulation has drawn a lot of atten-
tions. The major reason is that surgery was traditionally learnt by
repeated practice on patients. Trainee surgeons were required to
be exposed to innumerable operative cases over many years, with
supervision tailored to their needs. However, the recent changed
of the development of surgical technique [Kneebone and Aggarwal
2009] has led to the situation where the training opportunities are
reduced for young doctors. As a result, in order to provide another
ways of accurate training opportunities, they start to use surgical
simulations to learn the skills.

To better support the skills translation from the surgical simulation
to the real world surgery on patient, it is vital that the simulated
environment has to represent the anatomic environment faithfully.
Before a surgery procedure is taking place, the doctor must collect
the data from the patient, including measuring different body phys-
ical data and taking medical images of the affected region. With the

collected patient data, the doctor can start to plan and practice about
the surgical procedure using either imagination training or simula-
tion software with reconstructed anatomic environment. However,
reconstructing such realistic anatomic environment of the affected
region of human body, i.e., the anatomic model for specific patient,
requires great amounts of time even for professional 3D artists with
anatomy knowledge. Most of the time, the artists use common 3D
modeling tools such as Maya, 3D Max, or Blender to create delicate
surface model with textures. And then they carefully manipulate the
surface model to match the scanned medical images of the patient.
This final step is really important for surgical simulation since the
it provides the details of the affected region (or affected organs).
And the efforts of this step usually takes a great part of the entire
workflow.

To address this issue, we propose a framework for reconstructing
the accurate anatomic model with provided medical imagings. Our
framework takes patient’s medical imagings and body statistics,
with a manually built surface-based anatomic model, and gener-
ate accurate anatomic model for doctors to practice the surgery in
a realistic environment. Our method is based on Anatomy Trans-
fer [Dicko et al. 2013], but focus on accurately reconstructing the
affected region instead of an visual pleasing full body anatomy
transfer.

Our method start from reconstructing the human shape using the
human body statistics, including height, weight, waistline, bust, and
so on. We use a deformable shape software [The MakeHuman team
] to generate a human body that fits the body statistics of the patient.
In order to search for the right parameters for reconstructing the
human body, we use Bayesian Optimization [Brochu et al. 2010]
to efficiently search the parameter spaces. Our method then first
follow Anatomy Transfer [Dicko et al. 2013] to perform the first
step anatomy transfer. However, the transfered anatomy is usually
very different from the patient’s situation. The the major challenge
of our method, is that how to further improve the accuracy of the
reconstructed anatomy model that can faithfully match the patient’s
body.



Our framework provides a semi-automatic approach to address this.
We first identified the organs in the affected region, and provides a
semi-automatic way to find the correspondences between the trans-
fered model of the organ and the reconstructed organ shape from
the patient’s scanned data. Once we obtain the correspondences,
we can then deform the organ model into the shape to match the
patient’s scanned data. As the final step, we reconstruct the entire
anatomy models with the affected organs as constraints. The fi-
nal reconstructed anatomic model is accurate in the affected region,
with the other parts are still visually appealing.

2 Related works

Ali-Hamadi et al. [Dicko et al. 2013] proposed a anatomy transfer
method to create a plausible appearance in inner anatomy system
using a template model. They consider fat tissue as an outside layer
to be shrinking using a fat distribute map. This process can han-
dle irregular skin bumps like a tumor or different shape between
the target and source model. However, they only target on the sur-
face information and simple fat distribution during the registering
process. This leads to non-medical-correct result that below the in-
tegumentary system. The major difference of our method, is that in
order to provide accurate anatomic model reconstruction around the
affected region, we take the medical imaging reconstructed volume
data into consideration. Saito et al. [Saito et al. 2015] proposed an-
other method based on biology growing pattern, with growing of
skeletal muscles and subcutaneous fat using physics-based models.
The method provides the ability to control the desired shape by ma-
nipulating the parameter used for growing pattern. This method
is suitable for musculoskeletal modeling, however, they cannot
growth inner organs due to the high complexity of the physic sim-
ulation process. And the subject parameter search is not intuitive
and requires a lot of user’s efforts.

Arnold et al. [Arnold et al. 2000] creates subject specific biome-
chanical musculoskeletal models from MR sequences for the pre-
cise surface model in muscle motion status. They utilize the ac-
curacy of MRI imaging technology in muscles and bones, the ex-
tracted surface then become a physic simulate system for movement
determination application.

3 Overview

We show the workflow of our framework in Figure 2. Our goal
is to reconstruct the internal body anatomic model that accurately
matches the patient’s body around the affected region. The affected
region is defined by the doctor, and is represented as the available
medical scanning region.

We first collect patient information including his/her body statistics
and medical scannings (using CT or MRI). We use body statistics
to reconstruct patient body model, and use the medical scanning to
reconstruct an initial volume data of inner anatomic environment
including different organs. Meanwhile, we prepare an template
model, including the surface model of body surface, and surface
model of the entire inner body anatomic environment, including
different organs, blood vessel, muscles, and bones. To faithfully re-
construct the anatomic model of a patient around the affected region
(in this work, we focus on the organs), we construct an initial trans-
ferred anatomic model based on Anatomy Transfer [Dicko et al.
2013] (see Figure 2(a)(b)).

In the second step, we further refine the anatomic model in the af-
fected region by establishing the correspondences between organ
models within the affected region. Here we use a semi-automatic
approach, we asked the user to create several landmarks between
the surface model in pre-built model and the reconstructed volume

model. With the provided landmarks, we utilize a dense correspon-
dence method based on functional map [Nogneng and Ovsjanikov
2017] to obtain the correspondences. If the user is not satisfied with
the result, they can kepp adding new landmarks. Our system will
highlight the correspondence errors from fucntional map, to help
the user better locate where to put more landmarks to make the en-
tire correspondence field more accurate.

After establishing the correspondence field, we utilize it to deform
the organs in the initial patient anatomic model to better match the
volume data from medical imaging. Finally, we reconstruct the pa-
tient anatomic model by solving the same transfer problem with the
deformed organs as additional constraints.

4 Method

In our framework, we working on transferring anatomic model be-
tween the following two shapes:

• Template model. We template model is purchased from Plas-
ticBoy and it is created by professional artist. The model is
in mesh format, and it contains the outer body shape, bones,
muscles, and different organs. We denoted the template model
as MT .

• Patient’s body scanning. For the patient body shape mesh,
we use a depth camera [Tong et al. 2012] to obtain the 3D
point cloud. We denoted the template model as p. And we
will use the obtained point cloud for further parametric body
shape reconstruction.

4.1 Skin Registration

To facilitate transfer anatomic models, we need to first register the
subject body scanning to the template model, and obtain the corre-
spondences between them.

4.1.1 Subject body model preparation

The first material we need, is the registration from the template
model to the patient’s scanning data. To achieve better registration
result, we tends to perform the registration under the same vertex
distribution, since the point cloud in the scanning is quite messy,
and the registration algorithm is likely to become unstable under
the noisy input. We thus utilize the parametric body model like
MakeHuman [The MakeHuman team ] to build the human body
model with nice topology. Since there are many parameters in the
parametric body model, we thus identify the most relevant 10 pa-
rameters, including burst size, hips size, lower leg height, upper leg
height. To find the best parameters to match the scanned 3D point
cloud, we formulate this problem as follow:

x∗ = argmax
x∈P

f(x), (1)

whereP ∈ R10 is the 10-dimensional space of the body parameters
we want to explore, and f(·) is a function measuring the difference
between scanned 3D point cloud and the generated parametric body
model. We define the difference measuring function f as follow:

f(p,Mk) =
∑
p∈p

‖(φ(pi)− pi)‖22, (2)

where Mk is the parametric body model at k-th iteration of Baye-
sion Optimization, and φ(pi) is the projected point on M of point
pi.
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Figure 2: The workflow of our two steps anatomic structure transfer framework.
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Figure 3: We show the Bayesian Optimization process with a se-
quences from early iteration (1th) to final iteration (50th). The point
cloud image in the right hand side is our synthetic data generated
with other skin model.

We solve Eq. 1 using Bayesian Optimization, since the MakeHu-
man [The MakeHuman team ] body model generator is hard to eval-
uate and we don’t know it’s gradients with respect to each of the pa-
rameters. We use the expected improvement (EI) as our acquisition
function and use Gaussian Process prior to solve the expectation
with closed form solution. Please check [Brochu et al. 2010] for
details about Bayesian Optimization. In Figure 3, we show that
the patient body can be reconstructed faithfully using our Bayesian
Optimization and MakeHuman [The MakeHuman team ].

4.1.2 Functional Map Correspondences

After register the template model and the rebuilt model from the pa-
tient’s scanning, we then further identify the dense correspondences
between them. We apply functional map approach [Nogneng and
Ovsjanikov 2017] on both polygonal meshes and we choose Lapla-
cian mesh feature as basis, combine with Wave Kernel Signature.
We also need to choose some landmarks between two the meshes
if they are quite different. In our case, 6 20 landmarks are required
user to manually mark. We show the example landmarks in Fig-
ure 4, however, it is likely that the initial landmarks can not lead
to satisfied correspondences. In our system, we design an iterative
process for obtaining the good correspondences. Our system will
indicate the bad geometry area with color or displacement as fig-
ure 5, and the user can manually put down additional landmarks on
these spots. This process iterate until correspondences are satisfied.

Template Model

Corresponding
landmarks

Target Model

20 marks 49 marks

60 marks 64 marks

(a) landmarks between template skin and target skin (b) correspondences with different landmarks number

Figure 4: (a) Using landmark between template skin and target
skin. (b) More landmark will lead to a more stable result. The final
correspondences from this topology use 64 landmark for accurate
result.

Noted that not every pair of surface shapes can be matched easily
using this iterative process.When the two shapes are too different
with each other, we can first apply Laplace mesh editing [Sorkine
et al. 2004] using small amount of landmark pairs as pivot points,
and reduce the shape differences between our subject and target
shape. This is more common when dealing with surface shapes
of different organs, since the organ in the template model can not
match all the possible shapes in real world human organs.

4.1.3 Transfer Displacement Field

After we establish the correspondences between the template model
and the patient’s skin surface model, we can start to calculate the
transfer field between them on the skin surface. The purpose of the
transfer field is to facilitate the inner anatomic model transfer. We
first build a voxel grid that enclose the surface shape, and uniformly
sample many points on the surface. With the established correspon-
dences, we compute the displacement vector of each sample point
and it’s correspondent point. Within each voxel grid, we compute
a average displacement vector of all sample point’s displacement
vectors if the sample point lies inside the voxel grid. We now have
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Figure 5: The correspondences flaw with too few landmarks. The
user is able to manually put down additional landmark to improve
the result.
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Figure 6: We show an example abdomen reconstructtion using
MALBCV [Bennett Landman 2015] dataset. We reconstruct the 3D
surface model (a) from the labeled segmentation slices (in three
different views (b)(c)(d)) using Marching Cube[Lorensen and Cline
1987] in 3D Slicer[Kikinis et al. 2014].

the displacement of the each outer voxel grid (i.e., the voxel grid
that contains surface in it), and we utilize these displacement vec-
tors of voxel grids as Dirichlet boundary constraints and solve the
displacement vectors of each inner voxel grids.

4.2 Modeling Affected Region

After we reconstruct the initial anatomic model of the patient, we
now focus on utilizing the auxiliary patient scanning data to im-
prove the accuracy of the affected region. We achieve this by de-
form the corresponding organs in the affected region of the initial
anatomic model to match the reconstructed models from the seg-
mented scanning organ shapes. We manually assign key points as
landmarks between the initial reconstructed models and the scan-
ning models. We then use the models in affected regions as new
boundary conditions and solve the entire transfer field again. Fi-
nally, we obtain the accurate reconstructed anatomic model.

4.2.1 Affected Region Organ Modeling

We use an abdomen CT database from Multi-Atlas Labeling Be-
yond the Cranial Vault [Bennett Landman 2015]. There are in to-
tal 50 sequences, and 13 segmentation context ((1) spleen (2) right
kidney (3) left kidney (4) gallbladder (5) esophagus (6) liver (7)
stomach (8) aorta (9) inferior vena cava (10) portal vein and splenic

vein (11) pancreas (12) right adrenal gland (13) left adrenal gland)
are labeled slice by slice (check an example shown in Figure 6). We
use marching cube[Lorensen and Cline 1987] to reconstruct the 3D
surfaces from these labeled slices, and then as target for accurate
anatomic model reconstruction.

4.2.2 Organ Correspondences

We sample points from the initial reconstructed anatomic model
and the reconstructed 3D surfaces and extract the their point fea-
tures using CGF[Khoury et al. 2017]. We perform the registration
for each organs separately using FGB [Zhou et al. 2016], and aver-
age the obtained transformation matrices to obtain the global trans-
formation matrix.

Cardia

Pyloric Sphincter Lesser Curvature Greater Curvature

Figure 7: from left to right: stomach illustrate, pre-built stomach,
CT reconstruct stomach; The anatomic structure in both pre-built
model and CT reconstruct surface share the same feature which can
be use as landmark[Gong et al. 1997].

With the aligned organs, we want to establish correspondences of
organs-in-interest. Follow the same process of the correspondence
establishment of skin model (in Section 4.1.2), we first need to as-
sign some landmarks on the organ models. We assign landmarks in
a medical-aware fashion, i.e., for each organ, we first identify sev-
eral key location using medical-defined structure, e.g., we assign
landmarks around Cardia and Pyloric sphincter on stomach model
(see Figure 7).

4.2.3 Organ Transfer Field

The additional correspondences on organs-in-interest provides ad-
ditional transfer field. We use these organs’ transfer fields as addi-
tional boundary condition and perform the transfer again to obtain
the final accurate results.

5 Result

In this section, we demonstrate our accurate anatomic model trans-
fer with several examples, and evaluate our method using several
different error metrics.

We successfully transfer the template model into target shape with
affected area information. In Figure 8, we showed the transferred
anatomic structures are well aligned with the reconstructed 3D
shape from patient’s medical scanning data (Figure 8(d)). And the
surrounding organs still stay in a relative medical sound positions,
which is important because the doctor can obtain accurate affected
organ reconstructions, but still retain clear field of vision while op-
erating. Figure 9 shows the transferred result on a CT segmenta-
tion set with patient skin surface. In this example, we transfer in-
tegument, muscular, skeleton, respiratory, endocrine, urinary, lym-
phatic system models based on the segmentation of corresponding
parts in CT scans with medical context landmarks.
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Figure 8: The transfer result on spleen, kidneys, stomach and skin as target. Note that the CT reconstruct features stay in place in (d) with
the overlay view.

(a) template model (b) transferred model

Figure 9: We transfer the segmentation data label005 in MALBCV. The fully transferred template model, adapt skin, spleen, kidneys, stomach
target with 200 vpm (voxel per meter).

5.1 Quantitative Error Metric

We further evaluate our reconstructed results using two different
metrics, i.e., difference of volume and surface correspondence dis-
tances. After each stage of transfer, we can calculate the error
between the models of segmented CT regions and the transferred
models.

Difference of Volume. After the transfer is done, the correspond-
ing anatomic structure should share the same or similar shape and
position. We calculate the difference between two meshes by mea-
sure the volume of the symmetry difference (XOR) from two shape.
Figure 10 illustrates the difference between the lung model in tem-
plate model and CT reconstructed lung model.

Correspondences Distances. Another way to measure the error
between the transferred modeles and the CT reconstructed model
is using known correspondences that was solve in section 4.1.2.
We measure the Euclidean distances between each correspondences
pair. We show the results of two different metrics in Table ??.

6 Conclusion and Future works

In this paper, we propose an semi-automatic framework for accurate
anatomic model transfer. Unlike previous approaches, we provide
effective approach to incorporate auxiliary medical imagings such
as CT and MRI to further improve the accuracy of anatomy transfer
result. Our method greatly reduce the time and labor efforts for
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Figure 10: The error metric we use to measure the volume differ-
ence between CT reconstructed and our transferred model. It is
computed as sum of the blue and red part of the symmetric differ-
ence error, denoted as A4B.
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Figure 11: The resolution of the enclosed voxel grids introduce
intersected transferred results. This problem will be more severe if
the position is largely different in pre-built and CT scanned model.

professional artists. The accurate transferred anatomic model can
help the applications in surgical simulation using VR or AR.

Although the examples we demonstrated in this paper accurate re-
construct the internal anatomic model, we still discover several di-
rections for improvement. We noticed that the resolution of voxel
grid will greatly affect the transferred result around the boundary
between each organs, if the neighboring organs are too close to each
other and undergo very different deformation behaviors. Figure 11
shows the different vpm (voxel per meter) result for stomach and
spleen and kidney registration. This bad topologies will be ampli-
fied while the structures relative position is different in template
model and the segmentation sequences. We are interested to inver-
stigate how multi-resolution voxel grid can help us solve this issue,
i.e., we further divide the original voxel grid around the boundary
of each organs.
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