RAEZRELFEIIG2QEEREE

(XY MEAR REE
Bz HRE RRKRE Bz HRE
PR i BR A F
CRETPES CREPES
icon mood of Nov 4 Dolores Tonys Theme Evelyn Sandbox earth groove kuler triad
contour H [HE BB H Bl B |

=1
7
I

S

V4

o's

|
s, S
11 SR 1118

-0

Figure 1: Given an input icon contour in vector format, our method can generate different colorized icons using different color
palettes. Designers can further customize the colorization results directly in vector format.

ABSTRACT

KR HE T —HEEE LM T A ERLZE AT, - &
R EEARMBBEAROLSERBELMEZ > RPN EE
RBEZARDEBZG L EEZELER - ZEIEZAE L
BT EPAERG — SRR > BRIk 7T HEEK
WA B A e B A A S RS
ANEE o Jush o RALASREZRBBERAG EE 2 M S
P FodtE > B ARG AR AR A ASEBITF R Lo o
BBEARFEHZL > BN FT EZERA LG ERRGIEFTiE
1T > RIABLRBAEATME 86 5 B 2 ey ik - &K feid
EMME 2 MBI AZ S B & kAT B » LA B & 14
e TREBEELERERHFRY -

KEYWORDS

icon colorization, vector graphics, palette, color harmony

1 INTRODUCTION

Nowadays, icons are widely employed in posters, websites, ban-
ners, and other design interfaces [50]. These icons can be used to
decorate pages or clearly explain the semantics by placing them
beside the text, facilitating visual comprehension [12, 19, 20, 40].
However, proficient design skills are necessary for creating icons
with compelling visual expression. An essential step in icon design

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s).

CGW ’ 23, July 11-12, 2023, Taichung City, Taiwan

© 2023 Copyright held by the owner/author(s).
https://doi.org/XXXXXXX.XXXXXXX

is the process of coloring. During this stage, designers may need to
consider various color references, such as text descriptions, color
palettes, or other reference patterns. Additionally, they must take
into account constraints imposed by color conditions, overall icon
style, and aesthetic considerations for color combinations. Further-
more, due to the varying demands for icon styles in different con-
texts, designers must approach each design case-by-case. This pro-
cess can be time-consuming and labor-intensive.

In studies on line art colorization, neural-based methods such as
convolutional neural networks (CNNs) [30] and generative adver-
sarial networks (GANs) [14] have been widely utilized for color-
ing icons, sketches, and animated characters. For instance, Sun et
al. [50] proposed a dual conditional GAN that simultaneously reg-
ulates the icon outlines from the content input and the color com-
binations from the color reference icons. Li et al. [34] employed
an encoder-decoder network for icon coloring and implemented
conditional normalizing flow to enable the network to generate
different results based on user-specified styles. While these works
have achieved impressive results in icon coloring, they are limited
to pixel-based objects, also known as raster images. Raster images
have a fixed pixel size, which can result in image aliasing after
zooming. However, for graphics and industrial design, including
icon design, a more precise format is needed to describe visual
content. In this case, vector graphics are used, which consist of
parametric lines and curves instead of pixel arrays, allowing for
infinite scaling without distortion [11, 66].

We aim to implement vector icon coloring. We utilize profes-
sionally designed icons in scalable vector graphics (SVG) format
to learn the features and essential rules of icon coloring. Then, we
map them to appropriate color combinations based on the user’s

https://doi.org/XXXXXXX.XXXXXXX

selected color palette. Inspired by the work of Jiang et al. [26], who
used graph neural network (GNN) for object detection and classi-
fication in vector graphics such as floor plans and diagrams, we
build upon their dual-stream GNN architecture to extract features
from each curve in the icon. Considering that icons are abstract
representations composed of multiple geometric components, we
use GNN to identify feature relationships among the curves of
icons. Furthermore, in graphic design, harmony is a critical con-
cept that directly affects the visual experience for users [19]. An
important aspect is efficiently choosing the right color combina-
tion for objects or interfaces. Therefore, we incorporate two con-
trol mechanisms to regulate the diversity and coherence of color
combinations. Subsequently, we perform color transformation be-
tween the possible color combinations of the icon and the selected
color palette through optimization. This approach allows for color
expansion in terms of hue and lightness, enabling icons to exist
beyond the colors provided by the color palette.

We compared our method with the state-of-the-art pixel-based
approaches. Our pipeline allows vector-form icons as direct input
without converting between raster and vector space. This method
enables designers to use our output directly as a basis for subse-
quent coloring tasks, making vector icon coloring more effortless
and efficient.

2 RELATED WORK

2.1 Color Harmony Evaluation

The evaluation of color aesthetics is an essential subject with a
long history. Jacobson and Ostwald [25] considered that harmony
equals order. Moon and Spencer [42] built a harmony classifica-
tion. Itten [24] drew up basic color theory and developed applica-
tions of the color wheel. One well-known theory is the harmonic
template on hue provided by Matsuda [41] and Tokumaru et al. [52]
(Figure 2). They devised eight types of harmonic templates based
on the color wheel. Each type except type N is defined as one or
two contiguous gray blocks. When color combinations fall entirely
into the gray area, they are defined as harmonious color combi-
nations. Based on these templates, Cohen-Or et al. [8] proposed
a color harmonization method that quantized image colors into
histograms and increased image coordination. Zaeimi and Ghod-
dosian [59] combined these templates and Munsell color system [7]
to advance an optimized color harmony algorithm.

In addition to the traditional color theorem, many studies ana-
lyze the harmony of colors through model training. Ou and Luo [45]
investigated the harmony of two colors. They proposed essential
factors that affect color harmony, such as any two colors equal in
hue and chroma that differ only in lightness are harmonious. Ou et
al. [44] predicted the overall harmony of the three-color combina-
tion. O’Donovan et al. [43] utilized an extensive online dataset to
study color compatibility. Kita et al. [29] inherited this compatibil-
ity research and further studied the palette expansion while main-
taining color harmony.

Our study uses online icons as target data. Through the designer’s
works, we aim to extract color-matching principles more suitable
for icon coloring. At the same time, we adopt the widely used har-
monic templates [41, 52] as the basis for judging color blending, en-
couraging the model to generate harmonious color combinations.

Figure 2: Harmonic templates on the color wheel. A combi-
nation of colors is considered harmonious, except N type,
when all colors fall into the gray area. These gray regions
can be rotated by any angle while maintaining relative ar-
eas.

2.2 Reference-Based Colorization

The task of colorizing nature images usually starts with a grayscale
image. Lin et al. [36] used factor graphs for pattern coloring. Kim et
al. [28] implemented a rule-driven approach to colorize segmented
images. Zhang et al. [64] developed a user-guided method to lead
image colorization. Another common practice is to use CNNs to
complete coloring [22, 63]. Isola et al. [23] further implemented
image-to-image translation tasks in various fields.

Unlike images, the initial stages of line art creation are usually
not grayscale images. Stuff like comics, cartoons, and sketches usu-
ally only have black lines as input. GAN-based methods are com-
monly used to generate colors for line characters [18, 38]. Some
works also use another picture or sketch as a reference [31, 35, 60].
These reference images are usually taken from the same category
as the input sketch. It is expected that the same parts to get similar
color transformations, such as hair color for hair and skin color for
skin. Zhang et al. [61] proposed a semi-automatic method where
users only need to give color hints instead of complex images. Ci et
al. [6] allowed users to color the entire picture by drawing simple
color lines. Kim et al. [27] did not require the user to choose a color
but only to provide simple text prompts.

Icons are also a type of line art. But compared to sketches, they
are more minimalist, more abstract, and even smaller. Sun et al. [50]
first proposed the work of icon coloring. They used two discrimi-
nators to compute the structural and stylistic similarity of content
and color reference icons. Han et al. [17] created a GAN network
based on three conditions, adding a mask to limit the scope of the
icon content to avoid mixing with the background. Li et al. [34]
adopted an encoder-decoder architecture and applied normalizing
flow so that the same style can generate various color combina-
tions. Although these works ’ results are appealing, since they are
based on pixel icons, these methods are challenging to apply di-
rectly to vector graphics. Our goal is to extend icon coloring work
to vector formats.

2.3 Image Recoloring

We define image recoloring as recoloring from color images, not
grayscale images or sketches. A common practice in natural im-
age recoloring work is to add color features from one image to
another [16, 47, 51, 54]. Some works focused on luminance adjust-
ment [1, 2, 37], some were based on the principle of harmony, ig-
noring lightness [8, 33].

In the absence of image references, some works are devoted to
extracting the primary colors from the original image and present-
ing the picture in the form of a palette. Csurka et al. [10] used se-
mantics and annotations for palette classification and color trans-
fer. Yoo et al. [58] used the primary color of the image as the basis
for image region segmentation. Wang et al. [55] formulated color
adjustment as an interpolation problem and adjusted image color
by user input sentiment words. Chang et al. [4] computed lumi-
nance and a*b* channels separately and corrected for colors out-
side the visual range. However, our color references are chosen by
the user and do not refer to the color style of the original image.

Our requirements are closer to palette-guided recoloring work.
Wang et al. [53] performed soft segmentation on the image, and
users can apply local refinement according to the block of interest.
Instead of using a color transfer function, Cho et al. [5] obtained
realistic recolored images through image feature learning. Zhang
et al. [62] regarded each color as a linear combination of some
primary colors. Unlike real pictures, the area that icons can effec-
tively segment is relatively small, and the segmented content does
not necessarily contain substantive meaning. We refer to the tradi-
tional color transformation method proposed by Chang et al. [4].
Our task is palette-driven. We calculate lightness separately from
chroma to transform color within icons * simple lines.

2.4 Applications of Vector Graphics

Vector graphics is a sequence of parameters. The advantage is that
this format can be scaled infinitely, ensuring the content is not
distorted and is more precise than raster images. Zhang et al. [65]
and Ha and Eck [15] first tried to simulate the generation of sketch
strokes by sequence modeling. With the introduction of attention

mechanism, Carlier et al. [3] and Ribeiro et al. [48] used a transformer-

based architecture to learn feature representation and interpola-
tion for vector sketches. Zou et al. [66] treated strokes as a vector
format and expanded from sketches to generate realistic drawings
in vector format. In addition to simulating stroke generation, there
is more and more research on how to convert raster graphics di-
rectly into vector graphics or the converting between raster and
vector space [39, 46, 49, 56].

Apart from the synthesis of vector graphics, how to analyze the
characteristics of vector graphics is also an essential topic. In recog-
nition of vector graphics, Li et al. [32] identified the category of the
target object by extracting the keystroke features of the input vec-
tor sketch. Xu et al. [57] introduced a novel hashing loss for sketch
retrieval. Collomosse et al. [9] learned a search embedding that uni-
fies vector and raster representations. Jiang et al. [26] developed a
dual-stream GNN architecture that does not require rasterization
and realized object detection and classification of vector objects.

This paper refers to the method proposed by Jiang et al. [26] for
analyzing vector context to recognize the composition of vector

icons. Different from previous studies, the task of pattern recog-
nition is often performed on objects with distinct features. For
example, Jiang et al. [26] implemented object detection on floor
plans and diagrams with standard format. However, icons are ab-
stract expressions, which means that the elements of an icon do
not necessarily have substance. Therefore, in addition to analyz-
ing the independent features of each curve, we add group features
to increase the recognition ability of the model for icon represen-
tations.

3 METHOD

Figure 3 shows our complete workflow. The input of our coloriza-
tion pipeline is an icon contour and a five-color palette. We develop
an algorithm consisting of two steps: generating tinting hints and
performing palette-based color transfers.

3.1 Feature Extraction

Curves. Given an SVG icon contour, we use the Python API for
Blender (bpy) to parse the SVG file. Convert the SVG icon to mesh
to get diffuse colors, then flip the mesh back to the curve, and icon
curves can be considered cubic Bézier. We normalize the icon size
to 512512 and get the coordinates of the start, end, and two control
points. We also record the index of each curve so that we can apply
the color back to the icon later. Since we first use the YOLaT model
proposed by Jiang et al. [26] to extract curve features, according to
their method, each point’s coordinates, color, and width are used as
the basic information of each node in the graph. We set the stroke
color to black and the width to 6, simulating user input with only
black lines. We also set the edge attributes of stroke-wise edges
and position-wise edges [26], and then use the YOLaT dual-stream
GNN [26] to obtain curve features. For detailed model architecture,
please refer to the original paper.

Different from the original methods, they slice multiple propos-
als for each object and predict the class of each of them. In our case,
the object is equivalent to an icon, and we expect one of the curves
to be a color. For this, we do not slice the curves by different propos-
als, so one curve is considered as one proposal and the prediction
target is the color of each curve. Since YOLaT [26] only deals with
black and white vector graphic documents, which usually have a
clear visual style for each category, such as Floorplans and Dia-
grams from the SESYD database!. Compared to our case, icons
are colorful. Moreover, icons are abstract patterns; many curves
may not necessarily have substantial meaning, such as cutting ob-
jects to represent shadows. Sometimes, after decomposing each
icon curve, it is often a simple geometric shape, such as a circle
or a rectangle. To sum up, it is difficult to distinguish the differ-
ence between curves using only curve features. So we add group
connection to define the relationship between the curves further.

Groups. We use the curve features obtained by YOLaT [26] as
the base feature for each curve. Joins two curves to form a group
edge. Then define the coordinates of the bottom-left and the upper-
right point of the i" curve > s bounding box as (x;, y;) and (X;, Y;)
, respectively. For each group, that is, each pair of curves, we define
six group edge attributes as follows:

(1) x2 —x1

!http://mathieu.delalandre free.fr/projects/sesyd/

http://mathieu.delalandre.free.fr/projects/sesyd/

I
1 extract curve information

O YOLaT
dual-stream GNN IERIERN H

mapping harmonic templates

(a) Training Phase

. Ty) (G0
i i
\ real colors as ground truth _ ' [curve loss] [group loss] E

w V" \ Eextract colors__ q q q

(b) User Interaction Phase

l

colorization model

l generate the initial coloring hints

C=ES

fine-tune with palette
and generate the candidates

\/
| |

Figure 3: Overview. (a) In training phase, we use SVG icons as training input, extracting the curves’ local and group features
and using the GNN model to predict color hints of each curve (blue blocks). We use two adjustment terms to control the variety
(purple block) and harmony (orange block) of predicted colors. (b) When the user enters an SVG icon outline and a color card,
the colorization model (green blocks) will output the initial color hints, then fine-tune the colors according to the palette,

providing a variety of color combinations.

)

)
(@) Y2-1
(5) angle between (x1, y1) and (x2, y2)
(6) angle between (Xj, Y1) and (Xa, Y2)
Numbers one to four represents the distance between the bounding
box coordinates of the two curves. Note that this distance includes
directionality, which may be a negative number. Numbers five and
six are the angles between the line segments connecting two points
and the positive direction of the x-axis.

3.2 Color Prediction

Our model takes curve features and group attributes as input, pre-
dicting the color of each curve through two GNN layers. We predict
colors in the CIELAB color space because it is the closest expres-
sion of color to human visual perception. In CIELAB color space,
L* represents luminance, which ranges from 0 to 100; a* and b* rep-
resent green to red and blue to yellow, respectively, ranging from
-128 to 127. We are not directly predicting the exact values of L*, a*,
and b* because the mean-square error loss will tend to optimize the
solution to the mean values [63], resulting in all the output curves
being the same color. Therefore, we refer to the method Zhang et
al. [63] used and transform regression into a classification problem.

We split L*, a*, and b* every ten bins so that L* has ten classes
and a* and b* have 26. Since different chroma ranges that can be
displayed by different luminance, to ensure that the predicted color
is within a reasonable range, we regard a* and b* as a plane with
26 % 26 classes. The loss of the model is divided into two parts, for
the curve and the group, respectively. We use the cross-entropy

loss to calculate the curve loss, defined as

N M
1 ~ * * g 3k
CEy=—ﬁm;yi,clog(f(yi,c)), y=L"anda’b", (1

CE = CEp- + CE g @)

where N is the number of samples, and M is the number of classes.
f(+) is an activation function; here we use softmax. y; represents
the real class, while gj; represents the probability distribution of the
predicted class. Finally, we add CEr: and CE,+j~ to get curve loss.

Some groups are randomly selected in each training iteration to
calculate the group loss. We use each curve ’ s output vector of
L* and a*b” to calculate the cosine similarity between curve pairs.
And the similarity of ground truth colors is defined as

sij =exp(—axD;j), fori,j=1,...,M. 3)

D;;j is the Euclidean distance between the luminance and chroma
classes of curve i and curve j. a is a hyperparameter set to 0.1 here.
Since we divide the two continuous spaces into discrete categories,
the closer the classes, the higher the similarity. Therefore, we use
an exponential function to convert the class distance into similar-
ity. We use MSE loss to measure the distance between the predicted
and actual similarities between the two curves. Then add MSE loss
for L* and a*b”* to get group loss. Group loss aims to strengthen
the connection between the training curves, expecting the model
to better distinguish the difference between curves. But if the icon
has only one curve, it would not have group loss and only use curve
loss.

3.3 Uniformity Regulation

To avoid the predicted color difference being too small because the
curves of the icons are all basic geometric shapes, we add unifor-
mity regulation to maintain the diversity of output colors. We use
the negative mean of the predicted a* and b* standard deviation, a
common statistical method for testing uniformity.

4

op =

1
Uniformity Regulation = —E(O'a +0p) . (5)

We expect model output to be more diverse instead of only rec-
ognizing fixed colors. Note that if the weight of the uniformity
regulation is too large, the model will tend to output the colors
of the extreme values, which means the icon will be full of green,
red, blue, and yellow because this color combination maximizes the
standard deviation. We finally set the uniformity weight to 0.01.

3.4 Harmony Control

We add the second adjustment, harmony control, to maintain the
visual harmony of the output color combination. We use harmonic
templates on the hue wheel defined by Matsuda [41] and Toku-
maru et al. [52] as a standard. Among the eight templates, type N
is excluded because we restrict icons to have colors.

FX,T(a) =) (min|[H(x) ~el)) - S(x)

xeX
6
c [0,), if the template is symmetric ©)
a ,
[0, 27), otherwise

A(X) = F(X, Tn(a0)) - ™)

In Equation 6, we first use the original colors (x) of the input icon
(X) to fit the template (T) that best matches. Following the method
of Cohen-Or et al. [8], we also take saturation (S) into account.
Then, we use the angular difference as a measure of harmony.
When the color falls entirely within the gray area, the distance
is 0; otherwise, the hue distance will be calculated as the angle be-
tween the color and the nearest border of gray regions (E). After
finding a matching template, we record its type (Trn(a)) and ef-
fective region (A(X)) as the ground truth of color harmony. The
predicted color combination is calculated to the hue distance of
the ground truth template as harmony control. This distance will
be significant at the beginning of training because the model has
not learned enough features to predict good color combinations.
So we take natural log to balance its control strength and set the
weight to 0.01.

3.5 Recoloring with Palettes

After predicting the color combination of the input icon, which
we called the initial hint, we compute the hue distance to match
each template color to the closest palette color. We view the palette
fitting as an optimization process as

n
F(Hpgop Preary) =) AEGy + 1, ®)

i=1

DES, = \[(PL* — HL)? + (Pa® — Ha*)2 + (P — Hy™)2, (9)

n n ﬂ
A= . (10)
;]Z:; (JHip —Hj[)2 +1) X (AE?, (Hi,Hj) +1)

The goal is to minimize the distance between each predicted color
and the corresponding palette color. We label the hint and palette
colors as H and P, respectively, and n is the number of curves. Since
multiple predicted colors may correspond to the same palette color,
their lightness should be different to maintain harmony and recog-
nition [45]. So we add a adjustment term (Equation 10) to prevent
the curve colors from being too similar. f is a constant; we set it to
1000. Additionally, the luminance of each curve will maintain its
relative relationship during optimization. For example, if curve i is
predicted to be lighter than curve j, then curve i will still be lighter
than curve j after recoloring [4, 47, 51]. Note that in CIELAB color
space, corresponding to different lightness, the adjustable range of
a* and b* are different. It is necessary to keep the color within a
reasonable range throughout the optimization process.

4 EXPERIMENTS
4.1 Datasets

Vector icons. We collect 13132 icons from Flaticon 2, a public web-
site of icon creations by designers. All icons are in SVG format
with flat colors and no borders. The icon outline is extracted from
the path parameters mentioned in the feature extraction part. And
we set the stroke color to black and the width to six to simulate
user input. The ratio of the training, validation, and testing data is
0.8:0.1:0.1.

Palettes. We use the Kuler dataset provided by O’'Donovan et al. [43].
Each palette contains a theme name and five different RGB colors.
We randomly select some of these chips to present the results of
palette coloring.

4.2 Implementation Details

We train the colorization network using curve and group loss with
two regulation terms for fifty epochs. Cause we observe that the
coloring results predict intense colors for training more iterations.
That is, the predicted color combination will consist mainly of red,
green, blue, and yellow. Referring to YOLaT [26], we use Adam op-
timizer and set the learning rate as 2.5 x 10~%. We set the batch
size to 8, and the weights of curve loss, group loss, uniformity reg-
ulation, and harmony control are set to 0.2, 0.8, 0.01, and 0.01, re-
spectively.

4.3 Results and Comparison

Figure 4 shows the colorization results of our model. Given a five-
color palette and a SVG icon outline, our model can provide diverse
coloring icons. We compare our coloring results to several iconic
line art coloring works, Comic [13] applied to manga coloring,
MUNIT [21] used to image-to-image translation, SCFT [31] and
SGA [35] applied to sketches, AdvIcon [50] and Style-Structure [34]
are specific to icon coloring. Since previous studies are not neces-
sarily suitable for icons, we fine-tune each work using the pixel
icon dataset provided by Sun et al. [50]. Implementations of these

Zhttps://www.flaticon.com/

https://www.flaticon.com/

Blues ‘\‘\

Kind of Blue

“ @
1«Q

m-Xu @

David Loops Them

e
¢

@
R

0
Sanborn again LD

o e @

o

K

from the earth “ﬁ?ﬁ

QL é
Loy A

alex test
H ENE

Ketan's Other Theme
He Edited

“
‘=ee

117/

Figure 4: Coloring icons. Our colorization algorithm can provide designers with various color combinations as candidates.

E o &2 A o = 3 94
Palettes | INE BN Y I D IIEE IR EE R E N E
H M 2% 7 & O
s e ¥ o (Y O
T EEYEE
O Wi F ik § B
D B oA PF & & 9 B
8) [!lb = T & & ¢ &=

Figure 5: We compare the colorization results with the baselines. Our coloring is completed in vector format, while the base-

lines work in pixel images.

works were obtained from the authors of the papers. In addition,
previous works require another image as a color reference, while
we use the color palette directly. We select some icons as color ref-
erences for comparison baselines to present the coloring results.
Then, we use k-means to take five representative colors from these
reference icons as our palette input.

Figure 5 shows all coloring results. Unlike our entire pipeline
being in a vector environment, the works of baselines require ras-
terizing the vector icons before coloring. Moreover, their coloring
results are also in pixel format, and designers need to perform an
extra step to convert these pixel images into vector icons to use
them. There is a concept of layers in vector graphics, which means
that even if the designer has overlapping lines when designing the

image contour, these lines can still be covered by the order of dif-
ferent layers after coloring. If icons with overlapping curves are
directly rasterized, they will have more redundant cutouts, mak-
ing pixel-based network coloring more difficult. Another advan-
tage of coloring in vector format is that the image has apparent
boundaries and reduces mis-coloring between the foreground and
background.

4.4 Ablation Studies

We conduct ablation studies demonstrating that group loss and two
adjustment terms contribute to icon colorization. When only curve
loss is used (Figure 6 (a)), from the results of predicting luminance
and coloring with the palette, many curves with similar shapes

(a) (b) (c)
curve + group loss curve + group loss
(w/o two adj)| (w/ two adj

..
ﬁ-

Figure 6: Ablation studies. The grayscale images are the lu-
minance predicted by our model, and the color icons are the
coloring results after fitting the palette. (a) Only use curve
loss. (b) Use curve and group loss. (c) Our coloring results.

Sds O8 0@

Figure 7: When similar shapes overlap, the model tends to
assign them the same color, making it difficult to distinguish
the figures, such as two overlapping clouds (left), two circles
on the medal (middle), and similar shapes on the pumpkin
(right).

easter egg

only curve loss

are indistinguishable, such as rectangles. When adding group loss
(Figure 6 (b)), similar curves can be identified by considering the
relative relationship between the curves. However, the palette has
a variety of colors. While the overall prediction of the book is pri-
marily blue, and the mobile phone is dominated by green. After
adding two adjustment terms, that is, our coloring results (Figure 6
(), add variety and harmony to the icon colors. Let the color com-
bination of the icon better match the reference palette.

5 LIMITATIONS

Although our model produces stunning colorization results, many
aspects remain for improvement. In icon design, a skill often used is
to exploit a figure’s symmetry or reuse the exact figure repeatedly.
However, if an icon contains many curves of the same shape, the
curve loss in our model tends to make them have the same color, as
does the group loss. As a result, if similar shapes overlap, they may
be tinted the same color, making the curves indistinguishable.

6 CONCLUSION

We present a palette-based colorization pipeline for vector icons
without rasterization. We simultaneously combine vector icons’ lo-
cal and group features to strengthen the feature descriptions. Uni-
formity regulation and harmony control help our model to main-
tain variety and coordination in color combinations. In addition,
we propose color extensions in terms of hue and value, enabling
icons to exist beyond the colors provided by the palette without

converting to other icons or images for color reference. Further-
more, our work is performed entirely in a vector environment with-
out converting between raster and vector space. This approach en-
ables designers to use our output directly as a basis for subsequent
coloring tasks, making vector icon coloring more effortless and ef-
ficient. In the future, we aim to expand our pipeline to support
gradient coloring and perform style transfer on vector icons.

REFERENCES

[1] Soonmin Bae, Sylvain Paris, and Frédo Durand. 2006. Two-scale tone manage-
ment for photographic look. ACM Transactions on Graphics (TOG) 25, 3 (2006),
637-645.

[2] Vladimir Bychkovsky, Sylvain Paris, Eric Chan, and Frédo Durand. 2011. Learn-
ing photographic global tonal adjustment with a database of input/output image
pairs. In CVPR 2011. IEEE, 97-104.

[3] Alexandre Carlier, Martin Danelljan, Alexandre Alahi, and Radu Timofte. 2020.
Deepsvg: A hierarchical generative network for vector graphics animation. Ad-
vances in Neural Information Processing Systems 33 (2020), 16351-16361.

[4] Huiwen Chang, Ohad Fried, Yiming Liu, Stephen DiVerdi, and Adam Finkelstein.
2015. Palette-based photo recoloring. ACM Trans. Graph. 34, 4 (2015), 139-1.

[5] Junho Cho, Sangdoo Yun, Kyoung Mu Lee, and Jin Young Choi. 2017. Palettenet:
Image recolorization with given color palette. In Proceedings of the ieee conference
on computer vision and pattern recognition workshops. 62-70.

[6] Yuanzheng Ci, Xinzhu Ma, Zhihui Wang, Haojie Li, and Zhongxuan Luo. 2018.
User-guided deep anime line art colorization with conditional adversarial net-
works. In Proceedings of the 26th ACM international conference on Multimedia.
1536-1544.

[7] Sally Cochrane. 2014. The Munsell Color System: A scientific compromise from
the world of art. Studies in History and Philosophy of Science Part A 47 (2014),
26-41.

[8] Daniel Cohen-Or, Olga Sorkine, Ran Gal, Tommer Leyvand, and Ying-Qing Xu.
2006. Color harmonization. In ACM SIGGRAPH 2006 Papers. 624-630.

[9] John Collomosse, Tu Bui, and Hailin Jin. 2019. Livesketch: Query perturbations
for guided sketch-based visual search. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2879-2887.

[10] Gabriela Csurka, Sandra Skaff, Luca Marchesotti, and Craig Saunders. 2010.
Learning moods and emotions from color combinations. In Proceedings of the
seventh Indian conference on computer vision, graphics and image processing. 298—
305.

Praveen Kumar Dhanuka, Nirmal Kumawat, and Nipun Jindal. 2019. Vector
based glyph style transfer. In ACM SIGGRAPH 2019 Posters. 1-2.

Sidong Feng, Suyu Ma, Jinzhong Yu, Chunyang Chen, Tingting Zhou, and
Yankun Zhen. 2021. Auto-icon: An automated code generation tool for icon de-
signs assisting in ui development. In 26th International Conference on Intelligent

User Interfaces. 59-69.

[13] Chie Furusawa, Kazuyuki Hiroshiba, Keisuke Ogaki, and Yuri Odagiri. 2017.
Comicolorization: semi-automatic manga colorization. In SIGGRAPH Asia 2017
Technical Briefs. 1-4.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2020. Generative
adversarial networks. Commun. ACM 63, 11 (2020), 139-144.

David Ha and Douglas Eck. 2017. A neural representation of sketch drawings.
arXiv preprint arXiv:1704.03477 (2017).

Yoav HaCohen, Eli Shechtman, Dan B Goldman, and Dani Lischinski. 2011. Non-
rigid dense correspondence with applications for image enhancement. ACM
transactions on graphics (TOG) 30, 4 (2011), 1-10.

[17] Qin-Ru Han, Wen-Zhe Zhu, and Qing Zhu. 2020. Icon colorization based on
triple conditional generative adversarial networks. In 2020 IEEE International
Conference on Visual Communications and Image Processing (VCIP). IEEE, 391—
394.

Paulina Hensman and Kiyoharu Aizawa. 2017. cGAN-based manga colorization
using a single training image. In 2017 14th IAPR International Conference on Doc-
ument Analysis and Recognition (ICDAR), Vol. 3. IEEE, 72-77.

Tsuei-Ju Hsieh. 2017. Multiple roles of color information in the perception of
icon-type images. Color Research & Application 42, 6 (2017), 740-752.

[20] Kuo-Chen Huang. 2008. Effects of computer icons and figure/background area
ratios and color combinations on visual search performance on an LCD monitor.
Displays 29, 3 (2008), 237-242.

Xun Huang, Ming-Yu Liu, Serge Belongie, and Jan Kautz. 2018. Multimodal
Unsupervised Image-to-image Translation. In ECCV.

Satoshi lizuka, Edgar Simo-Serra, and Hiroshi Ishikawa. 2016. Let there be color!
Joint end-to-end learning of global and local image priors for automatic image
colorization with simultaneous classification. ACM Transactions on Graphics
(ToG) 35, 4 (2016), 1-11.

[11

[12

(14

[15

[16

[18

[19

[21

[22

[23]

[29]

[30

[31]

[32]

[33

[34

[35]

[38]

[39

[40]

[41]
[42]

[43

[44]

[45

[46

N
=

[48]

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. 2017. Image-to-
image translation with conditional adversarial networks. In Proceedings of the
IEEE conference on computer vision and pattern recognition. 1125-1134.
Johannes Itten. 1970. The elements of color. Vol. 4. John Wiley & Sons.

Egbert Jacobson and Wilhelm Ostwald. 1948. Color harmony manual. Container
Corporation of America Chicago.

Xinyang Jiang, Lu Liu, Caihua Shan, Yifei Shen, Xuanyi Dong, and Dongsheng
Li. 2021. Recognizing vector graphics without rasterization. NeurIPS 34 (2021),
24569-24580.

Hyunsu Kim, Ho Young Jhoo, Eunhyeok Park, and Sungjoo Yoo. 2019. Tag2pix:
Line art colorization using text tag with secat and changing loss. In Proceedings
of the IEEE/CVF international conference on computer vision. 9056-9065.
Hye-Rin Kim, Min-Joon Yoo, Henry Kang, and In-Kwon Lee. 2014. Perceptually-
based Color Assignment. In Computer Graphics Forum, Vol. 33. Wiley Online
Library, 309-318.

Naoki Kita and Kazunori Miyata. 2016. Aesthetic rating and color suggestion
for color palettes. In Computer Graphics Forum, Vol. 35. Wiley Online Library,
127-136.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278~
2324.

Junsoo Lee, Eungyeup Kim, Yunsung Lee, Dongjun Kim, Jaehyuk Chang,
and Jaegul Choo. 2020. Reference-based sketch image colorization using
augmented-self reference and dense semantic correspondence. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition. 5801-5810.
Lei Li, Changqing Zou, Youyi Zheng, Qingkun Su, Hongbo Fu, and Chiew-Lan
Tai. 2018. Sketch-R2CNN: An attentive network for vector sketch recognition.
arXiv preprint arXiv:1811.08170 (2018).

Xujie Li, Hanli Zhao, Guizhi Nie, and Hui Huang. 2015. Image recoloring using
geodesic distance based color harmonization. Computational Visual Media 1
(2015), 143-155.

Yuan-kui Li, Yun-Hsuan Lien, and Yu-Shuen Wang. 2022. Style-Structure Disen-
tangled Features and Normalizing Flows for Diverse Icon Colorization. In CVPR
2022.

Zekun Li, Zhengyang Geng, Zhao Kang, Wenyu Chen, and Yibo Yang. 2022. Elim-
inating Gradient Conflict in Reference-based Line-Art Colorization. In Computer
Vision—-ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23-27, 2022,
Proceedings, Part XVII. Springer, 579-596.

Sharon Lin, Daniel Ritchie, Matthew Fisher, and Pat Hanrahan. 2013. Proba-
bilistic color-by-numbers: Suggesting pattern colorizations using factor graphs.
ACM Transactions on Graphics (TOG) 32, 4 (2013), 1-12.

Dani Lischinski, Zeev Farbman, Matt Uyttendaele, and Richard Szeliski. 2006. In-
teractive local adjustment of tonal values. ACM Transactions on Graphics (TOG)
25, 3 (2006), 646-653.

Yifan Liu, Zengchang Qin, Zhenbo Luo, and Hua Wang. 2017. Auto-painter: Car-
toon image generation from sketch by using conditional generative adversarial
networks. arXiv preprint arXiv:1705.01908 (2017).

Raphael Gontijo Lopes, David Ha, Douglas Eck, and Jonathon Shlens. 2019.
A learned representation for scalable vector graphics. In Proceedings of the
IEEE/CVF International Conference on Computer Vision. 7930-7939.

Pinjie Lv, Xinyue Wang, and Chengqi Xue. 2021. Research on Automatic Recog-
nition Method of Icon Style. In 2021 22nd IEEE International Conference on Indus-
trial Technology (ICIT), Vol. 1. IEEE, 931-935.

Yutaka Matsuda. 1995. Color design. Asakura Shoten 2, 4 (1995), 10.

Parry Moon and Domina Eberle Spencer. 1944. Geometric formulation of classi-
cal color harmony. JOSA 34, 1 (1944), 46-59.

Peter O’'Donovan, Aseem Agarwala, and Aaron Hertzmann. 2011. Color com-
patibility from large datasets. In ACM SIGGRAPH 2011 papers. 1-12.

Li-Chen Ou, Patrick Chong, M Ronnier Luo, and Carl Minchew. 2011. Additivity
of colour harmony. Color Research & Application 36, 5 (2011), 355-372.

Li-Chen Ou and M Ronnier Luo. 2006. A colour harmony model for two-colour
combinations. Color Research & Application: Endorsed by Inter-Society Color
Council, The Colour Group (Great Britain), Canadian Society for Color, Color Sci-
ence Association of Japan, Dutch Society for the Study of Color, The Swedish Colour
Centre Foundation, Colour Society of Australia, Centre Francais de la Couleur 31,
3 (2006), 191-204.

Pradyumna Reddy, Michael Gharbi, Michal Lukac, and Niloy J Mitra. 2021.
Im2vec: Synthesizing vector graphics without vector supervision. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 7342—
7351.

Erik Reinhard, Michael Adhikhmin, Bruce Gooch, and Peter Shirley. 2001. Color
transfer between images. IEEE Computer graphics and applications 21, 5 (2001),
34-41.

Leo Sampaio Ferraz Ribeiro, Tu Bui, John Collomosse, and Moacir Ponti. 2020.
Sketchformer: Transformer-based representation for sketched structure. In Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recognition.
14153-14162.

I-Chao Shen and Bing-Yu Chen. 2021. Clipgen: A deep generative model for
clipart vectorization and synthesis. IEEE Transactions on Visualization and Com-
puter Graphics 28, 12 (2021), 4211-4224.

Tsai-Ho Sun, Chien-Hsun Lai, Sai-Keung Wong, and Yu-Shuen Wang. 2019. Ad-
versarial colorization of icons based on contour and color conditions. In Proceed-
ings of the 27th ACM International Conference on Multimedia. 683-691.

Yu-Wing Tai, Jiaya Jia, and Chi-Keung Tang. 2005. Local color transfer via prob-
abilistic segmentation by expectation-maximization. In 2005 IEEE Computer So-
ciety Conference on Computer Vision and Pattern Recognition (CVPR’05), Vol. 1.
IEEE, 747-754.

Masataka Tokumaru, Noriaki Muranaka, and Shigeru Imanishi. 2002. Color de-
sign support system considering color harmony. In FUZZ-IEEE 02, Vol. 1. IEEE,
378-383.

Baoyuan Wang, Yizhou Yu, Tien-Tsin Wong, Chun Chen, and Ying-Qing Xu.
2010. Data-driven image color theme enhancement. ACM Transactions on Graph-
ics (TOG) 29, 6 (2010), 1-10.

Baoyuan Wang, Yizhou Yu, and Ying-Qing Xu. 2011. Example-based image color
and tone style enhancement. ACM Transactions on Graphics (TOG) 30, 4 (2011),
1-12.

Xiaohui Wang, Jia Jia, and Lianhong Cai. 2013. Affective image adjustment with
a single word. The Visual Computer 29 (2013), 1121-1133.

Yizhi Wang and Zhouhui Lian. 2021. DeepVecFont: Synthesizing high-quality
vector fonts via dual-modality learning. ACM Transactions on Graphics (TOG)
40, 6 (2021), 1-15.

Peng Xu, Yongye Huang, Tongtong Yuan, Kaiyue Pang, Yi-Zhe Song, Tao Xiang,
Timothy M Hospedales, Zhanyu Ma, and Jun Guo. 2018. Sketchmate: Deep hash-
ing for million-scale human sketch retrieval. In Proceedings of the IEEE conference
on computer vision and pattern recognition. 8090-8098.

Jae-Doug Yoo, Min-Ki Park, Ji-Ho Cho, and Kwan H Lee. 2013. Local color trans-
fer between images using dominant colors. Journal of Electronic Imaging 22, 3
(2013), 033003-033003.

Mohammad Zaeimi and Ali Ghoddosian. 2020. Color harmony algorithm: an art-
inspired metaheuristic for mathematical function optimization. Soft Computing
24 (2020), 12027-12066.

Lvmin Zhang, Yi Ji, Xin Lin, and Chunping Liu. 2017. Style transfer for anime
sketches with enhanced residual u-net and auxiliary classifier gan. In 2017 4th
IAPR Asian conference on pattern recognition (ACPR). IEEE, 506-511.

Lvmin Zhang, Chengze Li, Tien-Tsin Wong, Yi Ji, and Chunping Liu. 2018. Two-
stage sketch colorization. ACM Transactions on Graphics (TOG) 37, 6 (2018),
1-14.

Qing Zhang, Chunxia Xiao, Hanqiu Sun, and Feng Tang. 2017. Palette-based
image recoloring using color decomposition optimization. IEEE Transactions on
Image Processing 26, 4 (2017), 1952-1964.

Richard Zhang, Phillip Isola, and Alexei A Efros. 2016. Colorful image coloriza-
tion. In ECCV 2016. Springer, 649-666.

Richard Zhang, Jun-Yan Zhu, Phillip Isola, Xinyang Geng, Angela S Lin, Tianhe
Yu, and Alexei A Efros. 2017. Real-time user-guided image colorization with
learned deep priors. arXiv preprint arXiv:1705.02999 (2017).

Xu-Yao Zhang, Fei Yin, Yan-Ming Zhang, Cheng-Lin Liu, and Yoshua Bengio.
2017. Drawing and recognizing chinese characters with recurrent neural net-
work. IEEE transactions on pattern analysis and machine intelligence 40, 4 (2017),
849-862.

Zhengxia Zou, Tianyang Shi, Shuang Qiu, Yi Yuan, and Zhenwei Shi. 2021. Styl-
ized neural painting. In Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition. 15689-15698.

	abstract
	1 Introduction
	2 Related Work
	2.1 Color Harmony Evaluation
	2.2 Reference-Based Colorization
	2.3 Image Recoloring
	2.4 Applications of Vector Graphics

	3 Method
	3.1 Feature Extraction
	3.2 Color Prediction
	3.3 Uniformity Regulation
	3.4 Harmony Control
	3.5 Recoloring with Palettes

	4 Experiments
	4.1 Datasets
	4.2 Implementation Details
	4.3 Results and Comparison
	4.4 Ablation Studies

	5 Limitations
	6 Conclusion
	References

