
DEEP LEARNING BASED METHOD FOR 3D HUMAN POSE ESTIMATION

FROM 2D FISHEYE IMAGES

1
 Ching-Chun Chen (陳靖淳),

2
 Chia-Min Wu (吳佳珉) ,

3
 Bing-Yu Chen (陳炳宇)

1,2,3

 Communications and Multimedia Laboratory, Graduate Institute of Networking and

Multimedia, National Taiwan University, Taiwan

E-mail: r04944003@ntu.edu.tw

ABSTRACT

In this study, we propose a deep learning based method

to directly predict the human joint positions in 3D space

from 2D fisheye images captured in an egocentric

manner. The core of our method is a modified

Inception-v3 convolutional neural network featured the

larger convolution filter size, parameter reduction with

SELU activation function, long short-term memory

module, and the anthropomorphic constraints on the

training loss. We also conduct four experiments to study

the different effects upon the validation results when

using different training settings of our work. The

experience of our study may be helpful to develop more

complicated deep learning network in a reasonable

resource requirement to deal with the computer vision

problems.

Keywords Fisheye Image; 3D Human Pose Estimation;

Egocentric View; Convolutional Neural Networks;

Inception; LSTM; SELU; Anthropomorphic Constraints;

1. INTRODUCTION

In recent years, there have been some remarkable

breakthroughs in the research fields like the computer

vision and the virtual reality. Although some companies

have launched their first virtual reality HMDs (Head-

Mounted Display), the lack of high accuracy full-body

pose tracking techniques makes the adoptable human-

machine interaction mechanisms very limited. To deal

with such problem, exploiting the strong power of the

deep learning in the computer vision field may be the

most possible direction while trying to find the best

solution. In this study, we attempt to propose a deep

learning based method to directly predict the human

body joint positions in 3D space from the 2D fisheye

images captured in an egocentric manner.

2. RELATED WORK

We used the fisheye image datasets published by

Rhodin et al [1] to conduct our research experiment.

They proposed a framework that combined the deep

learning based prediction of human joint 2D coordinates

with the ray-casting based post-processing algorithm to

deal with the application used to track the human 3D

poses from the 2D fisheye video captured in an

egocentric manner. Chunyu Wang et al [2] also

published their work on how to combine deep learning

with traditional computer vision algorithms to

reconstruct the human poses in 3D space however they

targeted on normal images captured by the ordinary

perspective camera. To be the successor of Googlenet

[3], Szegedy et al [4] proposed their refined architecture

named Inception-v3 with several design principles

provided by them. Besides the powerful LSTM module

invented by Hochreiter et al [5] to deal with the gradient

vanishing problem in recurrent neural networks, SELU

activation function was also a distinguished deep

learning tool proposed by Klambauer et al [6] to make a

self-normalizing neural network.

3. DEEP LEARNING BASED METHOD

 Our deep learning based method is designed to be able

to estimate human 3D poses from only 2D fisheye

images. Generally speaking, our target is to make a very

simple workflow that only involves 2D images as input,

human body joint positions in 3D space as output, and

the deep learning network as the only processing unit,

without any other non deep-learning post-processing

algorithms.

To handle such a task which heavily depend on

visual features of full color bitmap images with large

size, convolutional neural networks are the best choices

for us. Since Alexnet [7] proved to the world that

convolutional neural network with 8 layers could be not

only efficient but also accurate on image category

classification with the computational power of modern

graphics processing units, there have been more and

more outstanding CNN networks proposed by those top

research teams.

Among these CNN networks with different

architecture and characteristics, we have found that

Inception-v3 [4] proposed by Google as the successor of

Base

Filter Concat

1×1

1×9

9×1

1×1

1×9

9×1

1×9

9×1

1×1

Pool

1×1

Figure 1: We set n = 9 instead of the

default n = 7 in the Inception module

proposed as Figure 6 in [4].

GoogleNet is very suitable to process 2D fisheye images,

the reason will be discussed in the paragraph under

subheading 3.1.

To sum up, the convolutional neural network which

we use in the workflow to predict 3D human pose from

2D fisheye images is mainly based on the Inception-v3.

However, instead of keeping the original architecture be

intact, we not only design the modified architecture for

Inception-v3 but also use some performance enhanced

techniques to make the network perform better on the

job we want it to do.

All the changes we have done to the Inception-v3

can be categorized into four groups: convolution filter

size, parameter reduction with SELU, long short-term

memory, and anthropomorphic constraints. We will give

explanation in detail under subheading 3.1, 3.2, 3.3, and

3.4.

Besides these main changes, we also remove the

fully-connected layer for logits and the softmax layer

for classification from the last part of Inception-v3

architecture because that these layers are designed to

handle classification problems. We use the regression

operations in the end of our modified Inception-v3 to

finish the prediction of 17 human joint positions in 3D

space. To get all of the 17 joint positions, our last

regression operation also has 17 sets of weight and bias

variables for the corresponding joints.

3.1. Convolution Filter Size

The original Inception-v3 architecture has some very

important structures that will be very powerful to

process 2D fisheye images. According to the

optimization principles proposed by Szegedy et al [4],

the larger filter size used in spatial aggregation of

convolutional layers can be factorize to smaller filter

size without expecting serious adverse effects because

there will not be much loss in representational power if

we can perform the factorizing operations correctly.

For example, performing the 5 × 5 convolution

operation once is equivalent to performing the 3 × 3

convolution operation twice. This is due to the first 3 ×

3 convolution operation with stride length 1 covering

the same processing area of the 5 × 5 convolution

operation can just form a suitable processing area for the

second 3 × 3 convolution operation and finally generate

a 1 × 1 spatial aggregation having the similar

representational power to the spatial aggregation

generated by just doing the 5 × 5 convolution operation

once.

On the basis of such principle, even one convolution

operation with the n × n filter size can be transformed

into two parallel or sequential convolution operations

with 1 × n filter size and n × 1 filter size respectively.

Although this kind of asymmetric filter shape is

originally designed to target the lower parameter count

and the lower computational power requirement, we

think prediction of human joint positions in 3D space

from 2D fisheye images can also benefit from it. Unlike

normal images captured by standard perspective

cameras, straight lines in the real world will become

curves in fisheye images when they are captured by

fisheye cameras. As a result, visual features in fisheye

images are much more difficult to be learned by

symmetric convolution filter shapes with disadvantages

in curvature analysis abilities. Asymmetric convolution

Base

1×1

3×3

1×1

Pool

1×1

1×3

3×1

Filter Concat

Figure 2: We remove the second branch

from the Inception module proposed as

Figure 7 in [4].

filter shapes in the other hand can extract visual features

from curves in fisheye images more easily.

Finally, based on the Inception module proposed as

Figure 6 in [4], we decide to set n = 9 instead of the

default n = 7 for such structure (see Figure 1). By

setting the longer convolution filter size, the larger area

(17 × 17 for the first branch and 9 × 9 for the second

branch in Figure 1) can be processed when performing

convolutional operations in our neural network.

3.2. Parameter Reduction with SELU

Under this subheading we first explain what SELU is

and then we will show how SELU plays an important

role in our modified Inception-v3. Proposed by

Klambauer et al [6], “SELU” is the abbreviation of

“Scaled Exponential Linear Units”. The most striking

feature of SELU is that this is the first activation

function which can let a neural network be self-

normalizing.

Why is it important for a deep learning network to

perform normalization operation on data samples even

between layers and layers? Neural networks trained on

normalized data samples will have stabilizing gradients

between training iterations. Therefore, such neural

networks can reach the state of convergence much faster

than neural networks trained on data samples without

normalization. Besides, the annoying gradient vanishing

problems or gradient explosion problems can also be

mitigated by letting data samples be normalized.

There have been other methods proposed by some

research teams trying to achieve the same target. The

batch normalization network [8] is one of the best in

networks which make data samples normalized between

layers and layers. Generally speaking, the batch

normalization network has a whole layer designed

especially for data samples normalization between

layers and layers. Although the batch normalization

technique can perform very well on convolutional

neural networks and recurrent neural networks, success

stories of standard feed-forward neural networks with

the batch normalization technique are rare. Lacking the

weight sharing feature which is present at convolutional

neural networks and recurrent neural networks, the

standard feed-forward neural networks suffer from

perturbations such as stochastic gradient descent (SGD)

and stochastic regularization (Dropout).

After adding the LSTM module that we will give

explanation in detail under subheading 3.3, the

parameter count and the memory requirement of

Inception-v3 without architecture modification increase

a lot. To handle such a situation, we decide to remove

the second branch from the Inception module proposed

as Figure 7 in [4] (see Figure 2). However, while this

kind of method can reduce the parameter count and the

memory requirement to the same amount before adding

LSTM, the prediction accuracy on the validation set will

also decline.

Finally, we have found that replacing the ReLU

activation functions and the batch normalization

techniques used in our modified Inception-v3 with just

the SELU activation functions can strike a balance

between resource requirement (the parameter count and

the memory requirement) and prediction accuracy.

Setting the same fixed point in [6] that the mean

value of data samples at 0 and the variance value of data

samples at 1, we have the formula below to perform the

SELU operation with the 2 float point parameters

calculated by [6].

selu(𝑥) = 1.0507
𝑥 if 𝑥 > 0
1.6733𝑒𝑥 − 1.6733 if 𝑥 ≤ 0

 (1)

To achieve the initialization requirement of SELU,

we also change the initial STDDEV value of all the

weight variables to sqrt(1/n) in our modified Inception-

v3.

3.3. Long Short-Term Memory

Known as LSTM, this technique has been widely used

since it was proposed in 1997 by Hochreiter et al [5].

Although LSTM is mainly based on the idea of

recurrent neural networks, its structure with multi-gates

and cell state focuses on solving the gradient vanishing

problem and the gradient explosion problem between

the hidden layers at different timestamps.

The cell state C(t) in LSTM is used to save status

information at timestamp t. The forget gate in LSTM is

used to decide how much information recorded by the

C(t-1) should be retained and inherited by the C(t). The

input gate in LSTM is used to decide what kind of new

information should be added to the C(t) and this gate

also determines the strength of new information. Finally

the output gate in LSTM is used to generate the hidden

layer output at timestamp t.

Images which are used to train or predict the human

poses in 3D space are usually captured as video frames.

As a result, such an image dataset possesses many

sequential images. LSTM and recurrent neural networks

perform very well on predicting results from sequential

input data samples. We have found that adding the

LSTM module before the final regression operations of

our modified Inception-v3 can improve the prediction

accuracy on the validation set despite the increased

memory requirement which can be mitigated by the

method we propose under subheading 3.2.

3.4. Anthropomorphic Constraints

Inspired by the post-processing algorithm proposed by

Chunyu Wang et al [2], we think the anthropomorphic

constraints can be fused with our deep learning network.

When predicting human joint positions in 3D space

from 2D images, the torso joints and the head joints are

usually easier to be predicted than other human body

joints. The reason is that there is not much difference in

3D position of the torso joints or the head joints

between different human poses especially when the

images are captured in an egocentric manner. On the

other hand, the 3D positions of the joints of human

limbs always vary a lot with different human poses.

To fuse the anthropomorphic constraints with our

deep learning network, we design a weight parameter

for every human limb joint. This weight parameter will

be used to determine how strong will the loss value

(error distance between the predicted value and the

ground truth value) of a single limb joint affect the final

aggregated loss value from all the body joints while

training the neural network:

Loss𝑇𝑜𝑡𝑎𝑙 ≔ 0

For each body joint 𝑗 in the limb set:
 Loss𝑇𝑜𝑡𝑎𝑙 ∶= Loss𝑇𝑜𝑡𝑎𝑙 + Weight𝑗 × Loss𝑗 (2)

For each body joint 𝑘 not in the limb set:
 Loss𝑇𝑜𝑡𝑎𝑙 ∶= Loss𝑇𝑜𝑡𝑎𝑙 + Loss𝑘

Where the joints in the limb set are the joints with ticks

in the following table (we use the same human body

joints definition as EgoCap [1]):

Table 1: The joints in the limb set.

Joint Name Limbs

Neck

Left Shoulder

Left Elbow

Left Wrist

Left Finger

Right Shoulder

Right Elbow

Right Wrist

Right Finger

Left Hip

Left Knee

Left Ankle

Left Toe

Right Hip

Right Knee

Right Ankle

Right Toe

4. EXPERIMENT RESULT

All of the following experiment results are obtained

with our modified Inception-v3 trained and validated on

the sequence of 750 2D fisheye image sets of gesturing

and interaction provided by EgoCap [1] with joint

position ground truth in 3D space.

4.1. Experiment Environment

In the 750 2D fisheye image sets, one image in each

image set is captured by the left fisheye camera setting

on the head of the subject in an egocentric manner, the

0

20000000

40000000

60000000

80000000

10000000

12000000

14000000

16000000

P
ar

am
e

te
r

C
o

u
n

t

nonLSTM

LSTM

L_Red_Selu

10
15
20
25
30
35
40
45
50

2
0

0
0

2
1

0
0

2
2

0
0

2
3

0
0

2
4

0
0

2
5

0
0

2
6

0
0

2
7

0
0

2
8

0
0

2
9

0
0

3
0

0
0

Th
e

 E
rr

o
r

D
is

ta
n

ce
 I

n
 m

m

Epoch

nonLSTM
LSTM
L_Red_Selu

19.7717 18.7192

14.2747

0

5

10

15

20

25

30

35

Th
e

 L
o

w
e

st
 E

rr
o

r
D

is
ta

n
ce

 I
n

 m
m

nonLSTM

LSTM

L_Red_Selu

Figure 3: Histogram of

parameter counts between

tested networks.

Figure 4: The curves of average error

distance per joint between epoch 2000 and

epoch 3000. “L_Red_Selu” means the

parameter reduction version of Inception-

v3 with LSTM and SELU.

Figure 5: The lowest mean value of average

error distance per joint which the tested

networks can reach. The black error bars

represent the standard deviation.

other is captured by the right fisheye camera at the same

time. To preprocess the dataset before we start the

experiments, we first crop the left-eye images and the

right-eye images to the same size of 1000 × 1000, and

then resize them to the size of 331 × 331 that slightly

larger than the modified Inception-v3 input size of 299

× 299 for random cropping when training. After the

above-mentioned procedure, all of the images will be

processed with the minmax_scale(-1, 1) function of

scikit-learn (a python library) to finish the initial

normalization. Finally, we divide the sample image sets

to 750 / T groups, and then we randomly choose 60 / T

groups of image sets to be the validation dataset. The

reaming groups of image sets as the training dataset will

be used to train our modified Inception-v3. The

parameter T is prepared for our LSTM module when

training and validating, we set it to 5. Tesla P100 with

16GB memory and Tesla K80 with 12GB memory (one

core) are the GPUs we used to train and validate on the

dataset with our modified Inception-v3. In the following

experiments, we define the mean value of average error

(Euler distance in millimeter between the ground truth

and the prediction) per joint across all the validation

samples as the validation accuracy in one training epoch.

In the end, we compare the performance of different

training settings with each other according to the highest

validation accuracy they can reach.

4.2. Evaluation

In the first experiment, we compare the performance

between the original Inception-v3 without the LSTM

module, the original Inception-v3 with the LSTM

module (set the period parameter T as 5), and the

parameter reduction version of Inception-v3 with LSTM

and SELU (set T as 5). All the other training parameters

and experiment variables of them remain the same. We

set the batch size as 30, the learning rate as 1e-5, the

max training epoch as 10000 (3000 for the reduction

version with SELU and LSTM), the convolution filter

size as default, and the anthropomorphic constraint

weight for limb joints as 1.4. Although the parameter

count of the original Inception-v3 with the LSTM

module is 3.478 times (see Figure 3) as great as the

parameter count of the original Inception-v3 without the

LSTM module, the former is not only trained much

faster (see Figure 4) but also more accurate than the

latter by 5.62% (see Figure 5). Among the three

networks validated, the parameter reduction version of

Inception-v3 with LSTM and SELU has the modest

parameter count (see Figure 3) and the fastest training

speed (see Figure 4) while being the most accurate.

13

15

17

19

21

23

25

Th
e

 E
rr

o
r

D
is

ta
n

ce
 I

n
 m

m

Epoch

L_Red_Selu_S7

L_Red_Selu_S9

L_Red_Selu_S11

14.2747 13.2677
16.5932

0

5

10

15

20

25

30

35

Th
e

 L
o

w
e

st
 E

rr
o

r
D

is
ta

n
ce

 I
n

 m
m

L_Red_Selu_S7
L_Red_Selu_S9
L_Red_Selu_S11

13

15

17

19

21

23

25

2
0

0
0

2
1

0
0

2
2

0
0

2
3

0
0

2
4

0
0

2
5

0
0

2
6

0
0

2
7

0
0

2
8

0
0

2
9

0
0

3
0

0
0

Th
e

 E
rr

o
r

D
is

ta
n

ce
 I

n
 m

m

Epoch

L_Red_Selu_T1

L_Red_Selu_T3

L_Red_Selu_T5

15.1650 14.5395 14.2747

0

5

10

15

20

25

30

35

Th
e

 L
o

w
e

st
 E

rr
o

r
D

is
ta

n
ce

 I
n

 m
m

L_Red_Selu_T1

L_Red_Selu_T3

L_Red_Selu_T5

Figure 6: Curves of average error distance

per joint between epoch 2000 and epoch

3000. “S9” means kernel shape n = 9.

Figure 7: The lowest mean value of average

error distance per joint.

Figure 8: Curves of average error distance

per joint between epoch 2000 and epoch

3000. “T5” means period parameter T = 5.

Figure 9: The lowest mean value of average

error distance per joint which the tested

networks with different T can reach.

(More accurate than nonLSTM by 38.5%; More

accurate than LSTM by 31.1%. See Figure 5)

In the second experiment, we compare the

performance between the parameter reduction version of

Inception-v3 networks with LSTM, SELU, and different

convolution filter shapes (7, 9, and 11). All the other

training parameters and experiment variables of them

remain the same. We set the batch size as 30, the

learning rate as 1e-5, the max training epoch as 3000,

the period parameter T as 5, and the anthropomorphic

constraint weight for limb joints as 1.4. Among the three

networks validated, the parameter reduction version of

Inception-v3 network with LSTM, SELU, and the

convolution filter shape of 9 has the fastest training

speed (see Figure 6) while being the most accurate.

(More accurate than the shape of 7 by 7.6%; More

accurate than the shape of 11 by 16.2%. See Figure 7)

In the third experiment, we compare the

performance between the parameter reduction version of

Inception-v3 networks with LSTM, SELU, and different

period parameters T (1, 3, and 5). All the other training

parameters and experiment variables of them remain the

same. We set the batch size as 30, the learning rate as

1e-5, the max training epoch as 3000, the convolution

filter size as default, and the anthropomorphic constraint

weight for limb joints as 1.4. Among the three networks

validated, the parameter reduction version of Inception-

v3 network with LSTM, SELU, and the period

parameter T of 5 has the fastest training speed (see

Figure 8) while being the most accurate. (More accurate

than the T of 3 by 1.9%; More accurate than the T of 1

by 6.2%. See Figure 9)

In the fourth experiment, we compare the

performance between the parameter reduction version of

Inception-v3 networks with LSTM, SELU, and different

anthropomorphic constraint weights for limb joints (1.0,

1.2, 1.4, and 1.6). All the other training parameters and

experiment variables of them remain the same. We set

the batch size as 30, the learning rate as 1e-5, the max

training epoch as 3000, the convolution filter size as

default, and the period parameter T as 5. Among the

four networks validated, the parameter reduction version

of Inception-v3 network with LSTM, SELU, and the

constraint weight of 1.2 has the fastest training speed

(see Figure 10) while being the most accurate. (More

accurate than the weight of 1.0 by 7.8%; More accurate

than the weight of 1.4 by 8.9%; More accurate than the

weight of 1.6 by 13.6%. See Figure 11)

Compared with the accuracy reached by EgoCap [1]

on predicting human joint 3D positions from the same

sequence of 750 2D fisheye image sets, our work is

more accurate by 434.2%. (see Figure 12)

Finally, we draw the prediction of the joint positions

and the ground truth of the joint positions in the same

time to make our readers know what accuracy our work

can reach at a glance. (See Figure 13)

13

15

17

19

21

23

25

Th
e

 E
rr

o
r

D
is

ta
n

ce
 I

n
 m

m

Epoch

L_Red_Selu_W1.0
L_Red_Selu_W1.2
L_Red_Selu_W1.4
L_Red_Selu_W1.6

14.125613.102814.274714.8852

0

5

10

15

20

25

30

35

Th
e

 L
o

w
e

st
 E

rr
o

r
D

is
ta

n
ce

 I
n

 m
m

L_Red_Selu_W1.0
L_Red_Selu_W1.2
L_Red_Selu_W1.4
L_Red_Selu_W1.6

13.1028

70

0

20

40

60

80

100

Th
e

 E
rr

o
r

D
is

ta
n

ce
 I

n
 m

m Our Result

EgocCap

Figure 10: Curves of average error distance

per joint between epoch 2000 and epoch

3000. “W1.2” means constraint weight = 12.

Figure 11: The lowest mean value of average

error distance per joint which the tested

networks with different weights can reach.

Figure 12: Comparison between our prediction

error distance and the prediction error distance

of EgoCap on the same dataset.

Figure 13: The gray points

and the black lines are the

ground truth. The red

points and the green lines

are our predictions. The

points represent the joints

while the lines represent

the bones between the

joints.

5. CONCLUSIONS

To find the deep learning based method that can directly

predict the human body joint positions in 3D space from

the 2D fisheye images captured in an egocentric manner,

we have proposed the modified architecture of the

Inception-v3 convolutional neural network with some

performance enhanced techniques such as LSTM,

SELU, and anthropomorphic constraints.

Featured with the modest parameter count and the

memory requirement, our work has shown that it can

reach higher accuracy than the original Inception-v3 in

our first experiment. In other experiments, we have also

demonstrated the different effects upon the validation

results when using different training settings of our

work. Compared with the EgoCap [1], our work can be

much more accurate when predicting on the same

fisheye image dataset.

REFERENCES

[1] H. Rhodin, C. Richardt, D Casas, E Insafutdinov, M

Shafiei, H. P. Seidel, B. Schiele, and C. Theobalt,

“EgoCap: Egocentric Marker-less Motion Capture with

Two Fisheye Cameras”, ACM Transactions on Graphics

(TOG), Vol. 35, No.162, 2016.

[2] C. Wang, Y. Wang, Z. Lin, A. L. Yuille, and W. Gao,

“Robust Estimation of 3D Human Poses from a Single

Image”, In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pp. 1106–1113, 2014.

[3] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D.

Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich,

“Going deeper with convolutions”, In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2014.

[4] C. Szegedy, V. vanhoucke, S. Ioffe, and J. Shlens,

“Rethinking the Inception Architecture for Computer

Vision”, In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2016.

[5] S. Hochreiter, and J. Schmidhuber, “Long Short-Term

Memory”, Neural Computation, Vol. 9, pp. 1735-1780,

1997.

[6] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter,

“Self-Normalizing Neural Networks”, In Neural

Information Processing Systems (NIPS), 2017. (Accepted)

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet

Classification with Deep Convolutional Neural Networks”,

In Neural Information Processing Systems (NIPS), pp.

1097-1105, 2012.

[8] S. Ioffe, and C. Szegedy, “Batch normalization:

accelerating deep network training by reducing internal

covariate shift”, In International Conference on Machine

Learning (ICML), pp. 448-456, 2015.

