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ABSTRACT 

 

In this study, we propose a deep learning based method 

to directly predict the human joint positions in 3D space 

from 2D fisheye images captured in an egocentric 

manner. The core of our method is a modified 

Inception-v3 convolutional neural network featured the 

larger convolution filter size, parameter reduction with 

SELU activation function, long short-term memory 

module, and the anthropomorphic constraints on the 

training loss. We also conduct four experiments to study 

the different effects upon the validation results when 

using different training settings of our work. The 

experience of our study may be helpful to develop more 

complicated deep learning network in a reasonable 

resource requirement to deal with the computer vision 

problems. 
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1. INTRODUCTION  

 

In recent years, there have been some remarkable 

breakthroughs in the research fields like the computer 

vision and the virtual reality. Although some companies 

have launched their first virtual reality HMDs (Head-

Mounted Display), the lack of high accuracy full-body 

pose tracking techniques makes the adoptable human-

machine interaction mechanisms very limited. To deal 

with such problem, exploiting the strong power of the 

deep learning in the computer vision field may be the 

most possible direction while trying to find the best 

solution. In this study, we attempt to propose a deep 

learning based method to directly predict the human 

body joint positions in 3D space from the 2D fisheye 

images captured in an egocentric manner. 

 

2. RELATED WORK 

 

We used the fisheye image datasets published by 

Rhodin et al [1] to conduct our research experiment. 

They proposed a framework that combined the deep 

learning based prediction of human joint 2D coordinates 

with the ray-casting based post-processing algorithm to 

deal with the application used to track the human 3D 

poses from the 2D fisheye video captured in an 

egocentric manner. Chunyu Wang et al [2] also 

published their work on how to combine deep learning 

with traditional computer vision algorithms to 

reconstruct the human poses in 3D space however they 

targeted on normal images captured by the ordinary 

perspective camera. To be the successor of Googlenet 

[3], Szegedy et al [4] proposed their refined architecture 

named Inception-v3 with several design principles 

provided by them. Besides the powerful LSTM module 

invented by Hochreiter et al [5] to deal with the gradient 

vanishing problem in recurrent neural networks, SELU  

activation function was also a distinguished deep 

learning tool proposed by Klambauer et al [6] to make a 

self-normalizing neural network. 

 

3. DEEP LEARNING BASED METHOD 

 

 Our deep learning based method is designed to be able 

to estimate human 3D poses from only 2D fisheye 

images. Generally speaking, our target is to make a very 

simple workflow that only involves 2D images as input, 

human body joint positions in 3D space as output, and 

the deep learning network as the only processing unit, 

without any other non deep-learning post-processing 

algorithms. 

To handle such a task which heavily depend on 

visual features of full color bitmap images with large 

size, convolutional neural networks are the best choices 

for us. Since Alexnet [7] proved to the world that 

convolutional neural network with 8 layers could be not 

only efficient but also accurate on image category 

classification with the computational power of modern 

graphics processing units, there have been more and 

more outstanding CNN networks proposed by those top 

research teams.  

Among these CNN networks with different 

architecture and characteristics, we have found that 

Inception-v3 [4] proposed by Google as the successor of 
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Figure 1: We set n = 9 instead of the 

default n = 7 in the Inception module 

proposed as Figure 6 in [4]. 

GoogleNet is very suitable to process 2D fisheye images, 

the reason will be discussed in the paragraph under 

subheading 3.1. 

To sum up, the convolutional neural network which 

we use in the workflow to predict 3D human pose from 

2D fisheye images is mainly based on the Inception-v3. 

However, instead of keeping the original architecture be 

intact, we not only design the modified architecture for 

Inception-v3 but also use some performance enhanced 

techniques to make the network perform better on the 

job we want it to do. 

All the changes we have done to the Inception-v3 

can be categorized into four groups: convolution filter 

size, parameter reduction with SELU, long short-term 

memory, and anthropomorphic constraints. We will give 

explanation in detail under subheading 3.1, 3.2, 3.3, and 

3.4. 

Besides these main changes, we also remove the 

fully-connected layer for logits and the softmax layer 

for classification from the last part of Inception-v3 

architecture because that these layers are designed to 

handle classification problems. We use the regression 

operations in the end of our modified Inception-v3 to 

finish the prediction of 17 human joint positions in 3D 

space. To get all of the 17 joint positions, our last 

regression operation also has 17 sets of weight and bias 

variables for the corresponding joints. 

 
 

3.1. Convolution Filter Size  

 

The original Inception-v3 architecture has some very 

important structures that will be very powerful to 

process 2D fisheye images. According to the 

optimization principles proposed by Szegedy et al [4], 

the larger filter size used in spatial aggregation of 

convolutional layers can be factorize to smaller filter 

size without expecting serious adverse effects because 

there will not be much loss in representational power if 

we can perform the factorizing operations correctly.  

For example, performing the 5 × 5 convolution 

operation once is equivalent to performing the 3 × 3 

convolution operation twice. This is due to the first 3 × 

3 convolution operation with stride length 1 covering 

the same processing area of the 5 × 5 convolution 

operation can just form a suitable processing area for the 

second 3 × 3 convolution operation and finally generate 

a 1 × 1 spatial aggregation having the similar 

representational power to the spatial aggregation 

generated by just doing the 5 × 5 convolution operation 

once. 

On the basis of such principle, even one convolution 

operation with the n × n filter size can be transformed 

into two parallel or sequential convolution operations 

with 1 × n filter size and n × 1 filter size respectively. 

Although this kind of asymmetric filter shape is 

originally designed to target the lower parameter count 

and the lower computational power requirement, we 

think prediction of human joint positions in 3D space 

from 2D fisheye images can also benefit from it. Unlike 

normal images captured by standard perspective 

cameras, straight lines in the real world will become 

curves in fisheye images when they are captured by 

fisheye cameras. As a result, visual features in fisheye 

images are much more difficult to be learned by 

symmetric convolution filter shapes with disadvantages 

in curvature analysis abilities. Asymmetric convolution 
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Figure 2: We remove the second branch 

from the Inception module proposed as 

Figure 7 in [4]. 



filter shapes in the other hand can extract visual features 

from curves in fisheye images more easily. 

Finally, based on the Inception module proposed as 

Figure 6 in [4], we decide to set n = 9 instead of the 

default n = 7 for such structure (see Figure 1). By 

setting the longer convolution filter size, the larger area 

(17 × 17 for the first branch and 9 × 9 for the second 

branch in Figure 1) can be processed when performing 

convolutional operations in our neural network. 

 

3.2. Parameter Reduction with SELU 

 

Under this subheading we first explain what SELU is 

and then we will show how SELU plays an important 

role in our modified Inception-v3. Proposed by 

Klambauer et al [6], “SELU” is the abbreviation of 

“Scaled Exponential Linear Units”. The most striking 

feature of SELU is that this is the first activation 

function which can let a neural network be self-

normalizing.  

Why is it important for a deep learning network to 

perform normalization operation on data samples even 

between layers and layers? Neural networks trained on 

normalized data samples will have stabilizing gradients 

between training iterations. Therefore, such neural 

networks can reach the state of convergence much faster 

than neural networks trained on data samples without 

normalization. Besides, the annoying gradient vanishing 

problems or gradient explosion problems can also be 

mitigated by letting data samples be normalized. 

There have been other methods proposed by some 

research teams trying to achieve the same target. The 

batch normalization network [8] is one of the best in 

networks which make data samples normalized between 

layers and layers. Generally speaking, the batch 

normalization network has a whole layer designed 

especially for data samples normalization between 

layers and layers. Although the batch normalization 

technique can perform very well on convolutional 

neural networks and recurrent neural networks, success 

stories of standard feed-forward neural networks with 

the batch normalization technique are rare. Lacking the 

weight sharing feature which is present at convolutional 

neural networks and recurrent neural networks, the 

standard feed-forward neural networks suffer from 

perturbations such as stochastic gradient descent (SGD) 

and stochastic regularization (Dropout). 

After adding the LSTM module that we will give 

explanation in detail under subheading 3.3, the 

parameter count and the memory requirement of 

Inception-v3 without architecture modification increase 

a lot. To handle such a situation, we decide to remove 

the second branch from the Inception module proposed 

as Figure 7 in [4] (see Figure 2). However, while this 

kind of method can reduce the parameter count and the 

memory requirement to the same amount before adding 

LSTM, the prediction accuracy on the validation set will 

also decline. 

Finally, we have found that replacing the ReLU 

activation functions and the batch normalization 

techniques used in our modified Inception-v3 with just 

the SELU activation functions can strike a balance 

between resource requirement (the parameter count and 

the memory requirement) and prediction accuracy. 

Setting the same fixed point in [6] that the mean 

value of data samples at 0 and the variance value of data 

samples at 1, we have the formula below to perform the 

SELU operation with the 2 float point parameters 

calculated by [6]. 

 

selu(𝑥) = 1.0507  
𝑥                                       if 𝑥 > 0
1.6733𝑒𝑥 − 1.6733    if 𝑥 ≤ 0

     (1) 

 

To achieve the initialization requirement of SELU, 

we also change the initial STDDEV value of all the 

weight variables to sqrt(1/n) in our modified Inception-

v3. 

 

3.3. Long Short-Term Memory 

 

Known as LSTM, this technique has been widely used 

since it was proposed in 1997 by Hochreiter et al [5]. 

Although LSTM is mainly based on the idea of 

recurrent neural networks, its structure with multi-gates 

and cell state focuses on solving the gradient vanishing 

problem and the gradient explosion problem between 

the hidden layers at different timestamps.  

The cell state C(t) in LSTM is used to save status 

information at timestamp t. The forget gate in LSTM is 

used to decide how much information recorded by the 

C(t-1) should be retained and inherited by the C(t). The 

input gate in LSTM is used to decide what kind of new 

information should be added to the C(t) and this gate 

also determines the strength of new information. Finally 

the output gate in LSTM is used to generate the hidden 

layer output at timestamp t. 

Images which are used to train or predict the human 

poses in 3D space are usually captured as video frames. 

As a result, such an image dataset possesses many 

sequential images. LSTM and recurrent neural networks 

perform very well on predicting results from sequential 

input data samples. We have found that adding the 

LSTM module before the final regression operations of 

our modified Inception-v3 can improve the prediction 

accuracy on the validation set despite the increased 

memory requirement which can be mitigated by the 

method we propose under subheading 3.2. 

 

3.4. Anthropomorphic Constraints 

 

Inspired by the post-processing algorithm proposed by 

Chunyu Wang et al [2], we think the anthropomorphic 

constraints can be fused with our deep learning network. 

When predicting human joint positions in 3D space 

from 2D images, the torso joints and the head joints are 

usually easier to be predicted than other human body 

joints. The reason is that there is not much difference in 



3D position of the torso joints or the head joints 

between different human poses especially when the 

images are captured in an egocentric manner. On the 

other hand, the 3D positions of the joints of human 

limbs always vary a lot with different human poses.  

To fuse the anthropomorphic constraints with our 

deep learning network, we design a weight parameter 

for every human limb joint. This weight parameter will 

be used to determine how strong will the loss value 

(error distance between the predicted value and the 

ground truth value) of a single limb joint affect the final 

aggregated loss value from all the body joints while 

training the neural network: 

 

Loss𝑇𝑜𝑡𝑎𝑙  ≔  0 

For each body joint 𝑗 in the limb set: 
        Loss𝑇𝑜𝑡𝑎𝑙 ∶=  Loss𝑇𝑜𝑡𝑎𝑙  + Weight𝑗 × Loss𝑗       (2) 

For each body joint 𝑘 not in the limb set: 
        Loss𝑇𝑜𝑡𝑎𝑙 ∶=  Loss𝑇𝑜𝑡𝑎𝑙  + Loss𝑘  

 

Where the joints in the limb set are the joints with ticks 

in the following table (we use the same human body 

joints definition as EgoCap [1]):  

 

Table 1: The joints in the limb set. 

Joint Name Limbs 

Neck  

Left Shoulder  

Left Elbow  

Left Wrist  

Left Finger  

Right Shoulder  

Right Elbow  

Right Wrist  

Right Finger  

Left Hip  

Left Knee  

Left Ankle  

Left Toe  

Right Hip  

Right Knee  

Right Ankle  

Right Toe  

 

4. EXPERIMENT RESULT 

 

All of the following experiment results are obtained 

with our modified Inception-v3 trained and validated on 

the sequence of 750 2D fisheye image sets of gesturing 

and interaction provided by EgoCap [1] with joint 

position ground truth in 3D space.  

 

 

 

 
 

4.1. Experiment Environment 

 

In the 750 2D fisheye image sets, one image in each 

image set is captured by the left fisheye camera setting 

on the head of the subject in an egocentric manner, the 
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Figure 3: Histogram of 

parameter counts between 

tested networks. 

Figure 4: The curves of average error 

distance per joint between epoch 2000 and 

epoch 3000. “L_Red_Selu” means the 

parameter reduction version of Inception-

v3 with LSTM and SELU. 

Figure 5: The lowest mean value of average 

error distance per joint which the tested 

networks can reach. The black error bars 

represent the standard deviation. 



other is captured by the right fisheye camera at the same 

time. To preprocess the dataset before we start the 

experiments, we first crop the left-eye images and the 

right-eye images to the same size of 1000 × 1000, and 

then resize them to the size of 331 × 331 that slightly 

larger than the modified Inception-v3 input size of 299 

× 299 for random cropping when training. After the 

above-mentioned procedure, all of the images will be 

processed with the minmax_scale(-1, 1) function of 

scikit-learn (a python library) to finish the initial 

normalization. Finally, we divide the sample image sets 

to 750 / T groups, and then we randomly choose 60 / T 

groups of image sets to be the validation dataset. The 

reaming groups of image sets as the training dataset will 

be used to train our modified Inception-v3. The 

parameter T is prepared for our LSTM module when 

training and validating, we set it to 5. Tesla P100 with 

16GB memory and Tesla K80 with 12GB memory (one 

core) are the GPUs we used to train and validate on the 

dataset with our modified Inception-v3. In the following 

experiments, we define the mean value of average error 

(Euler distance in millimeter between the ground truth 

and the prediction) per joint across all the validation 

samples as the validation accuracy in one training epoch. 

In the end, we compare the performance of different 

training settings with each other according to the highest 

validation accuracy they can reach.  

 

 

 

 
4.2. Evaluation 

 

In the first experiment, we compare the performance 

between the original Inception-v3 without the LSTM 

module, the original Inception-v3 with the LSTM 

module (set the period parameter T as 5), and the 

parameter reduction version of Inception-v3 with LSTM 

and SELU (set T as 5). All the other training parameters 

and experiment variables of them remain the same. We 

set the batch size as 30, the learning rate as 1e-5, the 

max training epoch as 10000 (3000 for the reduction 

version with SELU and LSTM), the convolution filter 

size as default, and the anthropomorphic constraint 

weight for limb joints as 1.4. Although the parameter 

count of the original Inception-v3 with the LSTM 

module is 3.478 times (see Figure 3) as great as the 

parameter count of the original Inception-v3 without the 

LSTM module, the former is not only trained much 

faster (see Figure 4) but also more accurate than the 

latter by 5.62% (see Figure 5). Among the three 

networks validated, the parameter reduction version of 

Inception-v3 with LSTM and SELU has the modest 

parameter count (see Figure 3) and the fastest training 

speed (see Figure 4) while being the most accurate. 
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Figure 6: Curves of average error distance 

per joint between epoch 2000 and epoch 

3000. “S9” means kernel shape n = 9. 

Figure 7: The lowest mean value of average 

error distance per joint. 

Figure 8: Curves of average error distance 

per joint between epoch 2000 and epoch 

3000. “T5” means period parameter T = 5. 

Figure 9: The lowest mean value of average 

error distance per joint which the tested 

networks with different T can reach. 



(More accurate than nonLSTM by 38.5%; More 

accurate than LSTM by 31.1%. See Figure 5)  

 

 
In the second experiment, we compare the 

performance between the parameter reduction version of 

Inception-v3 networks with LSTM, SELU, and different 

convolution filter shapes (7, 9, and 11). All the other 

training parameters and experiment variables of them 

remain the same. We set the batch size as 30, the 

learning rate as 1e-5, the max training epoch as 3000, 

the period parameter T as 5, and the anthropomorphic 

constraint weight for limb joints as 1.4. Among the three 

networks validated, the parameter reduction version of 

Inception-v3 network with LSTM, SELU, and the 

convolution filter shape of 9 has the fastest training 

speed (see Figure 6) while being the most accurate. 

(More accurate than the shape of 7 by 7.6%; More 

accurate than the shape of 11 by 16.2%. See Figure 7) 

In the third experiment, we compare the 

performance between the parameter reduction version of 

Inception-v3 networks with LSTM, SELU, and different 

period parameters T (1, 3, and 5). All the other training 

parameters and experiment variables of them remain the 

same. We set the batch size as 30, the learning rate as 

1e-5, the max training epoch as 3000, the convolution 

filter size as default, and the anthropomorphic constraint 

weight for limb joints as 1.4. Among the three networks 

validated, the parameter reduction version of Inception-

v3 network with LSTM, SELU, and the period 

parameter T of 5 has the fastest training speed (see 

Figure 8) while being the most accurate. (More accurate 

than the T of 3 by 1.9%; More accurate than the T of 1 

by 6.2%. See Figure 9) 

In the fourth experiment, we compare the 

performance between the parameter reduction version of 

Inception-v3 networks with LSTM, SELU, and different 

anthropomorphic constraint weights for limb joints (1.0, 

1.2, 1.4, and 1.6). All the other training parameters and 

experiment variables of them remain the same. We set 

the batch size as 30, the learning rate as 1e-5, the max 

training epoch as 3000, the convolution filter size as 

default, and the period parameter T as 5. Among the 

four networks validated, the parameter reduction version 

of Inception-v3 network with LSTM, SELU, and the 

constraint weight of 1.2 has the fastest training speed 

(see Figure 10) while being the most accurate. (More 

accurate than the weight of 1.0 by 7.8%; More accurate 

than the weight of 1.4 by 8.9%; More accurate than the 

weight of 1.6 by 13.6%. See Figure 11) 

 
Compared with the accuracy reached by EgoCap [1] 

on predicting human joint 3D positions from the same 

sequence of 750 2D fisheye image sets, our work is 

more accurate by 434.2%. (see Figure 12) 

Finally, we draw the prediction of the joint positions 

and the ground truth of the joint positions in the same 

time to make our readers know what accuracy our work 

can reach at a glance. (See Figure 13) 
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Figure 10: Curves of average error distance 

per joint between epoch 2000 and epoch 

3000. “W1.2” means constraint weight = 12. 

Figure 11: The lowest mean value of average 

error distance per joint which the tested 

networks with different weights can reach. 

Figure 12: Comparison between our prediction 

error distance and the prediction error distance 

of EgoCap on the same dataset. 

Figure 13: The gray points 

and the black lines are the 

ground truth. The red 

points and the green lines 

are our predictions. The 

points represent the joints 

while the lines represent 

the bones between the 

joints. 



 

5. CONCLUSIONS 

 

To find the deep learning based method that can directly 

predict the human body joint positions in 3D space from 

the 2D fisheye images captured in an egocentric manner, 

we have proposed the modified architecture of the 

Inception-v3 convolutional neural network with some 

performance enhanced techniques such as LSTM, 

SELU, and anthropomorphic constraints. 

Featured with the modest parameter count and the 

memory requirement, our work has shown that it can 

reach higher accuracy than the original Inception-v3 in 

our first experiment. In other experiments, we have also 

demonstrated the different effects upon the validation 

results when using different training settings of our 

work. Compared with the EgoCap [1], our work can be 

much more accurate when predicting on the same 

fisheye image dataset.  
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