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Abstract 
 

Developing intuitive and efficient methods for shape 
editing is one of the most important areas in computer 
graphics, and free-form deformation (FFD), which is one 
of such methods, allows the user to deform a model easily 
by moving a set of control points, collectively called the 
lattice. Although the FFD method can be used for both 
global and local deformations, the user must define a 
suitable lattice manually or use a simple shaped lattice 
such as a parallelepiped. Therefore, we propose a new 
FFD method that automatically generates the lattices with 
which both types of deformations can be achieved. 

Our method refines a bounding box of the model and 
generates a set of finer lattices, which hierarchically ap-
proximate the shape of the model. Through adjusting the 
control points of the generated lattices, both global and 
local deformations of the model can be achieved easily. 
Moreover, the method allows hierarchical deformation of 
the model by combining different levels of lattice. 
 
1.  Introduction 
 

Recently, complex and detailed 3D models have be-
come widely used in many fields such as the movies, 
computer games, and so on. Such elaborate models fasci-
nate a lot of people, so that not only professional users but 
also amateur hobbyists are interested in making such 
models. Hence, useful methods for 3D shape design, 
modification, and animation have become more and more 
important in computer graphics. 

FFD [10] is one of the methods used for editing such 
models. It achieves a smooth deformation of the models in 
a model independent way; i.e. the user can deform a 
model without any knowledge of its mathematical back-
ground. Hence, it is highly popular among both profes-
sional and amateur users. 

The procedures of the FFD method are as follows: the 
user defines a deformable region of space by placing a set 
of control points, which together form a lattice. A model 
is then embedded in the deformable region. The user 
moves one or some of the control points to deform the 
deformable space and this is automatically passed onto the 
model. 

The FFD method allows the user to deform the model 
intuitively and efficiently, if the lattice is properly de-
signed. For example, the user can do global deformation 
such as bending, twisting, or tapering if the lattice is com-
prised of a few control points and the deformable space is 
large enough to contain all the vertices of the model to be 
deformed. On the other hand, he or she can do local de-
formation such as adding bumps if the lattice has a suit-
able density of the control points close to the region that is 
to be deformed. However, it is not easy to design suitable 
lattices and to capture the correspondence between lattices 
and the model to be deformed since the original FFD 
method allows only parallelepiped lattices. 

To solve this problem, researchers have introduced 
methods to generate more general lattice structures. Al-
though these methods allow a greater inventory of de-
formable space, some of them, e.g. extended free-form 
deformation (EFFD) [2], restrict the flexibility of the 
original method. MacCracken and Joy�s method [7] al-
lows lattices to have arbitrary topology, however, this 
cannot be applied to lattices with many control points 
since the computational cost is relatively high. Moreover, 
almost all of these methods concentrate only on deforma-
tion techniques with the available lattices, none of them 
have introduced a way to automatically generate appro-
priate lattices. Thus, the user must carry out the tedious 
task of defining lattices manually, and this obviously de-
creases his or her productivity. 

Other approaches for efficient and intuitive deforma-
tion are introduced by using an axis [6] or some wires 
[11] instead of a lattice. Although these methods provide a 
simpler user-interface than traditional ones, they also re-
strict the flexibility, and again, the user must manually 
define a suitable axis or wires. 

Therefore, in this paper, we propose a method to help 
users deform 3D models by generating FFD lattices auto-
matically while keeping the flexibility of the original FFD 
method. In our method a bounding box for the model is 
generated first, and this is also identified with the lattice. 
Then, the lattice is refined hierarchically and a set of lat-
tices called multiresolution lattices is generated, so that 
the user can select from them an appropriate lattice ac-
cording to his or her purpose, i.e. a lattice with a few con-
trol points for global deformation or a lattice closely ap-
proximating the shape of the model for local deformation. 
Moreover, by refining not only the unmodified lattices but 



also the modified ones, it is possible to do hierarchical 
deformation, with which the user can deform the model 
hierarchically without redefining the lattices from the 
bounding box. Thus, our approach liberates the user from 
defining lattices manually, strengthens the intuition of 
FFD, and increases the user�s productivity. 
 
2.  Automatic generation of multiresolution 

lattices 
 

Before describing the details of our method, we define 
the terms used throughout this paper by reference to [7]: 
• 

• 

• 

• 

s: 
• 
• 

• 

• 

• 

• 

A lattice is defined as a set of control points and an 
associated set of pairs that specifies the connectivity 
of the control points. 
An edge of the lattice is defined by two control 
points that are connected in the lattice. 
A face of the lattice is defined by a minimal con-
nected loop of control points. 
A cell of the lattice is the region of space bounded 
by a closed set of faces. 

Our deformation approach allows lattices with the 
following properties, called valid lattice

The lattice is well-connected. 
All cells of the lattice are closed, not containing any 
holes. 
The lattice is not self-intersecting. 

 
2.1.  Octree subdivision lattices 
 

To do the deformation, the region of the model to be 
deformed is first determined by the user. Although the 
region maybe cover the whole model or just only some 
parts of it, our approach can be applied to both types. 

Given the region to be deformed, our method makes 
the lattices hierarchically approximate to the shape of the 
region by repeating 3D subdivisions of the bounding box, 
which is identified with the lowest-level lattice of the mul-
tiresolution lattices. The lowest-level lattice could be an 
axis-aligned bounding box (AAB), an oriented bounding 
box (OBB) [3], or a minimum-volume bounding box. In 
most cases, we found that the OBB was the most intuitive 
lattice for the user since its axes follow the shape of the 
principal components of the region to be deformed. After 
defining the lowest-level lattice, we generate multiresolu-
tion lattices using octree subdivision rules that are similar 
to the rules for octree subdivision of 3D space. The lat-
tices produced by applying these rules consist of the fol-
lowing types of new control point: 

A cell control point is that defined by the average of 
the control points of the lattice which define the cell. 
A face control point is that defined by the average of 
the control points of the lattice which define the face. 
An edge control point is the midpoint of the edge. 

At each subdivision step, the above three types of con-
trol point are generated for each cell, face and edge of the 
lattice. These new control points and old control points 

are reconnected to create a new lattice according to the 
following reconnection rules: (1) each new cell control 
point is connected to the new face control points gener-
ated from the faces that define the old cell; (2) each new 
face control point is connected to the new edge control 
points generated from the edges that define the old face; 
(3) each new edge control point is connected to the two 
old control points that define the old edge. 

Using the octree subdivision rules, we generate octree 
subdivision lattices as follows: 
1. Define the lowest-level lattice. 
2. Create a finer lattice by applying the octree subdivi-

sion rules to the current-level lattice. 
3. Cut the cells of the new lattice that do not contain 

any vertex of the model. 
4. Repeat steps 2 and 3 until the lattice has user speci-

fied details. 
Since the lattices, which are generated by the above 

procedure, can approximate the shape of the model hier-
archically and are comprised of uniformly-located control 
points as shown in Figure 1, the user can do any level of 
deformation with ease and intuition. Moreover, since oc-
tree subdivision rules can be applied to any valid lattice, 
this method can be applied not only to unmodified lattices 
but also to the user-modified ones. This allows the user to 
do hierarchical deformation (see Section 4). 

 
(a)                           (b)                            (c) 

 
(d)                           (e)                            (f) 

Figure 1. Octree subdivision lattices generated 
for a whole horse model. (a) The lowest-level lat-
tice. (b) through (f) Finer lattices. 
 
2.2.  Extensions of octree subdivision lattices 
 

Although the octree subdivision lattices can approxi-
mate the shape of the model, they sometimes fail to do a 
sufficiently good approximation around its boundary, es-
pecially when the level of the lattice is low and each cell 
of the lattice is relatively large compared to the space oc-
cupied by the vertices of the model. Since it is desirable 
that the lattices approximate the model as closely as pos-
sible for intuitive deformation, we developed a method 
that improves the octree subdivision lattices. In this 
method, the control points on the boundary of each axis 



are moved close to the model along the axis while main-
taining a certain offset. We call the lattices generated by 
this method shrink octree subdivision lattices as shown in 
Figure 2 (a). These lattices are useful when the user de-
forms a model globally with low-level lattices that consist 
of a few cells. However, applying this method to a high-
level lattice often generates a lattice with scattered-
looking control points if we have no proper offset. There-
fore shrink octree subdivision lattices should normally be 
used for global deformation. 

  
(a)                                         (b) 

Figure 2. (a) A shrink octree subdivision lattice 
and (b) a local octree subdivision lattice corre-
sponding to Figure 1 (c). 

Although the user can do any level of deformation by 
selecting a proper lattice among multiresolution lattices, 
to make the user to focus on the regions of the model 
which he or she wants to deform locally, we also allow the 
user to apply octree subdivision rules only to user-
specified cells. This method is similar to the local subdivi-
sion proposed in [8]. Although it complicates the local 
topological structure, the resulting lattice is still valid as 
shown in Figure 3. This method adds much flexibility to 
the lattices, and allows the user to deform some regions of 
the model locally and the rest globally without redefining 
the lattices as shown in Figure 2 (b). 
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3.  Deformatio
 

To deform a 
the model within
lattice using the 
troduced by Mac

stood that we can parameterize each vertex more easily by 
regarding the lattice as b-spline volume when the lattice is 
comprised of only hexahedral cells, since the b-spline 
subdivision method is a special case of the Catmull-Clark 
subdivision method. However, if the lattice is locally 
subdivided, it cannot be regarded as b-spline volume. This 
is the reason why we use the Catmull-Clark subdivision. 
The Catmull-Clark subdivision method is applied to the 
user-editing lattice, and then produces a sequence of sub-
divided lattices that successively approximate the deform-
able space. Each vertex of the model is then parameter-
ized with the minimal cell of the subdivided lattices that 
contains the vertex. NOTICE: the subdivided lattices are 
different from the multiresolution lattices described in the 
previous section. The former ones are used only for 
parameterization, while the latter ones are actually dis-
played and modified by the user. 
 
3.1.  Property of Catmull-Clark subdivision vol-

umes 
 

The Catmull-Clark subdivision rules for producing 
subdivided lattices are described in Appendix. These sub-
divided lattices have some special features, which are 
used in our deformation process. One of the features is 
concerned with the connectivity of each control point. To 
describe them, we define the valence of a point within the 
cell of a lattice to be the number of the cell�s edges that 
connect the point. Given the cell of a lattice, the subdivi-
sion rules create a new cell at each point of the cell. The 
new cell generated at a point of valence v has 2v 4-sided 
faces, 2 points of valence v, and 2v points of valence 3. 
For example, a new cell generated at a point of valence 3 
has 6 4-sided faces and 8 points of valence 3, that is, a 
hexahedron. Additionally, we define a normal point to be 
a point whose valence is equal to 3 and an extraordinary 
point whose valence is not equal to 3. In the case of sim-
ple octree subdivision lattices (not locally subdivided), it 
can be easily proved that the Catmull-Clark subdivision 
rules produce subdivided lattices comprised of only nor-
mal points and hexahedral cells, and the number of cells 
multiplies by a factor of eight at each subdivision. Ex-
2 hexahedr
 
edra           1 nonahedron 
cal subdivision of a hexahedron. 

n process using one lattice 

model, we parameterize each vertex of 
 the deformable space defined by the 
Catmull-Clark subdivision volumes in-

Cracken and Joy [7]. It should be under-

traordinary points appear only when some of the cells are 
locally subdivided. Thus, the size of required memory 
space increases by a factor of about eight at each subdivi-
sion. 

Another feature is concerned with a local property of 
the subdivided lattices. As in the case of the Catmull-
Clark subdivision surfaces, each control point of the Cat-
mull-Clark subdivision volumes influences only limited 
regions of the volumes. This is explained by using the 
symmetric bivariate function dist, which is recursively 
defined by two control points: 

0),( =ppdist• , where p is a control point of the lat-
tice. 

• 1),( =qpdist , where p and q are different control 
points contained in the same cell. 

• 1),( += iqpdist , where p and q are different control 



points, , and there exists a con-
trol point s such that dist  and 
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Simple observation of the subdivision rules in Appen-
dix shows that at each subdivision step, one control point 
p does not influence the positions of the newly generated 
points generated for the cells, faces, edges, and points that 
contain at least one point outside of D  

. This property is used in our deforma-
tion algorithm described in the next section. 

,(|{ qpdistq

 
3.2.  Deformation algorithm 
 

Using the features of the Catmull-Clark subdivision 
volumes, we improved the deformation process outlined 
in [7]. The essence of deformation process is basically the 
same as the original FFD method in [10]. First, a lattice is 
defined by the user using our lattice generation method. 
Next, each vertex of the region of the model to be de-
formed is parameterized by using a sequence of the Cat-
mull-Clark subdivided lattices: each vertex is �tagged� 
with a pointer to the minimal cell of the subdivided lat-
tices that contains the vertex and its local coordinate in the 
cell. Then, the lattice is modified by the user. Finally, 
each vertex of the model is relocated by using its local 
coordinate in the minimal cell and a sequence of the sub-
divided lattices that are generated from the modified lat-
tice. However, there is a problem in the parameterization 
and relocation steps: to execute the Catmull-Clark subdi-
vision to a lattice, we must keep much of its topological 
information, which increases by a factor of eight with 
each subdivision step, thus intensively increasing the re-
quired memory space. Therefore, it is almost impossible 
to subdivide high-level octree subdivision lattices such as 
shown in Figure 1 (e) or (f) comprised of a great many 
cells used for local deformation. 

 
Figure 4. Subdivided lattice generated when the 
user moves the circled control point. 

Fortunately, if the user moves one control point p of a 
lattice, only the vertices of the model that are enclosed by 
the newly generated points for  
may be changed their positions since p does not influence 
the positions of newly generated points for the boundary 
of . Moreover, the newly generated points for the 
boundary of N  may be located outside of N , be-
cause they are influenced by N . Therefore, the candi-
date vertices of the model for relocation are all contained 
in the cells defined by . Finally, since the newly gen-
erated points for N  are influenced by N , we also 
have to take D  into consideration. In summary, when 

when one control point p of the lattice is moved by the 
user, it is sufficient to subdivide the cells consisted by 

 as shown in Figure 4, then parameterize and relo-
cate the vertices inside the cells consisted by . 
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Taking this into account, we define our deformation 
algorithm that use only one of the multiresolution lattices 
as follows: 
1. Multiresolution lattices are generated for the model 

to be deformed. 
2. One of the multiresolution lattices is selected by the 

user. 
3. The given model and the selected lattice are dupli-

cated to be two pairs A and B. Both of them contain 
a lattice and a model. In the following steps, a lattice 

 and a model  of the one pair A are displayed 
and deformed by the user, while the other lattice L  
and the other model  of the other pair B are used 
only for parameterization so that it is never displayed 
nor deformed.1 

4. A set of control points 
A

S  of the lattice L  is 
specified by the user as the moving points set. 

AL AM
B

BM

P

5. A set of control points 
B

S  of the lattice  that 
corresponds to  of  is specified. 

P
APS L

A
6. A set of subdivided lattices 

21 nB
is defined, where 

i
L  is a 

subdivided lattice generated by applying the Cat-
mull-Clark subdivision rules i times to 

},...,,{ BBBL LLLS =

4,4, q
Sq

S NN
P

BP ∈
= U . 

B
7. Each vertex of the model  contained in 

BP
 is 

parameterized with the minimal cell of the lattices in 
 that contains the vertex. 

BM

LS
B

8. The lattice AL  is modified by the user by moving the 
points in . S

AP
9. 

BL  is recalculated by using the corresponding con-
trol points . 
S

4,PSN
A

10. Each vertex of the model  contained in 3,AP
 is 

relocated by using the parameters of the correspond-
ing vertex of  calculated at step 7. 

11. Repeat steps 4 through 10 until the user finishes de-
formation. 

AM

BM

As in the algorithm in [7], the above algorithm cannot 
do exact deformation since the Catmull-Clark subdivi-
sions that approximate the deformable space are done 
only a finite number n times, which is described at step 6, 
and the deformation results are improved by increasing n. 
The most important point in our algorithm is that only a 
limited region of the lattice is subdivided, so that it can be 
applied to deformation with lattices of a great many cells. 
On the other hand, if the number of control points of the 
lattice is small enough, we subdivide the whole lattice and 
parameterize all the vertices of the model only once at the 
preprocess step. We need neither to subdivide at each 
change of the moving points set nor to store unmodified 
lattice and model. 
                                                           
1 Both  and  are necessary because appropriate teriza-

ay
BL BM

tion cannot be obtained with a deform



The local coordinate of each vertex in a cell is calcu-
lated in two ways as in [7]. For a hexahedral cell, it is 
calculated by trilinear interpolation. For other types of cell, 
we partition the cells into tetrahedra, and then calculate 
the weights of the four points of the tetrahedron that in-
clude the vertex. 
 
4.  Deformation process using multiresolution 

lattices 
 

The process for hierarchical deformation using more 
than one lattice of the multiresolution lattices is slightly 
different from the process of just using one lattice, which 
is described in the previous section, since the user could 
change the deformation levels from global to local and 
vice versa. 
 
4.1.  From global to local deformation 
 

Hierarchical deformation from global to local pro-
ceeds as follows: 
1. The user globally deforms the model with a low-

level lattice. 
2. A finer lattice is generated by applying the octree 

subdivision rules to the modified lattice. 
3. The user locally deforms the model with the finer 

lattice. 
4. Repeat steps 2 and 3 if a finer deformation is needed. 

To extend the algorithm in Section 3 to achieve this 
kind of hierarchical deformation is rather simple, but there 
is one problem caused by the difference between the oc-
tree subdivision and the Catmull-Clark subdivision rules. 

Let O and C be the maps from low-level lattice to 
high-level one defined by the octree and the Catmull-
Clark subdivision rules respectively, 0L  be the lowest-
level lattice, and i  be 0 , where i is the level of the 
multiresolution lattices. To deform the model by using iL , 
we first calculate a set of parameters P  of vertex set V 
using , which is generated by applying the Cat-
mull-Clark subdivision rules n times to L . After L  is 
modified by the user, L  is become , and each vertex 
in V are relocated by using . If we apply the octree 
subdivision rules to  now to get  for local 
deformation, it is needed to recalculate the parameters 

 from . Unfortunately, in many cases, it is im-
possible to get P  directly because  may not be 
valid, so we use P  calculated from  in-
stead. But it is easy to find P  in general, hence 
the vertex position calculated by  is slightly different 
from the original one. This is caused by the difference 
between O and C. 
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Although we can solve this problem by using the Cat-
mull-Clark subdivision rules instead of the octree subdivi-
sion ones when we generate multiresolution lattices, the 
lattices generated by using the Catmull-Clark subdivision 
rules sometimes produce rather scattered control points 
and not easy to deform. Moreover, it is almost impossible 

to create high-level lattices because of its computational 
cost. Therefore, we make a lookup table here to correct 
the gap. 
 
4.2.  From local to global deformation 
 

Hierarchical deformation from local to global is rather 
difficult because the low-level lattices regenerated by ap-
plying the inverse operation of octree subdivision rules to 
the high-level lattice may not contain whole the region to 
be deformed. Therefore, we provide this kind of deforma-
tion by defining a new low-level lattice that encloses both 
the model and the high-level lattice. The control points of 
the high-level lattice are also deformed by the modifica-
tion of the new low-level lattice as the model. Therefore, 
the user can do the global deformation even if some local 
deformations are performed and vice versa. 

 
                      (a)                                           (b) 

 
                      (c)                                           (d) 
Figure 5. Hierarchical deformation from local to 
global. (a) A model with a high-level lattice. (b) 
Local deformation is performed to the model. (c) 
A low-level lattice is generated to enclose the 
high-level lattice and the deformed model. (d) 
Global deformation is performed to the model 
through the low-level lattice. (The deformed high-
level lattice is not shown.) 

Figure 5 shows an example of hierarchical deforma-
tion from local to global. First, a sphere model in Figure 5  
(a) is performed by a local deformation with a high-level 
shrink octree subdivision lattice as shown in Figure 5 (b). 
Next, a new low-level lattice in Figure 5 (c) that encloses 
both the high-level lattice and the deformed model is de-
fined for doing global deformation. And then, the model 
is globally deformed as shown in Figure 5 (d). Since the 
high-level lattice is also deformed by the low-level lattice, 
it is possible to go back for the local deformation with the 
deformed high-level lattice. 
 
5.  Results 
 



Figure 6 shows a global deformation using a shrink oc-
tree subdivision lattice. The user can easily do such global 
deformation by using shrink octree subdivision lattices. 
Figure 7 shows a process of hierarchical deformation. The 
model is first subjected to global deformation, and then 
successively to local deformations without redefining the 
lattices from the bounding box. Since refined lattices gen-
erated from a deformed lattice keep track of the features 
of the deformed model, the user can intuitively continue 
to deform the model, which is one of the main advantages 
of our method. 

3,p 3232××

We evaluated the performance of our FFD system by 
calculating the required memory space and frame rates on 
a PC with an Intel Pentium4 1.7GHz, 256MB memory, 
and nVIDIA GeForce3 graphics accelerator. The results 
are shown in Table 1 and Table 2. The data structure used 
to keep topological information was like the loop edge 
data structure (LEDS) [9], a variant of the radial-edge 
data structure [12][13]. Table 1 shows that more than 
20MB are required to do the Catmull-Clark subdivision 
twice to N  since it produces at least 32  cells. 
Frame rates shown in Table 2 are estimated while the user 
moves one control point of each octree subdivision lattice 
to deform three polygonal models of different complexity. 
The Catmull-Clark subdivision is applied to each lattice 
twice during deformation. The most time consuming steps 
in the deformation algorithm are the parameterization and 
relocation steps. On the other hand, the time to create 
multiresolution lattices is almost negligible. 
Table 1: Required memory sizes of our system to 
keep topological information of the Catmull-Clark 
subdivision volumes. 

#Catmull-Clark 
subdivisions to     a 

cube 
#cells 

0 111 ××  
1 222 ××  
2 444 ××  48,336 
3 888 ××  345,488 
4 161616 ××  2,601,744 

323232 ××  20,170,256 

required memory 
(byte) 

1,296 
7,376 

5 
Table 2: Frame rates estimated with different lev-
els of lattice and different complexities of model. 

frame rate (fps) #octree  subdivi-
sions to a bound-

ing box 
model with 

495      verti-
ces 

model with 
22,886       
vertices 

model with
53,417  verti-

ces 
50.0 4.54 3.69 

1 25.4 3.57 2.73 
5.12 2.54 2.19 

3 3.13 1.97 

0 

2 
1.80 

4 4.44 2.56 2.30 
5 4.16 2.02 1.90 

These data show that our system is still memory inten-
sive, and may be slower than those using other simpler 
FFD methods. However, our system can still allow the 
user to deform models interactively even at these frame 

rates and cut through the lattice definition time from the 
user. One of the main features of our method is that after 
three steps of octree subdivision of the bounding box, the 
frame rate for each model�s deformation doesn�t decrease 
very much or even increases for further octree subdivi-
sions. This is because we apply the Catmull-Clark subdi-
vision only to the limited region of the lattice, and after 
each step of octree subdivision, each cell becomes smaller 
and contains less vertices of the model. For these reasons, 
this method can be applied to even more complex lattices 
while the computation time doesn�t depend much on their 
complexity. 
 
6.  Conclusion and future work 
 

In this paper, we have proposed an automatic lattice 
generation method that allows the user to do hierarchical 
deformation and a new FFD method that allows the lat-
tices to have much complexity by subdividing only a lim-
ited region of the lattices. Our implemented system is de-
signed to be easy-to-use for all users, whether beginners 
or well-trained. For example, when beginners use our 
system to deform a model, they just have to press buttons 
until the desired details are added to the lattice and to 
move some of its control points. 

As the example shown in Figure 7, the user can easily 
do the model deformation that needs both global and local 
deformations with our method since multiresolution lat-
tices keep track of the features of the deformed model at 
each level of deformation. However, if the user does de-
formation with other methods, he or she needs to define a 
proper lattice at every level of deformation manually, and 
it is a very time-consuming task to make the lattice fit to 
the model, which our multiresolution lattices naturally 
achieve. 

However, although we only subdivide limited regions 
of lattices, there is still a memory limitation, which allows 
only a few subdivision steps. We can partly overcome this 
problem by adaptively using b-spline parameterization 
and Catmull-Clark subdivision. Moreover, to combine our 
method with direct manipulation methods such as [4] and 
[5] will makes our FFD system much more useful. We 
shall be developing these and creation of more easy-to-use 
lattices in our future work. 
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Appendix: Subdivision rules of Catmull-

Clark volumes 
 

The Catmull-Clark subdivision volumes method is an 
extension of the Catmull-Clark subdivision surfaces 
method [1], which successively refines the surface occu-
pied by a set of control points. Analogously, the subdivi-
sion algorithm for volumes successively refines the 3D 
space occupied by a lattice. To achieve finer representa-
tions of the original lattice, the subdivision algorithm pro-
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At each subdivision step, cell points, face points, and 

edge points are generated for all cells, faces, and edges of 
the lattice respectively and old control points are replaced 
by new vertex points. These new control points are recon-
nected to create a new subdivided lattice according to the 
following reconnection rules: (1) each new cell point is 
connected to the new face points generated for the faces 
that define the old cell; (2) each new face point is con-
nected to the new edge points generated for the edges that 
define the old face; (3) each new edge point is connected 
to the two new vertex points that are generated for the 
control points which define the old edge. NOTICE: the 
new control points are only used to generate finer Cat-
mull-Clark volumes and not replace the original control 
points for user�s controlling. 

The control points on the boundary of the lattice are 
generated in particular ways to prevent resulting space 
from shrinking: 
• A corner point is that contained in only one cell of 

the lattice. In the refinement process, the position of 
a corner point remains unchanged. 

• A sharp edge is that contained in only one cell of the 
lattice. The edge point of a sharp edge is the mid-
point of the edge. 

• A sharp point is that joining two sharp edges. The 
vertex point of a sharp point is defined by the 
weighted average: 

 point itself. 
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• A cell point is that defined by the average of the con-

trol points of the lattice which define the cell. 4
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midpoints of two sharp edges that contain the control 
point, and P  is the control point itself. 

• nd vertex points on the bound-

ary are generated according to the Catmull-Clark 
rules for surfaces [1]. 
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Figure 6. A global deformation of a dolphin model by using a low-level shrink octree subdivision lattice. The col-
ored regions in (c) and (e) represent the Catmull-Clark subdivided lattice. 
 

  
(a)                          (b)                      (e) 

  
(c)                          (d)                      (f) 

Figure 7. Hierarchical deformation of a chimpanzee model. (a) Original model with a low-level lattice. (b) Deformed 
model wi -level lattice. (c) Deformed model with a high-level lattice generated from that of (b). (d) 
Further deformed model with deformed high-level lattice. (e) Closed up view of (b) and (c). (f) Closed up view of (d). 
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