
JAVAGL1 - A 3D GRAPHICS LIBRARY IN JAVA FOR INTERNET BROWSERS

Bing-Yu Chen, Chee-Wen Shiah, Tzong-Jer Yang, and Ming Ouhyoung
Communications and Multimedia Laboratory,

Department of Computer Science and Information Engineering,
National Taiwan University, Taipei, Taiwan, R.O.C.

1 Web site: Http://www.cmlab.csie.ntu.edu.tw/~robin/JavaGL/.

ABSTRACT
 With the growing popularity of Internet and Virtual Reality
(VR), more and more applications, for example, VRML
browsers and 3D graphics network multiplayer games,
require 3D graphics capabilities over network. This paper
presents a 3D graphics library written in Java to satisfy this
requirement. Performance evaluation is especially addressed
for further studies in developing 3D graphics applications
over network. Furthermore, we have also developed a
network library and combined it into the 3D graphics library,
so that this library has network capability and others can
develop 3D graphics network multiplayer applications based
on it.

INTRODUCTION
 As Internet and VR are getting more and more popular, there is
increasing demand of 3D graphics over network. Because
Internet itself is a heterogeneous environment, we need to have
3D graphics capabilities in different platforms. Observing the
development of Internet, we believe that “pay-per-use” software
will be realized in the near future. Under this new paradigm, we
may need to distribute applications from servers to clients in
different platforms. Hence, we decide to develop a 3D graphics
library that is platform-independent, and Java is chosen for its
platform-independent feature.
 At the same time, it is desired that this 3D graphics library is
easy to learn, so we define the Application Programming
Interface (API) in a manner quite similar to that of OpenGL,
since OpenGL is a popular standard.
 In order to let JavaGL have network capability, we have also
developed a network library in Java that follows the specification
of “Distributed Interactive Simulation (DIS)” for network
transparency.

IMPLEMENTATION ISSUES
 OpenGL’s functions can be divided into 3 categories: GL utility
library (glu), OpenGL (gl), and GLX utilities (glX), as shown in
Figure 1 (a). For Microsoft Windows, there are some differences
as shown in Figure 1 (b).

GL Utility
Library

(glu)

OpenGL
(gl)

X
Windows

(Xlib)

GLX
Utilities

(glX)

Microsoft
Windows
(Win32)

OpenGL
(gl)

WGL
Utilities

GL Utility
Library

(glu)

 (a) X Windows (b) Microsoft Windows
Figure 1. OpenGL API hierarchy

 In Figure 1, glu is a set of commonly used graphics routines,
and gl is the main part of OpenGL, and glX or WGL utilities are
the implementation depending on different platforms. Besides
these 3 interfaces, there is an underlying graphics kernel which is
transparent to programmers. We follow this principle to develop
our JavaGL, as shown in Figure 2.

JavaGL
(gl)

GL Utility
Library

(glu)
Java version

Java Virtual
Machine

(VM)

GLX
Utilities

(glX)
Java version Auxiliary

Library
(aux)

Figure 2. JavaGL API hierarchy.

 The implementation is based on the specification of OpenGL
[1], and some issues are summarized as follows:
1. For GL utility library (glu), JavaGL (gl), and GLX utilities

(glX), we follow the methodologies described in the OpenGL
specification. For easy to use purpose, we have also provided
the auxiliary library (aux) as included in OpenGL.

2. For the underlying graphics kernel, we put most of our efforts
here since the performance is a great challenge for Java
applets and also for general purpose software-based 3D
graphics engines. For instance, we categorize all the drawing
functions to be several smaller ones to let these functions to
be optimized We also refer to Graphics Gems [2] for
performance enhancements.

3. Because the API of OpenGL is defined for C language, which
is a structured programming language, but Java is an object-
oriented programming (OOP) language, we must try to design
the API to be Java version.

4. Java has no pointers, which is useful for programming. For
instance, a drawing command in OpenGL may be executed
immediately or be postponed in a display list, depending on
the state of the graphics kernel. In C, we can simply use
function pointers to solve this problem. In Java, since there
are no pointers, we use class inheritance instead.

 When 3D graphics applications based on JavaGL are used on
Internet, there is usually interaction between users at the client
site and the program at the server site, but lake of interaction
between applications. Here we propose to add the network
capability to JavaGL. To do this, we follow the specification of
DIS [3], which is a standard for interactive simulations in
different machines on Internet. To provide the network capability,
the 3D graphics applications using JavaGL can send the Protocol
Data Unit (PDU) among themselves.

RESULTS
 Currently, we have implemented over 160 OpenGL functions in
JavaGL, including functions for 3D model transformation, 3D
object projection, depth buffer, smooth shading, lighting,
material, display list and selection. The functions not yet
supported so far are mainly for anti-aliasing and texture mapping.
The additional network capability has also been implemented.
 To test JavaGL’s capability, we have provided 16 examples on
line. The examples are selected from the OpenGL Programming
Guide [4], which is the official programming guide of OpenGL.
All of them can be executed on Internet via the JavaGL web site.
 To evaluate JavaGL’s performance, we use a test program
which renders 12 spheres with different materials, as shown in
Figure 3. We execute the test program on both a SUN Ultra-1
workstation and an Intel Pentium-200 PC. We also rewrote the
same program in Mesa 3-D graphics library [5], which is a
software-based 3D graphics library with an API similar to that of
OpenGL using C language, and measure the rendering time, as
listed in Table 1.

Figure 3. 12 spheres are rendered to measure performance. Each
sphere contains 256 polygons. This program is an
example in OpenGL Programming Guide (code from
Listing 6-3, pp. 183-184, Plate 16) [4]. This figure is
rendered with JavaGL.

 On the SUN workstation, the test program with Mesa is about 4
times faster than JavaGL, as claimed by SUN that Java is about
20 times slower than C [6]. But, the performance can be further
improved if a better Java interpreter exists. On the PC platform,
we execute the test program using the SUN JDK 1.0.2 and the
Symantec Café 1.51 with JIT 2.0. By using the Just-In-Time (JIT)
compiler, there is over 4 times performance speedup.

CONCLUSIONS AND FUTURE WORK
 JavaGL is being applied to develop our next generation VRML
browser running across Internet. The goal of this VRML browser
is to provide users all the necessary functions from servers so that
users do not have to install additional hardware or software for
3D graphics. JavaGL meets this requirement because it’s purely
implemented by Java which is designed for Internet.
 We will also apply JavaGL to develop 3D graphics network
multiplayer games. At present, we are developing the JavaNL [8],
a network library in Java, using the DIS protocol, trying to
enhance the network capability of JavaGL.
 Performance is a great challenge for any Java applications. We
expect that the performance will be improved by faster Java
interpreters and Java compilers in the software side, and will be
greatly improved by the new Java chips in the hardware side.
 All the demo codes and examples are put in our web site at
“Http://www.cmlab.csie.ntu.edu.tw/~robin/JavaGL”, and are
welcome to interested readers visit it.

ACKNOWLEDGMENTS
 This work is a part of the Multimedia Digital Classroom (MDC)
project at National Taiwan University sponsored by National
Science Council (NSC) under the grant NSC 85-2622-E-002-
015.

REFERENCES
[1] Mark Segal, and Kurt Akeley, “The OpenGL Graphics

Systems: A Specification (Version 1.1),” Silicon Graphics,
Inc., 1996. Http://www.sgi.com/Technology/openGL/glspec/
glspec.html.

[2] Andrew S. Glassner, “Graphics Gems,” Academic Press, Inc.,
1990.

[3] “IEEE Std 1278.1-1995 and 1278.2-1995,” IEEE, 1996.
[4] Jackie Neider, Tom Davis, and Mason Woo, “OpenGL

Programming Guide,” Addison-Wesley, 1993.
[5] Brian Paul, “The Mesa 3-D Graphics Library,” 1997.

Http://www.ssec.wisc.edu/~brianp/Mesa.html.
[6] Arthur van Hoff, Sami Shaio, and Orca Starbuck, “Hooked

on Java,” Addision-Wesley, 1996.
[7] “Café for Windows 95/NT,” Symantec, 1997.

Http://cafe.symantec.com/cafe.
[8] Robin Bing-Yu Chen, “JavaNL - A Network Library in

Java,” 1997. Http://www.cmlab.csie.ntu.edu.tw/~robin/
JavaNL.

Graphics Library JavaGL 1.0beta3 Mesa 2.1 JavaGL 1.0beta3 JavaGL 1.0beta3
Time (ms) 5031 1085 16700 4070
Platform SUN Ultra-1 Model 170E, 128 MB memory,

24-bit display (Creator 3D).
SUN Solaris 2.5.1.

Intel Pentium-200, 64 MB memory,
24-bit display (ET 6000).
Microsoft Windows 95.

Programming
Environment

SUN JDK 1.0.2.
SUN JIT 1.0.2

GNU C 2.7.2.1 SUN JDK 1.0.2. Symantec Café 1.51
Symantec JIT 2.0beta3

Table 1. Table of performance comparisons. The test program renders 12 spheres, one sphere contains 256 polygons, as shown in Fig. 3.

