
JavaGL - A 3D Graphics Library in Java for Internet Browsers

Bing-Yu Chen, Tzong-Jer Yang, and Ming Ouhyoung

Communications and Multimedia Laboratory,
Department of Computer Science and Information Engineering,

National Taiwan University, Taipei, Taiwan, R.O.C.

Abstract

This paper presents a 3D graphics library, or JavaGL1,
written in Java to provide 3D graphics capabilities over
network. To make the 3D graphics library easy to learn
and use, we define the application programming interface
(API) in a manner quite similar to that of OpenGL, since
OpenGL is a de facto industry standard. Furthermore, we
have also developed a network library, or JavaNL2, and
combined it into JavaGL, so that a programmer can
develop multi-participant 3D graphics applications easier
using JavaGL and JavaNL. Implementation issues and
performance evaluations are addressed.

1. Introduction

As the Internet and World Wide Web (WWW) are
getting more and more popular, many Internet-based
consumer electronic products, including Network
Computers [1] and Web TVs, have been developed.
However the Internet itself is a heterogeneous network
environment, if we want to deliver WWW contents with
3D graphics information across the Internet, we will need a
3D graphics capability in each different platform.
Furthermore, observing the development of the Internet,
we believe that the software “pay-per-use” concept will be
realized in the near future. Under this new paradigm, a 3D
graphics application may be distributed from a server to a
client with a different hardware architecture. Therefore, we
decide to develop a 3D graphics library that needs to be
platform independent, and Java is chosen as our
programming language for its hardware-neutral feature.

We also notice that a multi-participant interactive
environment would be a potential requirement for Internet
applications, hence we developed a network library in
Java, called JavaNL, to help programmers developing
multi-participant applications easier.

We begin in section 2 and 3 with descriptions of some

1 Http://www.cmlab.csie.ntu.edu.tw/~robin/JavaGL.
2 Http://www.cmlab.csie.ntu.edu.tw/~robin/JavaNL.

implementation issues when developing JavaGL and
JavaNL, and show some results in section 4. The
conclusions and future work are presented in section 5.

2. JavaGL - A 3D graphics library in Java

JavaGL is designed to have an API similar to that of
OpenGL [2], since OpenGL is a de facto industry standard,
and many programmers have been familiar with OpenGL’s
API.

The functions of OpenGL can be divided into three
categories: OpenGL Utility Library (glu), OpenGL (gl), and
OpenGL Extensions to native window Systems (glX or
wgl), as shown in Figure 1.

X Window or Windows 95/NT

GL

GLU

3D Graphics Applications

GLX
or

WGL

AUX

Figure 1 The hierarchy of OpenGL modules.

gl implements primitive 3D graphics operations, including
rasterization, clipping, etc.; glu provides higher level
OpenGL commands to programmers, and encapsulates
these OpenGL commands as a series of gl functions; glX
or wgl deals with function calls to native window systems.

Besides these three interfaces, there is an OpenGL
Programming Guide Auxiliary Library, called aux or glaux,
which is not an official OpenGL API, but is widely used.
We also implement glaux in our JavaGL package.

The implementation of JavaGL is mainly based on the
specifications of OpenGL [4], where the OpenGL
Programming Guide Auxiliary Library (glaux) is
implemented according to the definitions in the OpenGL
Programming Guide [5]. We also refer to Graphics Gems
for better implementation algorithms [6][7][8]. The

hierarchy of JavaGL modules is shown in Figure 2.

Java Virtual Machine

GL

GLU

3D Graphics Applications

GLX

GLAUX

Graphics Kernel

Figure 2 The hierarchy of JavaGL modules.

The graphics kernel shown in Figure 2 contains a more
compact set of primitive 3D graphics operations, and is
illustrated in the following section.

2.1 Implementation of JavaGL graphics kernel

The graphics kernel is transparent to programmers, which
means if there is a better implementation, the graphics
kernel can be substituted silently. Figure 3 shows the
hierarchy of the graphics kernel, and each box represents
a Java class.

Context Pointer

gl_context gl_list

Clipping Pointer

gl_cp_clippinggl_nf_clipping

gl_geometry

gl_graphics

gl_lightinggl_select

gl_2d_clipping

Figure 3. The hierarchy of JavaGL’s graphics kernel.

When a rendering command is issued to the context
pointer, the context pointer will check the state of OpenGL.
If the state of OpenGL is normal, the rendering command
is sent to gl_context directly; if the state of OpenGL is
stalling to the display list, the rendering command is sent
to gl_list. gl_list records a sequence of rendering
commands, and eventually calls gl_context for rendering.

The gl_nf_clipping, gl_cp_clipping, and Clipping Pointer
have the same relationship with that between gl_context,
gl_list, and Context Pointer. gl_nf_clipping is the clipping
class for near and far clipping planes, while
gl_cp_clipping is the clipping class for user defined
clipping planes.

The other classes are gl_select for selection, gl_lighting
for lighting calculation, gl_geometry for drawing all kinds
of geometric objects, gl_2d_clipping for 2D clipping
functions, and gl_graphics is the lowest level of drawing
functions of the graphics kernel.

2.2 Performance enhancement issues

Performance is a great challenge for both 3D graphics and
Java, hence a great challenge for JavaGL. Moreover,
JavaGL is designed to operate over the Internet, where
network bandwidth affects the overall performance
significantly. These considerations make the
implementation of JavaGL complex.

According to our experiences, we develop the following
design philosophies to speed up JavaGL’s performance.

1. Utilize class inheritance to avoid “if-then-else”
statements – OpenGL is a state machine, and it’s
usually necessary to determine if some status is enable,
which takes time to check. We utilize class inheritance
to avoid these frequent checks. After deciding which
status is enable, we cast an object to its proper class
type, and the following rendering commands will be
routed to proper functions automatically without any
further checks.

 Use the implement of the display list as an example.
When implementing the display list, we set a flag to
indicate whether the rendering commands are to be
stored in a display list or to be executed immediately.

 In the case of “if-then-else," for each rendering
command, we need to check if the flag of the display
list is set or not using many “if-then-else” statements,
and these many “if-then-else” statements will slow
down the execution speed.

 In the case of “class inheritance," each rendering
command has two class implementations, one with the
display list, and the other without the display list. Both
classes are inherited from the same parent class. After
the flag of the display list is checked for the first time,
all the following rendering commands are realized
automatically without any further checks of the flag.

2. Make frequently used routines faster – Polygon
rasterization, shading, depth testing, clipping, etc., are
frequently used routines. These routines are always
bottlenecks for 3D graphics libraries, so we put our
most efforts on optimizing these routines with faster
algorithms and manual code optimization.

3. Divide frequently used routines into smaller ones –
For a frequently used routine, we would like several
smaller and simple ones, rather than a larger but
powerful one. The purpose is to reduce unnecessary
network transmissions for unused code segments.

 For example, to fill a polygon, we must do the color
interpolation if the polygon is filled by smooth
shading. If the polygon only needs a flat shading, the
color interpolation is not required, and does not need

to be transmitted. Therefore, we categorize all the
drawing functions into several smaller ones, such as
drawing functions with or without depth testing,
drawing functions with flat shading or smooth shading,
etc., and optimize these functions.

4. Group rarely used routines into a larger one – When
we divide frequently used routines into smaller ones,
the total code size of the JavaGL library will increase.
A large size of file will increase the overhead for
network transmission. To reduce the total code size of
the JavaGL library, we re-examine all routines, and
combine some similar routines that are rarely used into
a larger one, contrarily.

 For example, we had two routines for rendering,
including one with clipping and the other one without
clipping originally. Since the former routine is mostly
used, we combine these two routines, and optimize the
conditional testing to redirect a rendering command to
an appropriate code segment efficiently.

3. JavaNL - A network library in Java

In our experiences, an Internet application will be more
attractive if it provides several participants to interact with
each other.

JavaNL, a multi-participant interactive network library, is
developed to remove most of the programming burdens
on maintaining multi-participant interactions over the
Internet.

The JavaNL adopts the concepts of Distributed
Interactive Simulation (DIS) [9][10][11] with some
modifications. DIS is originally designed for military
exercise simulations over WAN (Wide-Area Network),
and takes multi-participant interactions into account,
hence we chose DIS as our design principles of JavaNL.

3.1 DIS vs. JavaNL

DIS is a set of IEEE standards including IEEE Std
1278.1-1995 [9][10] for application protocols and IEEE Std
1278.2-1995 [11] for communication services and profiles.
IEEE P1278.3 is for exercise management and feedback,
and has not been standardized so far.

DIS defines a large set of data types for communications,
and we use a subset of the data types to develop JavaNL.

The principles of JavaNL complying DIS are listed as the
following, where a simulation entity represents a data unit
with some data type.

1. There is no central computer that controls the entire
simulation.

2. Autonomous simulation applications are responsible
for maintaining the state of one or more simulation
entities.

3. Changes in the state of an entity are communicated by
its controlling simulation application.

4. Perception of events of other entities is determined by
the receiving application.

In DIS, each application uses PDUs (Protocol Data Units)
to communicate with each other, and keeps all simulation
information locally, as shown in Figure 4.

DIS ApplicationDIS Application DIS ApplicationDIS Application

PDUs PDUs
Network

Figure 4 The control flow of DIS. A DIS application
needs to maintain all the simulation information
necessary, and uses PDUs to communicate
with each other.

JavaNL modifies some PDUs’ formats, and the detailed
PDU formats can refer to [18]. In general, an application
can call JavaNL’s functions to send and receive data, and
the multi-participant simulation is automatically
maintained by JavaNL. Using JavaNL, an application
needs not to implement the complex DIS, but instead of a
simple set of function calls. The modified control flow of
JavaNL is shown in Figure 5.

Network ApplicationNetwork Application

JavaNLJavaNL

Network ApplicationNetwork Application

JavaNLJavaNL

PDUs
Network

messagesmessages NL command NL command

Figure 5 The control flow of JavaNL that provides

PDU transmission capability.

3.2 The control flow of PDUs between applications

Four additional PDUs, Join Request, Join Accept, Join
Reject, and Disconnect, are defined for JavaNL only.
These four additional PDUs are used in communication

with a simulation manager. When a simulation application
creates a simulation, it becomes a simulation manager, and
waits for other simulation applications to join. If there is a
simulation application that wants to join the simulation, it
sends a Join Request PDU to the simulation manager. If
the simulation manager agrees the request, it sends a Join
Accept PDU with all the simulation information to the
simulation application that requests to join; if the
simulation manager denies the request, it sends a Join
Reject PDU to the simulation application that requests to
join. The whole process is shown in Figure 6.

Simulation Manager

Create Simulation ExerciseCreate Simulation Exercise

Register & Create
Entities

Register & Create
Entities

Play the Simulation Exercise &
Wait Other Applications Join

Play the Simulation Exercise &
Wait Other Applications Join

Simulation Application

Join Simulation ExerciseJoin Simulation Exercise

Create EntitiesCreate Entities

Play the Simulation ExercisePlay the Simulation Exercise

Join Request

Join Accept

Figure 6 The control flow of PDUs in JavaNL.

A simulation manager is necessary when a simulation is to
be created, or when an application wants to join the
current simulation. Besides the above situations, the
simulation manager behaves like other simulation
applications, and all simulation information packed into
PDUs are exchanged between all simulation applications
automatically.

3.3 The control flow of PDUs in JavaNL

JavaNL provides applications a simple interface to access
PDUs from the network. When an application uses
JavaNL to create a client or server thread, another thread,
or nl_network_agent, is created automatically. The
nl_network_agent maintains several PDU queues.
PDUInQueue stores PDUs received from the network;
PDUOutQueue stores PDUs to be sent out from the
application; MSGQueue holds messages to inform the
application that there are events or PDUs to handle. The
control flow of PDUs is shown in Figure 7.

If an application wants to communicate with other
applications, it calls JavaNL functions to write PDUs to
PDUOutQueue. The nl_network_agent constantly polls
the PDUOutQueue, and if there are PDUs in the queue, it

will call nl_udp_sender or nl_tcp_sender to send the
PDUs out.

If a PDU arrives, it will be received by nl_tcp_receiver or
nl_udp_receiver, and will be buffered in PDUInQueue.
The nl_network_agent constantly polls the PDUInQueue,
and if there are PDUs in the queue, it will write a message
to MSGQueue to inform the application, or will process
the PDUs locally. The application needs to poll the
MSGQueue via JavaNL functions, and retrieves PDUs if
necessary.

JavaNLJavaNL

nl_network_agentnl_network_agent

PDUOutQueue

nl_tcp_sendernl_tcp_sender nl_udp_sendernl_udp_sender

PDUInQueue

nl_tcp_receivernl_tcp_receiver nl_udp_receivernl_udp_receiver

Network ApplicationNetwork Application

MSGQueue

Network

polling

polling

polling

pollingput

put

put put

Figure 7 PDU sending and receiving in JavaNL.

4. Results

Currently, we have implemented over 160 OpenGL
functions in JavaGL, including functions of GLAUX, GLU,
and GL. The functionality provided contains functions for
2D/3D model transformation, 3D object projection, depth
buffer, smooth shading, lighting, material, display list and
selection. Functions not supported so far are mainly for
anti-aliasing and texture mapping. In the future, OpenGL
Utility Toolkit (GLUT) [12] using JavaGL will be provided,
too.

We also provide 16 examples on WWW. These examples
are selected from the OpenGL Programming Guide [5], and
can be executed directly in Internet browsers supporting
Java. Figure 8 shows a simple Java applet that draws a
rectangle using JavaGL.

To evaluate JavaGL’s performance, we use a testing
program that renders 12 spheres with different materials,
and each sphere contains 256 polygons, as shown in
Figure 9. The performance of the testing program is
measured on a SUN Ultra-1 workstation and an Intel
Pentium-200 PC. For comparison, we also rewrote the same
program with Mesa 3-D graphics library [13], that is a
software-based 3D graphics library with an API similar to
that of OpenGL using C programming language, and
measured the rendering time. We also rewrote the same
program with hardware accelerated OpenGL on both
platforms. The performance comparisons are listed in

Table 1 and Table 2.

On the SUN workstation, the testing program with Mesa is
about 4 times faster than that with JavaGL, which is better
than the performance claimed by SUN that Java is about
20 times slower than C [14]. The performance can be
further improved if a better Java interpreter or compiler
exists.

On the PC platform, we execute the testing program using
the SUN JDK 1.0.2 [15] and the Symantec Café 1.51 [16]
with JIT 2.0 beta 3. By using the Just-In-Time (JIT) [17]
compiler, we obtain an over 4 times performance speedup.

import java.applet.Applet;
import java.awt.*;

// must import packages of JavaGL.
import javagl.GL;
import javagl.GLAUX;

public class simple extends Applet
{
 GL myGL = new GL();
 GLAUX myAUX = new GLAUX(myGL);

 public void init()
 {
 myAUX.auxInitPosition(0, 0, 500,
500);
 myAUX.auxInitWindow(this);
 }

 public void paint(Graphics g)
 {
 // JavaGL only supports
double-buffer.
 myGL.glXSwapBuffers(g, this);
 }

 public void start()
 {
 myGL.glClearColor((float)0.0,
(float)0.0,

(float)0.0, (float)0.0);

myGL.glClear(GL.GL_COLOR_BUFFER_BIT);
 myGL.glColor3f((float)1.0,
(float)1.0,

(float)1.0);

myGL.glMatrixMOde(GL.GL_PROJECTION);
 myGL.glLoadIdentity();
 myGL.glOrtho((float)-1.0,

(float)1.0,
 (float)-1.0,
(float)1.0,
 (float)-1.0,
(float)1.0);
 myGL.glBegin(GL.GL_POLYGON);
 myGL.glVertex2f((float)-0.5,
(float)-0.5);
 myGL.glVertex2f((float)-0.5,
(float)0.5);
 myGL.glVertex2f((float)0.5,
(float)0.5);
 myGL.glVertex2f((float)0.5,
(float)-0.5);
 myGL.glEnd();
 myGL.glFlush();
 }
}

Figure 8. A simple Java applet that draws a rectangle
using JavaGL.

Graphics
Library

Environment Rendering Time
(ms)

JavaGL 1.0
beta 3

SUN JDK 1.0.2
SUN JIT 1.0.2

4984

Mesa 2.1 GNU C 2.7.2.1 1085
OpenGL for

Creator3D 1.0
GNU C 2.7.2.1
Hardware accelerated
(Sun Creator3D)

138

Table 1 A performance comparison on a workstation.
The workstation configuration is SUN Ultra-1
Model 170E, 128 MB memory, 24-bit display,
Sun Solaris 2.5.1.

Graphics
Library

Environment Rendering Time
(ms)

JavaGL 1.0
beta 3

Sun JDK 1.0.2 16700

JavaGL 1.0
beta 3

Symantec Café 1.51
Symantec JIT 2.0 beta 3

4070

OpenGL for
Windows 95

1.0

Microsoft Visual C++
4.2
Hardware accelerated
(ET-6000)

189

Table 2 A performance comparison on a PC. The PC
configuration is Intel Pentium-200 CPU, 64 MB
memory, 24-bit display, Microsoft Windows 95.

Figure 9 Twelve spheres are rendered to measure

performance. Each sphere contains 256
polygons. This program is an example in
OpenGL Programming Guide [5] (code from
Listing 6-3, pp. 183-184, Plate 16). This figure
is rendered with JavaGL.

Figure 10 is a complex model that contains 5273 triangles,
and the rendering time is 6150 ms on an Intel Pentium-200
PC with 64MB memory. The complex model is rendered by
an applet running on a Netscape web browser, where all
the 3D graphics functions are obtained directly from a
server.

To demonstrate the usage of JavaNL, we developed a
multi-participant building walkthrough application, as
shown in Figure 11. The multi-participant building
walkthrough application renders a building model, and
allows multi-participants interacting with each other in a
Local Area Network (LAN) environment. The system
hierarchy is shown in Figure 12. In this application,
participants are represented as cubes, and if one
participant changes his position, other participants will
notice a position change of a cube. The performance is
listed in Table 3.

We also compare the round trip time of a PDU with an
UDP packet, and the result is listed in Table 4. Java
introduces a little more overhead when sending the same
UDP packet, and JavaNL needs more time because JavaNL
has to pack information into a PDU.

Figure 10. Our department building rendered with JavaGL on Netscape Navigator 4.0pr2.
This model contains 5273 triangles and takes 6150 ms on a PC with Intel
Pentium-200 CPU and 64 MB memory.

Participant A Participant B

Figure 11. A multi-participant building walkthrough

application. There are 3 participants in the
environment currently, and this figure shows
one participant’s view. The other 2
participants are represented by cubes.

Java Virtual Machine

JavaNLJavaGL

Multiparticipant Building Walkthrough Tool

Figure 12. The system hierarchy of a multi-participant

building walkthrough application using
JavaGL and JavaNL.

Platform Workstation PC

Refresh Time
(ms)

230 130

Refresh Rate
(frames/sec)

4.3 7.7

Environment SUN Ultra-1 170E

128 MB memory

24-bit display
(Creator 3D)

SUN Solaris 2.5.1

10 Base 2 Ethernet

Intel Pentium-200

64 MB memory

24-bit display
(ET 6000)

Microsoft Windows 95

10 Base T Ethernet

Interpreter SUN JDK 1.0.2

SUN JIT 1.0.2

Symantec Café 1.51

Symantec JIT 2.0 beta 3

Table 3. Performance of a multi-participant
building walkthrough application. The model
used contains 84 triangles, and one cube
representing one participant takes additional
12 triangles. The total number of triangles
rendered is 120 triangles.

Round trip
time of

PDU in
JavaNL

UDP packet
in Java

UDP packet
in C

Time (ms) 338 4 1
Table 4. The round trip time of different packets. This

evaluation is measured by sending a packet to
another host and receiving the packet from the
host. The packet is of length 192 bytes. Note
that JavaNL needs time to pack information
into a PDU.

5. Conclusions and Future Work

Since we upload JavaGL to our web server, there have
been over 1000 people around the world visit our web
page. We also received dozens of e-mails concerning the
use of JavaGL. Some would like to collaborate with us, and
some want to use JavaGL to develop their applications.
This encourages us to further improve JavaGL and
JavaNL.

JavaGL is being applied to develop a Java-based VRML
2.0 browser in our laboratory. The goal of this VRML
browser is to provide users all the necessary functions
from servers so that users do not have to install additional
hardware or software for 3D graphics applications. JavaGL
meets this requirement because it’s implemented purely by
Java that is designed for Internet.

Using JavaNL to develop a multi-participant interactive
application is much easier than before. To add a chat
function in the multi-participant building walkthrough
application, we only take less than 10 minutes to finish
this work with JavaNL.

Performance is a great challenge for any Java applications.
We expect that the performance will be improved by better
Java interpreters and Java compilers, and will be greatly
improved by new Java chips and faster CPUs.

All the demo codes and examples are available in our web
site at Http://www.cmlab.csie.ntu.edu.tw/~robin/JavaGL,
and visitors are welcome.

Acknowledgments

This work is a part of the Multimedia Digital Classroom
(MDC) project developed at the Communications and
Multimedia Laboratory, National Taiwan University. The
MDC project is sponsored by National Science Council
(NSC) under the grant NSC 85-2622-E-002-015.

References

[1] “Network Computer,” Network Computer, Inc., 1997.
Http://www.nc.com.

[2] “OpenGL WWW Center,” Silicon Graphics, Inc., 1997.
Http://www.sgi.com/Technology/openGL.

[3] “Distributed Interactive Simulation,” Institute for
Simulation and Training, University of Central
Florida, 1997.
Http://www.ist.ucf.edu/labsproj/projects/dis.htm.

[4] Mark Segal, and Kurt Akeley, “The OpenGL
Graphics Systems: A Specification (Version 1.1),”
Silicon Graphics, Inc., 1996.
Http://www.sgi.com/Technology/
openGL/glspec/glspec.html.

[5] Jackie Neider, Tom Davis, and Mason Woo,
“OpenGL Programming Guide,” Addison-Wesley,
1993.

[6] Andrew S. Glassner, “Graphics Gems,” Academic
Press, Inc., 1990.

[7] James Arvo, “Graphics Gems II,” Academic Press,
Inc., 1991.

[8] David Kirk, “Graphics Gems III,” Academic Press,
Inc., 1992.

[9] “IEEE Standard for Distributed Interactive
Simulation – Application Protocols (IEEE Std
1278.1-1995),” Institute of Electrical and Electronics
Engineers, 1996.

[10] “Enumeration and Bit-encoded Values for Use with
IEEE Std 1278.1-1995, Standard for Distributed
Interactive Simulation – Application Protocols,”
Institute for Simulation and Training, University of
Central Florida, 1996. Http://ftp.sc.ist.ucf.edu/SISO/
dis/library/enumerat.doc.

[11] “IEEE Standard for Distributed Interactive
Simulation – Communication Services and Profiles
(IEEE Std 1278.2-1995),” Institute of Electrical and
Electronics Engineers, 1996.

[12] Mark J. Kilgard, “Graphics Library Utility Toolkit,”
Silicon Graphics, Inc., 1996. Http://www.sgi.com/
Technology/openGL/glut.html.

[13] Brian Paul, “The Mesa 3-D Graphics Library,” 1997.
Http://www.ssec.wisc.edu/~brianp/Mesa.html.

[14] Arthur van Hoff, Sami Shaio, and Orca Starbuck,
“Hooked on Java,” Addison-Wesley, 1996.

[15] “The Java Developers Kit Version 1.0.2 ,” Sun
Microsystems, Inc., 1996. Http://www.javasoft.com/

products/jdk/1.0.2.

[16] “Symantec Café,” Symantec, Co., 1997. Http://
www.symantec.com/cafe.

[17] “The JIT Compiler Interface Specification,” Sun
Microsystems, Inc., 1996. Http://www.javasoft.com/
doc/jit_interface.html.

[18] Bing-Yu Chen, “The JavaGL 3D Graphics Library &
JavaNL Network Library,” Master thesis, Dept. of
Computer Science and Information Engineering,
National Taiwan University, Taiwan, 1997.

Bing-Yu Chen received the BS
and MS degree in Computer Science
and Information Engineering from the
National Taiwan University, Taipei, in
1995 and 1997, respectively. He is
currently a research assistant in
Communications and Multimedia
Laboratory at the National Taiwan

University. His research interests include computer human
interface, computer graphics, virtual reality, Java
programming language, and Internet technologies.

Tzong-Jer Yang received the BS
degree in the Mathematics from the
National Tsing-Hua University,
Hsin-Chu, in 1992. He received the MS
degree in the Computer Science and
Information Engineering from the
National Taiwan University, Taipei, in
1994. He is now a Ph.D. candidate

there. His research interests include computer graphics,
virtual reality, and Internet technologies.

Ming Ouhyoung received the BS
and MS degree in Electrical
Engineering from the National Taiwan
University, Taipei, in 1981 and 1985,
respectively. He received the Ph.D.
degree in Computer Science from the
University of North Carolina at Chapel
Hill in 1990. He was a member of the

technical staff at AT&T Bell Laboratories, middle-town,
during 1990 and 1991. Since August 1991, he has been an
associate professor in the Department of Computer
Science and Information Engineering at the National
Taiwan University and later became a professor in 1995.
He has published 87 technical papers on consumer
electronics , computer graphics, virtual reality and
multimedia system. He is a member of ACM and IEEE.

