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Abstract—In this paper, we provide a system that takes start 

and end points as the input, and will automatically connect to 

the Google Maps with Street View to achieve the route planned 

result and scenery along the route. Finally, it will generate a 

smooth scenic video from the starting point to the destination, 

which combines the Google Maps to provide better route 

recognition to users. The users can watch and interact with the 

video as if they are driving a car through the planned route. 

Our system is fully automatic but still provides interaction 

mechanisms for the users to walk around in the scenic video. 

Keywords-Google maps; street view; scenic video; route 

planing; blending; boundary cut 

I.  INTRODUCTION 

With the development of technology, route planning 
software is popular these days. Users can now plan their 
driving directions by using online route planning services. 
Most of the time they only need to input their starting point 
and destination, and then they can get an electronic map 
which describes the full route from the starting point to the 
destination. However, they could not know the scenery along 
the route before they drive on it, so when they actually drive 
along the way, it is sometimes hard to distinguish the route in 
the street they are not familiar with. 

To map the virtual map and the real scenery, Google 
provides a service called Google Maps with Street View

1
, by 

which users can watch the scenery in the street as if they are 
driving on it. In addition, they can also plan their route by 
Google Maps, and then watch along the route with the Street 
View to get a better feeling about the view. However, 
because Google Maps with Street View only provides a 
rather sparse point-to-point system to view the street, the 
process of viewing from the starting point to the destination 
could not present smoothly, but in a way more like jumping 
from a point to another point. 

To provide a much better service while simplifying the 
problem, some methods are provided to use their own street 
view data to make smooth transitions. However, those data 
are hard to obtain by ordinary users. Moreover, it is also 
inconvenient to use Google Maps with Street View to watch 
a route, because the users need to keep pressing the “forward” 
button to jump from one panorama image to the next one 
step by step. Hence, in this paper, we provide an easy-to-use 
system based on pubic but not so good Google Maps with 
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Street View data to provide a smoother guiding video. By 
using our system, the users can interactive with the scenic 
video of the planed route easily. Thus, our system can 
provide a better feeling of the scene of the planned route and 
the users can interact with our system to watch the part they 
are interest, or skip those with less importance. 

In summary, the main contribution of our work is that we 
introduce a system which only takes some simple inputs 
from the users and accesses the data from Google to generate 
a visually smooth route guiding video. Combined this video 
with Google Maps, we provide a guiding system to let the 
users familiarize themselves with their planned routes before 
actually driving on them, thus makes them easier to follow 
the pre-planned route. 

II. RELATED WORK 

Typically, large collections of images are usually shown 
as a page of thumbnails or a slideshow, which is a practical 
but not engaging way, since it is lacking of the feeling of 
“being there”, which is critical to street view images. The 
“Photo Tourism” [8] is a successful example, which puts all 
images of a given scene in a common 3D space using bundle 
adjustment. Users then can browse the image collection by 
moving in the 3D space freely. However, when browsing 
from one image to another, the transition in the system is not 
smooth enough to keep on the feeling of really moving into 
the next image. 

Photorealistic “Virtual Space” [7] connects visually 
similar images together to create a virtual space which users 
are free to move from one image to the next one using 
intuitive 3D controls such as move left/right, zoom in/out 
and rotate. It displays the images in correct geometric and 
photometric alignment with respect to the current photo, so 
the transition between the images is smooth. The infinite 
zoom (in) effects are visually “walking into” the images, 
which inspired our work. 

In [2], Chen et al. combined the street view video with a 
map to enhance the path finding ability of users. However, in 
this system it requires intensive panorama images along the 
planned route to create a smooth video tour. Recently, Kopf 
et al. [5] combined the images in the street view system by 
stitching the side views, which means standing on the street 
and looking to the left or right, of a certain street together to 
generate a long street slide for users to quickly browse this 
street. While it is an excellent way to view the side scene of a 
certain street, it keeps the users look to the side of the street, 



which is usually not the case while actually driving or 
walking. 

To combine images, matching and blending can 
smoothly integrate several related images together, which 
have already been used to generate panorama images [1]. In 
our system, first we use the image matching technique, SIFT, 
to match each tile of the panorama image, and then use the 
technique of minimum error boundary cut [3] to stitch them 
together. The minimum error boundary cut treats the 
difference of the junction area between two images as an 
intensity map, and then calculates the shortest path, with 
intensity as the cost, to cut through the intensity map, so that 
the stitched images will have a less obvious seam between 
the two original images. Finally, we use Poisson image 
editing [9] to blend the boundary of the two images. The idea 
of Poisson image editing is approaching the Poisson partial 
differential equation with Dirichlet boundary conditions 
which specifies the Laplacian of an unknown function over 
the domain of interest, along with the unknown function 
values over the boundary of the domain. 

III. SYSTEM OVEWVIEW 
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Figure 1. System overview. 

The basic steps of our system are shown in Figure 1, 

which are: 

 

1) User input: Let users input the starting point and the 

destination of their trips. 

2) Calculate route: Connect to Google Maps to 

calculate the route of the trip, and get a flowchart of this 

planned route. 

3) Trace along the route: Use Google Street View to 

trace all the way from the starting point to the destination 

according to the flowchart, and record every panorama ID 

along the way. 

4) Get street view panorama: Download all panorama 

images and their information according to the panorama ID. 

5) Decide facing direction in each panorama: Decide 

the looking directions of those panorama images, and save 

them. Thus, for each panorama image, we have one image 

which is the basically one the users will see in the final 

video. 

6) Align every image with each others: Scale each 

image taken in Step 4 and align it with the image before it, 

since “moving forward” is somewhat like “zoom in”. 

7) Blend every aligned image together: Blend all images 

while stitching them to reduce the perspective discontinuity 

visually. By this way, we can link all images together. 

8) Handle turning: Turning is different from moving 

toward, and needs to be handled specially when we stitched 

the images of the turning point together to create the 

turning effect. 

9) Generate output video: Zoom in from the first image 

toward the second one which stitched in it while alpha 

blending the two images at the same time. After we zoom in 

to the second image, do the same thing with the third image, 

etc. Some special cases are also needed to be handled like 

turning at this time. After this step, the route guiding video 

is generated. 

10) Link video and map together as the final output: Link 

the scenic video with Google Maps to create our final 

direction guiding system. 

IV. GOOGLE MAPS WITH STREET VIEW 

A. Data from Google Street View 

We can use the following URL to download the 
panorama image from Google Street View:  
 
http://cbk1.google.com/cbk?output=tile&panoid=”PANO_I
D”&zoom=”Z”&x=”X”&y=”Y”&cb_client=api&fover=2&
onerr=3&v=2 
 
where “PANO_ID” is the panorama ID of this particular 
panorama image, and “Z” is used to indicate the resolution 
(here we use 3). Because Google stores each panorama as 
several image tiles, we need to download all tiles and stitch 
them together to reconstruct the original panorama image. 
While “Z” equals to 3, “X” is ranged from 0 to 6, and “Y” is 
ranged from 0 to 3, so there are totally 28 tiles, and each tile 
is a 512 x 512 image. 

 
Figure 2. Combined panorama image with each tile separated by red lines. 

After stitching these 28 image tiles together, we can 

reconstruct the panorama image we downloaded with the 

panorama ID as one single image, but as shown in Figure 2, 

this panorama image has some repeat parts between the X = 

0 and X = 6 tiles, and there is nothing below the Y = 3 tiles. 



After some experiments, we found that the width of the 

repeat part is 256 pixels, and the height of the black line is 

384 pixels. This holds true for all panorama images 

downloaded from Google Street View with zoom = 3. After 

cropping those parts, we can get our panorama image. 

We can also use the following URL to download the 

XML file which describes the information of the panorama 

image: 

 

http://cbk1.google.com/cbk?output=xml&panoid="PANO_I

D"&cb_client=api&pm=0&ph=0&v=2 

 

where “PANO_ID” is the panorama ID of this panorama 

image. In this XML file, it records the information of the 

corresponding panorama images, which are: 

 

 <lat>,<lng>: The latitude and longitude position of 
this panorama image. 

 <pano_yaw_deg>,<tilt_yaw_deg>,<tilt_pitch_deg>: 
How this panorama image fits to a spherical texture. 

 <annotation_properties>: It records the <pano_id> 
and <link yaw_deg>, which are the ID and direction 
of its neighboring panorama images. 

B. Data from Google Maps 

Similar to Google Street View, we can access the route 

planned by Google Maps directly by the following URL: 

 

http://maps.google.com/?saddr="START_LOCATION"&da

ddr="END_LOCATION"&output=kml 

 

where “START_LOCATION” is the starting point, and 

“END_LOCATION” is the destination. By assigning 

“output=kml”, Google Maps will return the route 

information as an XML file, which will be easier for us to 

make use of. 

In the XML file, <Placemark> is important to us, 

because it records every important key step in the planned 

route. The key steps are the vital part of this route, like 

where the starting location and the destination are, and 

where to make a right or left turn. In each of these key steps, 

we will pay special attention to the nodes described below: 

 

 <name>: The description of this step, which also 
states that the route is making a turn at this point or 
not. 

 <longitude>,<latitude>: The longitude and latitude 
position of this key step. 

 <heading>: The degree of the direction of the next 
panorama image. If this key step is the turning point, 
we need to consider it to calculate the next panorama 
image along the route. 

 

By the information we gathered now, we can trace the 

whole route from the starting location to the destination, and 

download all panorama images and their XML files. 

V. STITCHING PANORAMA IMAGES 

A. Preparing Data 

Since panorama images downloaded from Google Maps 

with Street View are all spherical panoramas, first we need 

to calculate the normal viewing scene from them. In the 

implementation, we use Direct3D to draw a sphere around 

the camera and apply the spherical panoramas as a texture 

image on it. Notice that the camera needs to be adjusted by 

the three values of <pano_yaw_deg>, <tilt_yaw_deg>, and 

<tilt_pitch_deg> we recorded before to make it correct and 

coincidence with the <heading> value. Tracing through the 

planned route, we transform every panorama image to 

pictures with the camera facing our heading direction. 

60°

Camera 1

Camera 2

Camera 3

 
        Camera 3        Camera 2        Camera 1 

Figure 3. The output images at a turing point. 

As for the turning point, first we take the image with the 

heading direction opposite to where we came from as the 

starting image. Then, because we are using a field of view 

of 60 degree in our system, we take the next image after 

turning 60 degree and stitch it with the initial one. Then, we 

continue turning the camera until just one final turn of the 

camera before we are facing the direction of the next 

panorama, where the final turning degree may not be 

another full 60 degree. Thus, while stitching it with all 

previous images, we need to overlay the previous images, 

and the overlay region is inverse proportional to the turning 

degree of the last turn. Figure 3 shows an example of the 

camera movement at a corner. 

B. Image Alignment and Matching 

 
Figure 4. The zooming correspondence between Image A and B. 

Now we have every single image along the planned route, 

next we are going to link them together one by one. We 

assume that the effect of “moving forward” can be 

simulated by the effect of “zoom in”. For example, if we 

stand on Image A and moving forward to Image B, then 

there should be a way to scale Image B down and match it 



to somewhere in the middle of Image A. Figure 4 shows the 

zooming correspondence between the two images. 

To align Image A and Image B, Scale-invariant feature 

transform (SIFT) [6] is used. Then, we use RANdom 

SAmple Consensus (RANSAC) [4] to find the transform 

function to match the Image B into the middle of Image A. 

Under the current data accuracy, we found that doing the 

translation and scaling are sufficient. More complex 

transformation might only yield worse result. However, 

since the SIFT features are not completely match between 

these two images, sometimes the result is not what we 

expected. With some experiments, we found that by setting 

an upper bound (0.7) for scaling, the result will be more 

stable. 

Figure 5 (a) shows the pasting result. Notice that the 

seam between the images is still obvious, and this will be 

smoothed in the next section. Due to the sudden change of 

perspective, some information is lost, but most of the scene 

is still intact thus will not affect the overall feeling of the 

scene. 

C. Image Blending and Stitching 

In order to paste one image to another in a seamless way, 

Poisson blending is usually used. Figure 5 (b) shows the 

simple result, although it is not so good. To further reduce 

the seam between the images, the minimum error boundary 

cut [3] is used. By this algorithm, we can find the best crop 

line between the images to make the artifact of blending 

even less obvious. Because we paste one image into the 

middle of the other, we only need to do the minimum error 

boundary cut around the four sides of the pasting and pasted 

images as shown in Figure 5 (c). By using the Poisson 

blending to further smooth the boundary, a much more 

smooth result can be achieved as shown in Figure 5 (d). 

 
(a)   (b) 

 
(c)   (d) 

Figure 5. (a) Embeding one image to another by SIFT features. (b) Poisson 

blending the two images in (a). (c) Embeding with minimum boundary cut. 

(d) Embeding with minimum boundary cut and Poisson blending. 

Now we know how to combine two adjacent images with 

each other. To link all the images along the planned route, 

we simply start from the last image, and backtrack every 

image and do all the works above with them one by one. 

With so many images stacked together, the seams between 

the images become visible due to too many seams appear in 

one image, and they are too close to each other as shown in 

Figure 6 (a). 

To counter this problem, before pasting one image to its 

previous one, we only keep track of the scaling and 

translation between them, but not pasting them immediately. 

Once the scaling change is bigger than a pre-defined 

threshold, we then do the pasting. In practice, we found that 

the threshold works well with a value of 0.6, which means 

the image will be scaled at least 60% before it is pasted. 

Figure 6 (b) shows the result and comparison. 

 
(a)   (b) 

Figure 6. (a) Embedding all images together. (b) The result of removing 

some images before pasting. 

Finally we will cope with the turning point. While we are 

backtracking and matching images, if we encounter the 

turning point, we can just match the image to the end 

camera position of the turning point. After that, we crop the 

starting camera position to create another image, thus we 

can continue the image string by matching it with the image 

which is just before the turning point. Due to the fact that 

the perspective change during the turning point might be 

more serious (some buildings may block the view at the 

corner), we will not skip the images adjacent to the turning 

point.  

VI. SYSTEM INTEGRATION 

A. Generating Video 

Now we are going to generate the guiding video from 

this image string created before. Basically we will keep 

enlarging the first image toward its pasted second image, 

and make the part where contains the second image do an 

alpha blending with the real second image. When the part of 

second image contained in the first image covers the whole 

scene, we will switch to the second image and do the same 

thing with the third image. Minimum error boundary cut 

makes the seams between the images less obvious even 

when the weight of the next image is larger, which means 

we are close to switch to the next image. Continue doing 

this until we go through the image string, then we will have 

the output guiding video of the planned route. 

At the turning point, we similarly zoom in toward the 

next pasted image. Although we can stand still while turning, 

the aim of our system is to simulate as driving a car. Hence, 



we will keep moving forward and turning at the same time. 

We also need to keep track at which frame we switch the 

images, this information will be useful in the next part. 

Note that while generating the video, we only take the 

center 80% size of each zoomed image as the output video. 

Because of the boundary cut, we need to make sure when 

we switch to the next image, that image must be able to 

cover the whole frame without holes caused by the 

boundary cutting. 

B.  Integrating with Google Maps 

Finally, we combine the video with Google Maps to 

create a guiding system which users can easily navigate 

through their planned routes. To use this system, the users 

only need to input their starting location and the destination, 

and then the system will do all the above processes to give 

them the output as shown in Figure 7. In Figure 7, the left 

part is our guiding video, and the users can watch the video 

and pause anytime they want. The slider below the video 

also provides a quick navigation along the route, so the 

users can navigate the whole path at their own pace. The 

“View” button will bring up a “Street Viewer” window 

which contains the nearest panorama image of the current 

frame of the guiding video. The users can rotate the camera 

of the Street Viewer in case they want to watch the scene 

more closely. 

 
Figure 7. The screenshot of our system. 

The right part of the GUI is the Google Maps integrated 

with our video. Utilizing the coordinates we recorded with 

every panorama image and the information about which 

frame we switch to the next image in the video, we can 

calculate the current position by interpolating the 

coordinates of the current image and the next one. 

Combining the guiding video with the Google Maps, the 

users can get visual feeling of any point within the planned 

route, and at the same time link every point on the map with 

its actual scene with ease. Thus, our system can provide a 

driving experience to the users even before they actually go 

to the spot themselves. 

VII. DISCUSSION 

Here we compare our system with the original Google 

Maps with Street View as well as a recent system [2] also 

dealing with the street view as shown in Table I. 

TABLE I. THE COMPARISON BETWEEN SYSTEMS 

 Google Maps 

with Street View 

Integrated Videos and Maps 

for Driving Directions [2] 

Our 

System 

Moving 
Smoothness 

X O O 

Video 

Smoothness 
X O O 

User 
Interaction 

O X △ 

Easy Data 

Access 
O X O 

Route 
Recognition 

△ O △ 

 

 Moving Smoothness: How camera moves from one 
panorama image to the next one. Google Maps with 
Street View suffers from the flaw stated before, and 
[2] counters this problem by using intensive 
panorama images, while our system uses the 
techniques described in the previous sessions to 
solve it. 

 Video Smoothness: In Google Maps with Street 
View, users need to press the “next” button again 
and again to move from the starting location to the 
destination step by step, while [2] and our system 
both have automatic playing function. 

 User Interaction: Users in Google Maps with Street 
View have fully control ability of where to go and 
where to look at, while in [2], users can only follow 
a predefined route and viewing. Although our 
system also makes the users follow a predefined 
route, they can watch their surroundings freely by 
pressing the “view” button. 

 Easy Data Access: Google Maps with Street View is 
opened for any user, and our system also uses the 
same data. However, [2] uses its own panorama 
images, which are not obtainable by ordinary users. 

 Route Recognition: Our system shares the same map 
and scene from Google Maps with Street View, but 
[2] highlights important landmarks on the map and 
provides a better way for the users to recognize their 
planned routes. 

 

Still, there are some cases that our system cannot work 

very well with. The first case is that some information about 

the street view we obtained from Google Maps with Street 

View is not very accurate. For example, sometimes the 

neighboring panorama is not recorded correctly in the XML 

file, as shown in Figure 8 (a). Since the relation between 

these panorama images are wrong, our system could not 

generate a reasonable output. Another problem caused by 

the original data is that the next image might have a biased 

view without any reason, and this problem is not recorded in 

its XML file. As shown in Figure 8 (b), in this case the 

alignment will be completely wrong due to the different 

viewing angles. The above two failure cases are due to the 

error of the original data obtained from Google Maps with 



Street View. That means to use the real data to build a 

useful system needs a lot of efforts to deal with the original 

data error. 

Another failure case comes from the street trees, because 

it is very hard to find the corresponding feature point pairs 

of the street trees in two corresponding images due to the 

tree leaves. If the image is covered by too much trees, our 

system may not be able to handle it well as shown in Figure 

8 (c). In Figure 8 (d), it shows two problems: one is the cars 

moved with the scene which will appear in several images 

repeatedly. Since the street view data is sparse, it is hard to 

detect the moving objects and remove them. The other 

problem is the curved road. Due the distance between each 

panorama the curved road could not be sampled perfectly. 

The difference between the sampled curved road and the 

real road will cause the seams and inconsistence as shown in 

Figure 8 (d). 

 
(a)   (b) 

 
(c)   (d) 

Figure 8. Failure cases. (a) Original data error. (b) Inconsistancy of viewing 

direction. (c) Alignment error caused by trees. (d) Curved road and vehicles 

in the scene. 

VIII. CONCLUSION AND FUTURE WORK 

In this paper, we provide a guiding video system which 

is intuitive to use and requires data comparatively easy to 

obtain from Google Maps with Street View. Up now, the 

methods to deal with the moving between panorama images 

in the street view video is simply to increase the number of 

panorama images, which is usually unobtainable by 

ordinary users. Our system only takes normal density of 

panorama images to create the smooth guiding video. We 

combined image alignment and blending techniques to 

simulate moving forward by the zoom in effect, and 

generate a visually smooth guiding video. Finally, we 

integrate this video with Google Maps to create a guiding 

system which users can familiarize themselves with the 

scene of their planned routes before they actually drive on 

them. 

Our system processes all the panorama images after we 

apply them to a sphere texture and take them as a screenshot, 

but theoretically we could process the panorama images 

directly. With proper cropping and transformation, it is 

possible to create the image string with the original 

panorama images. Then, we can generate a fully interactive 

virtual space with all the real panorama images, and move 

freely in it smoothly. 

Another possible improvement with our system is the 

alignment part. SIFT cannot cope with trees well. The image 

alignment is vital to the performance of our system, thus 

further research in this part could yield better result than the 

current system. For now, our system took about five 

seconds to download one panorama image from Google 

Maps with Street View, about five seconds to align it with 

other images, and about five seconds to do the Poisson 

blending. Further research will be needed to reduce the time 

complexity. 

Finally, indicating landmarks in our system could also 

help with route recognition. Integrating labels of landmarks 

in both of the map and the guiding video system may make 

users to know which scene they should pay particular 

attention to, although this idea still requires further research. 
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