
Integrated Google Maps and Smooth Street View Videos for Route Planning

Chi Peng

National Taiwan University

Legault@cmlab.csie.ntu.edu.tw

Bing-Yu Chen

National Taiwan University

robin@ntu.edu.tw

Chi-Hung Tsai

Institute for Information Industry

brick@iii.org.tw

Abstract—In this paper, we provide a system that takes start

and end points as the input, and will automatically connect to

the Google Maps with Street View to achieve the route planned

result and scenery along the route. Finally, it will generate a

smooth scenic video from the starting point to the destination,

which combines the Google Maps to provide better route

recognition to users. The users can watch and interact with the

video as if they are driving a car through the planned route.

Our system is fully automatic but still provides interaction

mechanisms for the users to walk around in the scenic video.

Keywords-Google maps; street view; scenic video; route

planing; blending; boundary cut

I. INTRODUCTION

With the development of technology, route planning
software is popular these days. Users can now plan their
driving directions by using online route planning services.
Most of the time they only need to input their starting point
and destination, and then they can get an electronic map
which describes the full route from the starting point to the
destination. However, they could not know the scenery along
the route before they drive on it, so when they actually drive
along the way, it is sometimes hard to distinguish the route in
the street they are not familiar with.

To map the virtual map and the real scenery, Google
provides a service called Google Maps with Street View

1
, by

which users can watch the scenery in the street as if they are
driving on it. In addition, they can also plan their route by
Google Maps, and then watch along the route with the Street
View to get a better feeling about the view. However,
because Google Maps with Street View only provides a
rather sparse point-to-point system to view the street, the
process of viewing from the starting point to the destination
could not present smoothly, but in a way more like jumping
from a point to another point.

To provide a much better service while simplifying the
problem, some methods are provided to use their own street
view data to make smooth transitions. However, those data
are hard to obtain by ordinary users. Moreover, it is also
inconvenient to use Google Maps with Street View to watch
a route, because the users need to keep pressing the “forward”
button to jump from one panorama image to the next one
step by step. Hence, in this paper, we provide an easy-to-use
system based on pubic but not so good Google Maps with

1
 http://maps.google.com/help/maps/streetview/

Street View data to provide a smoother guiding video. By
using our system, the users can interactive with the scenic
video of the planed route easily. Thus, our system can
provide a better feeling of the scene of the planned route and
the users can interact with our system to watch the part they
are interest, or skip those with less importance.

In summary, the main contribution of our work is that we
introduce a system which only takes some simple inputs
from the users and accesses the data from Google to generate
a visually smooth route guiding video. Combined this video
with Google Maps, we provide a guiding system to let the
users familiarize themselves with their planned routes before
actually driving on them, thus makes them easier to follow
the pre-planned route.

II. RELATED WORK

Typically, large collections of images are usually shown
as a page of thumbnails or a slideshow, which is a practical
but not engaging way, since it is lacking of the feeling of
“being there”, which is critical to street view images. The
“Photo Tourism” [8] is a successful example, which puts all
images of a given scene in a common 3D space using bundle
adjustment. Users then can browse the image collection by
moving in the 3D space freely. However, when browsing
from one image to another, the transition in the system is not
smooth enough to keep on the feeling of really moving into
the next image.

Photorealistic “Virtual Space” [7] connects visually
similar images together to create a virtual space which users
are free to move from one image to the next one using
intuitive 3D controls such as move left/right, zoom in/out
and rotate. It displays the images in correct geometric and
photometric alignment with respect to the current photo, so
the transition between the images is smooth. The infinite
zoom (in) effects are visually “walking into” the images,
which inspired our work.

In [2], Chen et al. combined the street view video with a
map to enhance the path finding ability of users. However, in
this system it requires intensive panorama images along the
planned route to create a smooth video tour. Recently, Kopf
et al. [5] combined the images in the street view system by
stitching the side views, which means standing on the street
and looking to the left or right, of a certain street together to
generate a long street slide for users to quickly browse this
street. While it is an excellent way to view the side scene of a
certain street, it keeps the users look to the side of the street,

which is usually not the case while actually driving or
walking.

To combine images, matching and blending can
smoothly integrate several related images together, which
have already been used to generate panorama images [1]. In
our system, first we use the image matching technique, SIFT,
to match each tile of the panorama image, and then use the
technique of minimum error boundary cut [3] to stitch them
together. The minimum error boundary cut treats the
difference of the junction area between two images as an
intensity map, and then calculates the shortest path, with
intensity as the cost, to cut through the intensity map, so that
the stitched images will have a less obvious seam between
the two original images. Finally, we use Poisson image
editing [9] to blend the boundary of the two images. The idea
of Poisson image editing is approaching the Poisson partial
differential equation with Dirichlet boundary conditions
which specifies the Laplacian of an unknown function over
the domain of interest, along with the unknown function
values over the boundary of the domain.

III. SYSTEM OVEWVIEW

Preparing DataCollecting DataInput

User input

Calculate route

Get street view

panorama

Trace along the

route

Decide facing

direction in

each panorama

Align every

image with

each others

Handle turning

Blend every

aligned image

together

Output

Link video and

map together as

final output

Generating

output video

Figure 1. System overview.

The basic steps of our system are shown in Figure 1,

which are:

1) User input: Let users input the starting point and the

destination of their trips.

2) Calculate route: Connect to Google Maps to

calculate the route of the trip, and get a flowchart of this

planned route.

3) Trace along the route: Use Google Street View to

trace all the way from the starting point to the destination

according to the flowchart, and record every panorama ID

along the way.

4) Get street view panorama: Download all panorama

images and their information according to the panorama ID.

5) Decide facing direction in each panorama: Decide

the looking directions of those panorama images, and save

them. Thus, for each panorama image, we have one image

which is the basically one the users will see in the final

video.

6) Align every image with each others: Scale each

image taken in Step 4 and align it with the image before it,

since “moving forward” is somewhat like “zoom in”.

7) Blend every aligned image together: Blend all images

while stitching them to reduce the perspective discontinuity

visually. By this way, we can link all images together.

8) Handle turning: Turning is different from moving

toward, and needs to be handled specially when we stitched

the images of the turning point together to create the

turning effect.

9) Generate output video: Zoom in from the first image

toward the second one which stitched in it while alpha

blending the two images at the same time. After we zoom in

to the second image, do the same thing with the third image,

etc. Some special cases are also needed to be handled like

turning at this time. After this step, the route guiding video

is generated.

10) Link video and map together as the final output: Link

the scenic video with Google Maps to create our final

direction guiding system.

IV. GOOGLE MAPS WITH STREET VIEW

A. Data from Google Street View

We can use the following URL to download the
panorama image from Google Street View:

http://cbk1.google.com/cbk?output=tile&panoid=”PANO_I
D”&zoom=”Z”&x=”X”&y=”Y”&cb_client=api&fover=2&
onerr=3&v=2

where “PANO_ID” is the panorama ID of this particular
panorama image, and “Z” is used to indicate the resolution
(here we use 3). Because Google stores each panorama as
several image tiles, we need to download all tiles and stitch
them together to reconstruct the original panorama image.
While “Z” equals to 3, “X” is ranged from 0 to 6, and “Y” is
ranged from 0 to 3, so there are totally 28 tiles, and each tile
is a 512 x 512 image.

Figure 2. Combined panorama image with each tile separated by red lines.

After stitching these 28 image tiles together, we can

reconstruct the panorama image we downloaded with the

panorama ID as one single image, but as shown in Figure 2,

this panorama image has some repeat parts between the X =

0 and X = 6 tiles, and there is nothing below the Y = 3 tiles.

After some experiments, we found that the width of the

repeat part is 256 pixels, and the height of the black line is

384 pixels. This holds true for all panorama images

downloaded from Google Street View with zoom = 3. After

cropping those parts, we can get our panorama image.

We can also use the following URL to download the

XML file which describes the information of the panorama

image:

http://cbk1.google.com/cbk?output=xml&panoid="PANO_I

D"&cb_client=api&pm=0&ph=0&v=2

where “PANO_ID” is the panorama ID of this panorama

image. In this XML file, it records the information of the

corresponding panorama images, which are:

 <lat>,<lng>: The latitude and longitude position of
this panorama image.

 <pano_yaw_deg>,<tilt_yaw_deg>,<tilt_pitch_deg>:
How this panorama image fits to a spherical texture.

 <annotation_properties>: It records the <pano_id>
and <link yaw_deg>, which are the ID and direction
of its neighboring panorama images.

B. Data from Google Maps

Similar to Google Street View, we can access the route

planned by Google Maps directly by the following URL:

http://maps.google.com/?saddr="START_LOCATION"&da

ddr="END_LOCATION"&output=kml

where “START_LOCATION” is the starting point, and

“END_LOCATION” is the destination. By assigning

“output=kml”, Google Maps will return the route

information as an XML file, which will be easier for us to

make use of.

In the XML file, <Placemark> is important to us,

because it records every important key step in the planned

route. The key steps are the vital part of this route, like

where the starting location and the destination are, and

where to make a right or left turn. In each of these key steps,

we will pay special attention to the nodes described below:

 <name>: The description of this step, which also
states that the route is making a turn at this point or
not.

 <longitude>,<latitude>: The longitude and latitude
position of this key step.

 <heading>: The degree of the direction of the next
panorama image. If this key step is the turning point,
we need to consider it to calculate the next panorama
image along the route.

By the information we gathered now, we can trace the

whole route from the starting location to the destination, and

download all panorama images and their XML files.

V. STITCHING PANORAMA IMAGES

A. Preparing Data

Since panorama images downloaded from Google Maps

with Street View are all spherical panoramas, first we need

to calculate the normal viewing scene from them. In the

implementation, we use Direct3D to draw a sphere around

the camera and apply the spherical panoramas as a texture

image on it. Notice that the camera needs to be adjusted by

the three values of <pano_yaw_deg>, <tilt_yaw_deg>, and

<tilt_pitch_deg> we recorded before to make it correct and

coincidence with the <heading> value. Tracing through the

planned route, we transform every panorama image to

pictures with the camera facing our heading direction.

60°

Camera 1

Camera 2

Camera 3

 Camera 3 Camera 2 Camera 1

Figure 3. The output images at a turing point.

As for the turning point, first we take the image with the

heading direction opposite to where we came from as the

starting image. Then, because we are using a field of view

of 60 degree in our system, we take the next image after

turning 60 degree and stitch it with the initial one. Then, we

continue turning the camera until just one final turn of the

camera before we are facing the direction of the next

panorama, where the final turning degree may not be

another full 60 degree. Thus, while stitching it with all

previous images, we need to overlay the previous images,

and the overlay region is inverse proportional to the turning

degree of the last turn. Figure 3 shows an example of the

camera movement at a corner.

B. Image Alignment and Matching

Figure 4. The zooming correspondence between Image A and B.

Now we have every single image along the planned route,

next we are going to link them together one by one. We

assume that the effect of “moving forward” can be

simulated by the effect of “zoom in”. For example, if we

stand on Image A and moving forward to Image B, then

there should be a way to scale Image B down and match it

to somewhere in the middle of Image A. Figure 4 shows the

zooming correspondence between the two images.

To align Image A and Image B, Scale-invariant feature

transform (SIFT) [6] is used. Then, we use RANdom

SAmple Consensus (RANSAC) [4] to find the transform

function to match the Image B into the middle of Image A.

Under the current data accuracy, we found that doing the

translation and scaling are sufficient. More complex

transformation might only yield worse result. However,

since the SIFT features are not completely match between

these two images, sometimes the result is not what we

expected. With some experiments, we found that by setting

an upper bound (0.7) for scaling, the result will be more

stable.

Figure 5 (a) shows the pasting result. Notice that the

seam between the images is still obvious, and this will be

smoothed in the next section. Due to the sudden change of

perspective, some information is lost, but most of the scene

is still intact thus will not affect the overall feeling of the

scene.

C. Image Blending and Stitching

In order to paste one image to another in a seamless way,

Poisson blending is usually used. Figure 5 (b) shows the

simple result, although it is not so good. To further reduce

the seam between the images, the minimum error boundary

cut [3] is used. By this algorithm, we can find the best crop

line between the images to make the artifact of blending

even less obvious. Because we paste one image into the

middle of the other, we only need to do the minimum error

boundary cut around the four sides of the pasting and pasted

images as shown in Figure 5 (c). By using the Poisson

blending to further smooth the boundary, a much more

smooth result can be achieved as shown in Figure 5 (d).

(a) (b)

(c) (d)

Figure 5. (a) Embeding one image to another by SIFT features. (b) Poisson

blending the two images in (a). (c) Embeding with minimum boundary cut.

(d) Embeding with minimum boundary cut and Poisson blending.

Now we know how to combine two adjacent images with

each other. To link all the images along the planned route,

we simply start from the last image, and backtrack every

image and do all the works above with them one by one.

With so many images stacked together, the seams between

the images become visible due to too many seams appear in

one image, and they are too close to each other as shown in

Figure 6 (a).

To counter this problem, before pasting one image to its

previous one, we only keep track of the scaling and

translation between them, but not pasting them immediately.

Once the scaling change is bigger than a pre-defined

threshold, we then do the pasting. In practice, we found that

the threshold works well with a value of 0.6, which means

the image will be scaled at least 60% before it is pasted.

Figure 6 (b) shows the result and comparison.

(a) (b)

Figure 6. (a) Embedding all images together. (b) The result of removing

some images before pasting.

Finally we will cope with the turning point. While we are

backtracking and matching images, if we encounter the

turning point, we can just match the image to the end

camera position of the turning point. After that, we crop the

starting camera position to create another image, thus we

can continue the image string by matching it with the image

which is just before the turning point. Due to the fact that

the perspective change during the turning point might be

more serious (some buildings may block the view at the

corner), we will not skip the images adjacent to the turning

point.

VI. SYSTEM INTEGRATION

A. Generating Video

Now we are going to generate the guiding video from

this image string created before. Basically we will keep

enlarging the first image toward its pasted second image,

and make the part where contains the second image do an

alpha blending with the real second image. When the part of

second image contained in the first image covers the whole

scene, we will switch to the second image and do the same

thing with the third image. Minimum error boundary cut

makes the seams between the images less obvious even

when the weight of the next image is larger, which means

we are close to switch to the next image. Continue doing

this until we go through the image string, then we will have

the output guiding video of the planned route.

At the turning point, we similarly zoom in toward the

next pasted image. Although we can stand still while turning,

the aim of our system is to simulate as driving a car. Hence,

we will keep moving forward and turning at the same time.

We also need to keep track at which frame we switch the

images, this information will be useful in the next part.

Note that while generating the video, we only take the

center 80% size of each zoomed image as the output video.

Because of the boundary cut, we need to make sure when

we switch to the next image, that image must be able to

cover the whole frame without holes caused by the

boundary cutting.

B. Integrating with Google Maps

Finally, we combine the video with Google Maps to

create a guiding system which users can easily navigate

through their planned routes. To use this system, the users

only need to input their starting location and the destination,

and then the system will do all the above processes to give

them the output as shown in Figure 7. In Figure 7, the left

part is our guiding video, and the users can watch the video

and pause anytime they want. The slider below the video

also provides a quick navigation along the route, so the

users can navigate the whole path at their own pace. The

“View” button will bring up a “Street Viewer” window

which contains the nearest panorama image of the current

frame of the guiding video. The users can rotate the camera

of the Street Viewer in case they want to watch the scene

more closely.

Figure 7. The screenshot of our system.

The right part of the GUI is the Google Maps integrated

with our video. Utilizing the coordinates we recorded with

every panorama image and the information about which

frame we switch to the next image in the video, we can

calculate the current position by interpolating the

coordinates of the current image and the next one.

Combining the guiding video with the Google Maps, the

users can get visual feeling of any point within the planned

route, and at the same time link every point on the map with

its actual scene with ease. Thus, our system can provide a

driving experience to the users even before they actually go

to the spot themselves.

VII. DISCUSSION

Here we compare our system with the original Google

Maps with Street View as well as a recent system [2] also

dealing with the street view as shown in Table I.

TABLE I. THE COMPARISON BETWEEN SYSTEMS

 Google Maps

with Street View

Integrated Videos and Maps

for Driving Directions [2]

Our

System

Moving
Smoothness

X O O

Video

Smoothness
X O O

User
Interaction

O X △

Easy Data

Access
O X O

Route
Recognition

△ O △

 Moving Smoothness: How camera moves from one
panorama image to the next one. Google Maps with
Street View suffers from the flaw stated before, and
[2] counters this problem by using intensive
panorama images, while our system uses the
techniques described in the previous sessions to
solve it.

 Video Smoothness: In Google Maps with Street
View, users need to press the “next” button again
and again to move from the starting location to the
destination step by step, while [2] and our system
both have automatic playing function.

 User Interaction: Users in Google Maps with Street
View have fully control ability of where to go and
where to look at, while in [2], users can only follow
a predefined route and viewing. Although our
system also makes the users follow a predefined
route, they can watch their surroundings freely by
pressing the “view” button.

 Easy Data Access: Google Maps with Street View is
opened for any user, and our system also uses the
same data. However, [2] uses its own panorama
images, which are not obtainable by ordinary users.

 Route Recognition: Our system shares the same map
and scene from Google Maps with Street View, but
[2] highlights important landmarks on the map and
provides a better way for the users to recognize their
planned routes.

Still, there are some cases that our system cannot work

very well with. The first case is that some information about

the street view we obtained from Google Maps with Street

View is not very accurate. For example, sometimes the

neighboring panorama is not recorded correctly in the XML

file, as shown in Figure 8 (a). Since the relation between

these panorama images are wrong, our system could not

generate a reasonable output. Another problem caused by

the original data is that the next image might have a biased

view without any reason, and this problem is not recorded in

its XML file. As shown in Figure 8 (b), in this case the

alignment will be completely wrong due to the different

viewing angles. The above two failure cases are due to the

error of the original data obtained from Google Maps with

Street View. That means to use the real data to build a

useful system needs a lot of efforts to deal with the original

data error.

Another failure case comes from the street trees, because

it is very hard to find the corresponding feature point pairs

of the street trees in two corresponding images due to the

tree leaves. If the image is covered by too much trees, our

system may not be able to handle it well as shown in Figure

8 (c). In Figure 8 (d), it shows two problems: one is the cars

moved with the scene which will appear in several images

repeatedly. Since the street view data is sparse, it is hard to

detect the moving objects and remove them. The other

problem is the curved road. Due the distance between each

panorama the curved road could not be sampled perfectly.

The difference between the sampled curved road and the

real road will cause the seams and inconsistence as shown in

Figure 8 (d).

(a) (b)

(c) (d)

Figure 8. Failure cases. (a) Original data error. (b) Inconsistancy of viewing

direction. (c) Alignment error caused by trees. (d) Curved road and vehicles

in the scene.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we provide a guiding video system which

is intuitive to use and requires data comparatively easy to

obtain from Google Maps with Street View. Up now, the

methods to deal with the moving between panorama images

in the street view video is simply to increase the number of

panorama images, which is usually unobtainable by

ordinary users. Our system only takes normal density of

panorama images to create the smooth guiding video. We

combined image alignment and blending techniques to

simulate moving forward by the zoom in effect, and

generate a visually smooth guiding video. Finally, we

integrate this video with Google Maps to create a guiding

system which users can familiarize themselves with the

scene of their planned routes before they actually drive on

them.

Our system processes all the panorama images after we

apply them to a sphere texture and take them as a screenshot,

but theoretically we could process the panorama images

directly. With proper cropping and transformation, it is

possible to create the image string with the original

panorama images. Then, we can generate a fully interactive

virtual space with all the real panorama images, and move

freely in it smoothly.

Another possible improvement with our system is the

alignment part. SIFT cannot cope with trees well. The image

alignment is vital to the performance of our system, thus

further research in this part could yield better result than the

current system. For now, our system took about five

seconds to download one panorama image from Google

Maps with Street View, about five seconds to align it with

other images, and about five seconds to do the Poisson

blending. Further research will be needed to reduce the time

complexity.

Finally, indicating landmarks in our system could also

help with route recognition. Integrating labels of landmarks

in both of the map and the guiding video system may make

users to know which scene they should pay particular

attention to, although this idea still requires further research.

ACKNOWLEDGMENT

This paper was conducted under the III Innovative and
Prospective Technologies Project of the Institute for
Information Industry which is subsidized by the Ministry of
Economy Affairs of Taiwan and also partially supported by
the Excellent Research Project of the National Taiwan
University under NTU98R0062-04.

REFERENCES

[1] M. Brown and D. G. Lowe, “Recognising Panoramas,” Proc. Intl.
Conf. on Computer Vision 2003, pp. 1218-1225.

[2] B. Chen, B. Neubert, E. Ofek, O. Deussen, and M. F. Cohen,
“Integrated Videos and Maps for Driving Directions,” Proc. Symp.
User Interface Science and Technology 2009, pp. 223-232.

[3] A. A. Efros and W. T. Freeman, “Image Quilting for Texture
Synthesis and Transfer,” Proc. ACM SIGGRAPH 2001, pp. 341-346.

[4] M. A. Fischler and R. C. Bolles, “Random Sample Consensus: A
Paradigm for Model Fitting with Applications to Image Analysis and
Automated Cartography,” Comm. of the ACM, vo. 24, no. 6, pp. 381-
395.

[5] J. Kopf, B. Chen, R. Szeliski, and M. Cohen, “Street Slide: Browsing
Street Level Imagery,” ACM Trans. Graphics, vo. 29, no. 4, 2010,
Article no. 96, (Proc. SIGGRAPH 2010).

[6] D. G. Lowe, “Distinctive Image Features from Scale-Invariant
Keypoints,” International Journal of Computer Vision, vol. 60, no. 2,
2004, pp. 91-110.

[7] J. Sivic, B. Kaneva, A. Torralba, S. Avidan, and W. T. Freeman,
“Creating and Exploring a Large Photorealistic Virtual Space,” Proc.
IEEE Workshop on Internet Vision 2008.

[8] N. Snavely, S. M. Seitz, and R. Szeliski, “Photo Tourism: Exploring
Photo Collections in 3D,” ACM Trans. Graphics, vo. 25, no. 3, 2006,
pp. 835-846, (Proc. SIGGRAPH 2006).

[9] P. Pérez, M. Gangnet, and A. Blake, “Poisson Image Editing,” ACM
Trans. Graphics, vol. 22, no. 3, 2003, pp. 313-318, (Proc.
SIGGRAPH 2003).

