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Abstract 
 

To enlarge an image, bi-linear interpolation and bi-cubic interpolation are two 
common and simple methods, but they always generate unacceptable zigzag or blurry 
results. Some image processing methods are provided to reduce the zigzag or blurry 
effects by enhancing the edges and textureness or deblurring the images, and some 
example-based methods used some training high resolution images to provide the 
missing high frequency part for the enlarged input low resolution image. Although it is 
possible to record the relationship between the high resolution and low resolution 
samples of some natural training images and transfer the relationship to enhance the 
enlarged input low resolution image by using the example-based methods, the noise 
embedded in the input image is also amplified and makes the enhanced enlarged image 
looks noisy. Due to the noise, the example-based methods cannot be used to produce a 
satisfying result when applying to video frames directly. In this paper, we present an 
improved example-based approach that records the relationship of the middle and high 
frequency data of some training images, since the low frequency data is not needed for 
reconstructing the high frequency one. When enlarging an image, we only use the 
middle frequency data to estimate the missing high frequency one and transfer it to 
enhance the textureness of the enlarged input image. Since our approach can reduce the 
noise while enhancing the enlarged image, it can also be used for enlarging the video 
frames directly. 
 

1 Introduction 
 

Digital camera devices are becoming more and more popular today. To capture 
photos or videos is much more easily than before. However, to share these digital 
media with other people is still a difficult problem. For example, most public photo 
sharing websites on Internet today still only provides limited storage space, such that 
most upload tools for these websites would automatically decrease the image 
resolution of the uploaded photos in order to reduce the file sizes. Similarly, even if we 
can capture high resolution videos with camcorders today, to downscale videos is also 
a common preprocess before sharing or uploading them. In the meantime, display 
devices are becoming able to show much higher resolution images and videos. 
Therefore, the quality gap between the distributed digital media and the display device 
is becoming much larger. 
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To fill this gap, low resolution images and videos should be properly enlarged 
before shown on a higher resolution display. In this case, bi-linear or bi-cubic 
interpolation is usually chosen to be used. However, to enlarge images or videos by 
such a common but simple method always produces unacceptable zigzag or blurry 
results. Therefore, some image processing approaches are introduced to reduce zigzag 
or blurry effects by enhancing edges and textureness [1], or deblurring [2]. There are 
also some example-based approaches using some high resolution training images to 
deduce the missing part of high frequency information by enlarging low resolution 
input image [3]. In example-based approaches, they estimate the relationship between 
high resolution and low resolution sample pairs from training images, and then 
enhance enlarged lower resolution input image based on the learned relationship. 
Unfortunately, after enhancing the enlarged low resolution input image, the noise 
embedded in the image is also amplified and makes the image look noisy which is 
shown in Fig. 2(d). 

 
In most image processing approaches, an image is usually taken or divided as two 

parts in the frequency domain, i.e., the low frequency part and the high frequency one. 
Usually the low frequency part contains the "general shapes" of the image, while the 
high frequency one contains the "details" of it. If we decrease the resolution of a given 
image, the high frequency information will be lost. Hence, when we enlarge the 
reduced image, the enlarged image will look blurry since its details are lost. In order to 
produce a less blurry image, to recover the high frequency information is the main task 
of the image enlarging, upsampling, or super-resolution work. However, only using the 
low frequency part to recover the high frequency information may make some low 
frequency noises embedded in the low frequency part be amplified. Hence, how to 
recover the high frequency part while filtering out the low frequency noises is the most 
concerned in the paper. 

 
Fig. 1 The framework of our algorithm. 

 
In this paper, we present an improved example-based approach inspired from [3] 

to enlarge the image resolution based on a key assumption that the low frequency data 
of an image is locally related to the higher frequency one of the same image. That 
means, if we know the low frequency band of an image, we can recover its high 
frequency band by searching a lookup table as shown in Fig. 1. However, to prevent 
the low frequency noise, we further divide the low frequency band into real low 
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frequency band and medium frequency one. Hence, the low frequency noise will be 
confined in the real low frequency band and won’t affect the retrieved high frequency 
part. Furthermore, we can directly apply our method on video frames and obtain a less 
flickered enlarged video. 

 
The rest of this paper is organized as follows. In Section 3, we describe our 

noise-reduced example-based approach for enlarging images, and extend this approach 
for videos in Section 4. Section 5 shows our results and some comparisons with other 
methods. Finally, we summarize our work in Section 6 and discuss our future work. 
 

2 Related Work 
 

The fastest and easiest way to enlarge an image or video is using the nearest 
neighbor or standard interpolation (bi-linear, bi-cubic, etc.) methods. These methods 
are very fast and widely used in many applications today. The downside is, these 
methods however do not perform well on edges, and will produce blocking artifacts in 
diagonal lines [4]. Furthermore, these methods cannot recover the details of the image 
or video since the details are not included in the original low resolution input. Another 
popular approach is to convolute the input image with a deblurring kernel or an image 
sharpening one. This approach is also an easy and fast one, but this approach will, in 
many cases, amplify the noises from the input image or video [2]. 

 
(a) (b) 

 
(c) (d) 

Fig. 2 The enlarged image results of (a) bi-cubic interpolation and (b) Freeman et al.’s 
method [3], where (c) and (d) are the close-up view of (a) and (b). Although Freeman 
et al.’s method produces clearer results; some artifacts are appeared in the black (low 
frequency) part as shown in (d). 
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The problem of super-resolution has been studied for more than two decades. One 
of the most popular methods today is the reconstruction-based algorithm, which relies 
on sampling theorems [5]. A detailed review of reconstruction-based algorithm can be 
found in [6]. However, several papers, like [7], have proved that there are many 
limitations related to the reconstruction-based algorithms. Furthermore, most 
algorithms proposed so far have problems dealing with dynamic videos, due to the 
constraints on motion models [8]. 

 
Freeman et al. proposed an example-based algorithm [3][9]. It assumes that we 

can guess the details of a high resolution image by analyzing its low resolution version. 
Based on this assumption, they developed a learning-based method that can enhance 
the resolution of an image. This method first stores the relationship between the low 
frequency part and high frequency one of an image. When enhancing the resolution of 
an image, this relationship can help us to fix the damaged high frequency data of the 
low resolution image. Hence, a better high resolution result can be achieved. The 
example-based method produces nice results in many cases and does not need too 
much extra input. However, this algorithm has serious noise/artifact problems as 
shown in Fig. 2, and that is what we want to address in this paper. 
 

3 Noise-reduced Example-Based Image Enlarging 
 

The framework of our method is illustrated in Fig. 1. It contains two stages, which 
are training and synthesizing. 
 

3.1 Training Stage 
 

In the training stage as shown in the upper part of Fig. 1, we first obtain some 
high resolution images as the training images. For each training data, we downscale the 
image to simulate the interpolation result of a low resolution input. In this paper, we 
simply convolute the image with a Gaussian kernel. The downscaled image still 
preserves the low and medium frequency data of the original training image, but the 
high frequency part (details) are removed, so the difference between the downscaled 
image and the original input one is just the lost high frequency data that we want to add 
to our low resolution input. The downscaled input image is then further divided into 
low frequency part and medium frequency one by using a band-pass filter. As the 
result, the original training image is divided into three frequency bands: high, medium, 
and low frequency parts. 

 
Then, we simply discard the low frequency band, since it is not very informative 

and may contain some low frequency noise which may not be noticed in the original 
input image. The medium frequency band and high frequency one of the training 
images are supposed to have a certain kind of relationship. According to this initial 
assumption, they are used to form a relationship record, that means the medium 
frequency data is related to a certain type of high frequency one as the follows:  
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where ,  and  denote the high, medium, and low frequency parts of the 
input image ,  is our downscale kernel, and  is a high 
pass filter that filters out the lower frequency part. 

highI midI
II =

lowI

midI lowhigh I++ DF HF

 
Since what we want to extract here is the structure of the image, rather than the 

actual pixel values, we perform a contrast normalization operation, as suggested in [3], 
on those images to remove the local contrast effects. Then, for each pixel in the 
training image, except the ones on the edge of it, we generate a corresponding 5x5 
patch from the medium frequency image and a 3x3 patch from the high frequency one. 
These two patches are paired to form the training dictionary. The result of the training 
stage finally forms a lookup table, which contains the information about the 
relationship between the medium frequency data and high frequency one. The medium 
frequency patch acts as the index, which can be matched by using another medium 
frequency patch, and the high frequency one is the content we need to improve the 
quality of the enlarged input images. 

 
For a single 400x400 training image, the lookup table includes close to 160,000 

patches, each patch has an index of 5x5 = 25 pixels and 3 color channels. To search 
such a huge lookup table is very time consuming, so in our implementation, we use the 
ANN library (http://www.cs.umd.edu/~mount/ANN/), to build a kd-tree for the lookup 
table and thus increase the searching speed. Since the training images are split into 
several small patches during the training stage, the actual content of the training 
images is not very important to us. Any image can be used as the training image as 
long as they are clear and include a rich collection of objects. According to our 
experiments, it is not necessary to use a training image similar to the low resolution 
input one in the synthesizing stage, since it does not produce better results. In this 
paper, the lookup table is trained by using two of the six training images used in [3]. 
 

3.2 Synthesizing Stage 
 

After the lookup table is built, as shown in the lower part of Fig. 1, we can take 
any image as input, enlarge it using conventional interpolation method, and enhance 
the result using the high frequency data queried from the lookup table. For each input 
low resolution image we want to enlarge, we first enlarge it to the target resolution by 
using a simple interpolation method (bi-cubic interpolation in our case), which serves 
our initial guess 'I . Then, we decompose the enlarged image 'I  into three channels 
of frequency , , and  by using the same method in the training stage, 
where . Since the low resolution input image includes less details 
compared to its high resolution version, we can say that the high frequency data 
embedded in the input image is damaged. Hence, after local contrast normalization, 

 is used to query the lookup table we built in the training stage to recover the high 
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frequency part  that corresponds to this medium frequency image . The 
retrieved high frequency data  is then used to replace the damaged high 
frequency data in our initial guess 

''highI midI '

''highI
'I  to obtain the result image 

. lowI '+midhigh III '''' '+=

'

 
The only problem now is how to find a corresponding high frequency patch in the 

lookup table for each medium frequency patch in  stripped from the enlarged 
input image 

midI '
I . For each medium frequency patch  with a spatial index i, 

we want to find a corresponding high frequency patch  that optimizes the following 
two conditions:  

midI 'im ∈
ih

 
• For each retrieved high frequency path  at the k-th entry in the lookup table, 

its corresponding medium frequency patch  constructed in the training stage 
should be similar with the given medium frequency patch . - the similarity term 
(S) 

kh
m

i

ih =

k
im

• For each retrieved high frequency patch  for the spatial index i on the given 
medium frequency image , the border area of  must be coherent with that 
of its neighboring patches  on the same image . - the coherence term (C)  

h
midI '
jh

ih

mid'I
 
Hence, our goal is to find an entry k in the lookup table for a given medium 

frequency patch  with a spatial index i on a given medium frequency image 
that minimizes the following cost function:  

im midI '  
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( )i

k mmS ,where  is the -norm distance between the medium frequency patch  
from the input image and the k-th medium frequency entry  from the lookup table, 

2L im

km
( )j

k hhC ,

jh

 is the -norm distance between the boundary area of the k-th high 
frequency data  from the lookup table and the already recovered high frequency 
data  from the neighboring patches j of i on the input image (i.e.,  denotes the 
neighboring patches of i). Since our result is synthesized in raster scan order, i.e., from 
top left to bottom right, we only have to compare the current patch with the patches 
above and left in the coherence term C (i.e., 

2L

kh

iN

2N =i ). 
 
In order to speedup the searching process, in our implementation, we first find the 

100 closest patches from the lookup table by considering the similarity term S only. 
-norm is the only calculation required with a kd-tree, so the computation cost is not 

very high. After the 100 closest patches are found, we then put the coherence term C 
into account to perform the minimization of Eq. (2). After the closest high frequency 
patch is found, in the post processing stage, we undo the local contrast normalization 
performed earlier during the training stage. Furthermore, since the high frequency 
patches overlap with each other in the result image, it is possible that one pixel is 

2L
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"covered" by multiple patches. In this case, the high frequency data added to this pixel 
is determined by averaging the pixel values in these patches corresponding to this 
pixel’s location. By adding the high frequency information, our initial guess 'I , which 
is assumed to be lack of high frequency data, becomes enhanced enlarged image ''I . 

 
(a) (b) 

 
(c) (d) (e) 

Fig. 3 The comparison of (a) bi-cubic interpolation and (b) our result. (c) is the source 
image, and (d) and (e) are the close-up view of (a) and (b). 
 

4 Noise-reduced Example-Based Video Enlarging 
 

When enlarging a video sequence, we tried to directly apply Freeman et al.’s 
method [3] on each frame of the input video. However, we found that the synthesized 
video has a very serious flicker problem and is completely unsatisfiable to the users. 
One can easily guess that a possible reason for this flicker problem is the lack of 
temporal coherency. That means, the same location in two neighboring frames may be 
covered by two different high frequency patches in the resulted high resolution video 
even though they are quite similar in the original low resolution input video. Bishop et 
al. [10] tried to address this issue by enforcing the temporal coherence constraints. 
They modified the cost function used in [3], so the high frequency patch recovered at a 
particular location of one frame is more favorable in the next frame when finding the 
high frequency patches for the area or nearby areas. Their approach did reduce some of 
the flicker problems, but many patches that can cause flicker problems are still left 
behind. 
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(a) (b) (c) 

   
(d)  (e) (f) (g) 

Fig. 4 The comparison of (a) bi-cubic interpolation, (b) Freeman et al.’s method [3], 
and (c) our result. (d) is the source image, and (e), (f), and (g) are the close-up view of 
(a), (b), and (c). 

 
On the other side, example-based algorithms are known to produce ringing and 

other types of artifacts on the image. This is true even for the derived algorithms which 
are not very similar to the original one [11]. These artifacts are highly unpredictable 
and differ from image to image. Many of these artifacts are not very obvious on the 
result images, especially when they are not used to compare with the original input 
image directly. However, in the case of video enlarging, these noises will cause flicker 
ones since they differ in every single frame. Since our method produces fewer noises 
than the previous methods and thus reduces the flicker problems when applying our 
method to video sequences. Furthermore, to take the temporal coherence into 
consideration, both of the spatial and temporal neighboring patches  in Eq. (2) 
are taken into account (i.e., 

iNj∈
3=iN ). Moreover, about the coherence term C for the 

temporal neighboring patches, instead of comparing the boundary area, all of the pixels 
in the two patches are compared. 
 

5 Experimental Results 
 

In Fig. 3, our result is compared with that of bi-cubic interpolation. The result 
image is enlarged four times. When highlighting the face of the woman in the picture 
as shown in Fig. 3 (d) and (e), it is obvious that our result includes more details 
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compared to bi-cubic interpolation. Fig. 4 is another similar comparison between 
bi-cubic interpolation, Freeman et al.’s method [3], and our result. In this comparison, 
our result also includes more details compared to bi-cubic interpolation. The close-up 
view as shown in Fig. 4 (e), (f), and (g) shows that the difference among the three 
results, and our result looks smoother and includes fewer noises/artifacts than Freeman 
t al.’s method [3]. Fig. 6 shows another comparison result. 

 
t [1

e Bi-cubic Free l.[3] Ou d 

e

Table 1: The calculation result of BlurExten 2]. 

Test imag man et a r metho
Woman 0.1848 0.1411 0.1208 
Kids 0.4428 0.3617 0.3604 
Koala 0.2548 0.2292 0.2183 
Boeing 737 0.6921 0.6605 0.6485 

 
Fig. 5 The photos tested in Table 1. 

sult is less blurry than 
both of bi-cubic interpolation and Freeman et al.’s method [3]. 

 and 
the experience result is shown in Fig. 10. Our method still produces fewer errors. 

 
To show a quantitative test for our method, we performed a blur detection for the 

results of bi-cubic interpolation, Freeman et al.’s method [3], and our method. In this 
quantitative blurry test, we used four random chosen images as shown in Fig. 5 and 
calculated the BlurExtent [12] value for the result images and listed them in Table 1. 
BlurExtent is a method used to measure the blurriness of an image. Since one of the 
major motivation behind the image/video enlarging algorithm is to produce a less 
blurry enlarged image/video, we can assume that a good image/video enlarging 
algorithm must produce a less blurry result. In Table 1, our re

 
For the video enlarging result, our result is compared with that of Bishop et al.’s 

method [10]. The test video is enlarged for four times and shown in Fig. 7. In order to 
measure the quality of the result video, we simply use the difference between the 
results synthesized by the two methods and the ground truth, respectively. We 
calculate the error pixel-wisely for each frame in the result video, and average them 
over the timeline to get the average difference map. Assume that the ground truth does 
not have flicker problems, the error between the ground truth and result video can be 
used as the measurement of flickers. Of course it is possible that an area in the result 
video is constantly different to the corresponding spatial location in the ground truth. 
In this case, there is no flicker can be observed even through there are errors. However, 
the error means that the result is not look like the ground truth, and of course that is not 
what we want in a video enlarging algorithm. The difference maps of Bishop et al.’s 
method [10] and our method are shown in Fig. 8. The darker areas mean that the error 
is higher, while the white areas mean that there is no error. Hence, our method 
produces fewer errors than Bishop et al.’s method [10]. Fig. 9 is another test video
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(a) (b) 

 
(c) (d) 

Fig. 6 The comparison of (a) ground truth image, (b) bi-cubic interpolation, (c) 
Freeman et al.’s method [3], and (d) our result. 

 
Fig. 7 The test video we used. 
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(a) (b) 

Fig. 8 The average difference maps of Fig. 7 for (a) Bishop et al’s method [10] and (b) 
our algorithm. 

 
Fig. 9 Another test video we used. 

 
(a) (b) 

Fig. 10  The average difference maps of Fig. 9 for (a) Bishop et al’s method [10] and 
(b) our algorithm. 
 

6 Conclusion and Future Work 
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In this paper, we proposed an improved approach to enhance the quality of 
enlarged images by using an example-based algorithm with less noise and artifact 
problems, which can also be directly applied to enhance the enlarged videos. By 
separating the images and videos into three kinds of frequency parts, the artifact and 
flicker problems are reduced in the result images and videos. However, since the 
retrieved high frequency data is not the real one of the input images or videos, the 
result images and videos are only the estimated results. Hence, in the future work, we 
want to find another way to retrieve the real high frequency data from the photo 
website. 
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