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ABSTRACT
We propose a deep learning based method to directly estimate
the human joint positions in 3D space from 2D fisheye images
captured in an egocentric manner. The core of our method
is a novel network architecture based on Inception-v3 [4],
featuring the asymmtric convolutional filter size, the long
short-term memory module, and the anthropomorphic weights
on the training loss. We demonstrate our method outperform
state-of-the-art method under different tasks. Our method
can be helpful to develop useful deep learning network for
human-machine interaction and VR/AR applications.
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INTRODUCTION
The virtual reality HMDs (Head-Mounted Display) on the
market all adopt tracking systems in an outside-in manner.
Such tracking systems need the users to keep their bodies
inside a tracking area defined in advance. These outside-in
systems can only provide functional 6 DoFs tracking accuracy
for the HMDs and the controllers in an indoor scene, also
lack of high accuracy full-body pose tracking. To deal with
these challenges, we design a tracking systems in an inside-out
manner combined with fullbody tracking. Unlike outside-in
tracking systems, inside-out tracking systems enable users go
places beyond the limited space. Although leverage built-in
depth and RGB cameras might be the most direct method to
do this, neither of them have enough FoV to cover the fullbody
motion. In this work, we instead using fisheye RGB camera
with wider FoV (Figure 1), combined with a deep learning
model to perform fullbody tracking. Unlike previous solutions
provided by Microsoft Kinect [3], which use Random Decision
Forest to track fullbody using RGBD camera, our method
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use only fisheye RGB camera, and achieve better tracking
performance.

Figure 1. Compared with perspective cameras, fisheye cameras have
much wider field-of-view. The picture on the right side is one of the
fisheye images from the dataset provided by EgoCap [2]. The picture on
the left side is the perspective version of the picture on the right side. We
use the provided calibration information to remap the fisheye image into
the perspective image.

METHOD
Our deep learning based method is designed to be able to
estimate human 3D poses from only 2D fisheye images in an
end-to-end fashion. Following, we will introduce the major
contributions of our proposed model.

Asymmtric Filter Size
Our model is based on Inception-v3 [4] proposed by Google.
Following the concept of original Inception-v3 model, we
can transform an n × n filter into two parallel or sequential
convolutional operations with 1 × n filter size and n × 1 filter
size respectively. And we found out this asymmetric filter
shape makes great performance gain compared to symmetric
filters. The main reason is unlike normal images captured by
standard perspective cameras, straight lines in the real world
will become curves in fisheye images when they are captured
by fisheye cameras.

Long Short-Term Memory
Long Short-Term Memory [1] is built with multi-gates struc-
ture and cell states focuses on solving the gradient vanishing
problem and the gradient explosion problem between the hid-
den layers at different timestamps.

As we observed, the training and testing images of predicting
human poses in 3D space are usually captured as video frames.
We then combined our model with LSTM which enable us to
obtain better performance with this data with strong temporal
coherence.
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ANTHROPOMORPHIC LOSS
When predicting joint positions of the human body in 3D
space from 2D images, the torso joints and the head joints are
usually easier to be predicted than other human body joints.
The reason is that there is not much difference in 3D positions
of the torso joints or the head joints between different human
poses especially when the images are captured in an egocentric
manner. On the other hand, the 3D positions of the joints of
human limbs often vary a lot with different human poses.

To deal with this challenge, we propose an novel loss function
that takes Anthropomorphism into consideration. Anthropo-
morphism is the attribution of human traits, emotions, or in-
tentions to non-human entities. We realize this concept in our
deep learning model as predefined weight parameters for limb
joints of the human body (we divide the whole body joints
into limb and non-limb set). For joints in the limb set, we
multiply the original distance loss value with the predefined
weight to amplify it’s effect to the final aggregated loss value
during training process.

EXPERIMENTAL RESULT

Experimental Environment
Here, we report our results on two different sequences: 750 2D
fisheye image sets of gesturing recognition and 250 2D fisheye
image sets of walking action [2]. In the image set, 60 image
sets in the “Gesture” sequence and 30 image sets in the “Walk”
sequence are reserved to be the testing datasets. The remaining
image sets as the training datasets will be used to train our
model. In the following experiments, we define the mean value
of average error distance per body joint (Euclidean distance in
millimeter between the ground truth and the prediction) across
all the testing samples as the predicting accuracy in one epoch.
In the end, we compare the performance of different training
settings with each other according to the highest prediction
accuracy.

Evaluation
Our work can reconstruct the 3D skeletal joints of the human
body from the “Gesture” sequence with the error distance
value at 13.10 mm and from the “Walk” sequence with the
error distance value at 19.58 mm. For comparison, we use the
same training sets and test sets in EgoCap [2], where the error
distance values which are both at 70 mm and evaluated on the

“Gesture” sequence and the “Walk” sequence (Figure 2 and
Figure 3). Our work has the upper body joint accuracy and
the lower body joint accuracy with the similar error distance
values at 12.8 mm (see Figure 2) on the “Gesture” sequence.
The upper body joint accuracy is higher than the lower body
joint accuracy with the error distance values at 14.70 mm and
24.05 mm (see Figure 3) on the “Walk” sequence. In summary,
our method is able to greatly outperform the state-of-the-art
EgoCap [2].

CONCLUSION AND FUTURE WORK
In this work, we proposed a deep learning model that effec-
tively predict joint positions of the human body in 3D space
from the 2D fisheye images captured in an egocentric manner.
Our model is able to outperform the state-of-the-art method

13.10 12.88 12.87 

70 

60 

80 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

Th
e

 L
o

w
e

st
 E

rr
o

r 
D

is
ta

n
ce

 In
 m

m
  

Our Result On Gesture 
Sequence of All Joints 

Our Result On Gesture 
Sequence of Upper Joints 

Our Result On Gesture 
Sequence of Lower Joints 

EgoCap Result On Gesture 
Sequence of All Joints 

EgoCap Result On Gesture 
Sequence of Upper Joints 

EgoCap Result On Gesture 
Sequence of Lower Joints 

Figure 2. The comparison between our prediction error distance and the
prediction error distance of EgoCap on the “Gesture” sequence.
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Figure 3. The comparison between our prediction error distance and the
prediction error distance of EgoCap on the “Walk” sequence.

by a great margin. In the future, we consider to capture and
collect a bigger dataset for fisheye fullbody tracking for ben-
efiting other relevant research. Meanwhile, We are going to
adopt this our method in designing different interactive AR/VR
applictions.
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