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Abstract 

Active sites determine the activities and interactions of 
proteins and constitute the targets of most drugs. How-
ever, the exponential growth in the amount of structural 
data of proteins far exceeds the ability of experimental 
techniques to identify the locations and key amino acids 
of active sites. Several approaches have been applied to 
this problem, including analyzing gene expression pat-
terns, wavelet transform analysis of protein three-
dimensional structures, statistical analysis of protein one-
dimensional amino acid sequence, and protein-protein 
interactions. In this paper, we develop an approach that 
is mostly based on analysis of the geometric shape of a 
protein in space. Unlike statistics-based methods, our 
approach exploits the shape of a protein to find its func-
tions and possible locations of active sites. Aiming at pre-
dicting functions of proteins, we collect three-dimensional 
structures of active sites, which have already been found 
by biochemists to create a database containing three-
dimensional structures of active sites. Since the shape of 
an active site determines the function of a protein, for 
each protein of interest, we compare it with all the site 
structures in our site database and select a site structure, 
to which we can find the most similar structure in the 
protein. The function of the protein is then assigned to the 
one of the selected active site. Moreover, the location 
where the protein matches the selected site can be con-
sidered as a possible position of an active site. To show 
that our approach can find significant features in a pro-
tein, we use the proteins belonging to enzyme class five as 
our test set. The result shows the proposed algorithm can 
successfully predict correct functions of 39 out of 43 pro-
teins and the accuracy is about 90.7%. 

1. Introduction 

The structural genomics initiative (SGI) proposes to 
solve 10,000 protein 3D structures in this decade, how-
ever, many biological functions still remain unknown. 

Protein function is highly related to the recognition of 
specific substrates, ligands or co-factors in a specific re-

gion, that is, a binding site. Binding sites in proteins are 
where the substrates or ligands interact with proteins to 
trigger some events such as chemical modifications or 
conformational changes [1]. As a result, proteins exihibit-
ing related functions are likely to share some similiarities 
in their 3D structures [2]. 

The development of new drugs is an extremely expen-
sive and time-consuming undertaking. Usually it takes ten 
to twelve years from initial lead discovery to completion 
of clinical trials and costs around $800 million [4]. Con-
sequently, structure-based drug design (SBDD) methods 
have become more prevalent in recent years due to their 
efficient and fast capability in sieving out the possible 
drug candidates among a group of chemical compunds [3, 
4]. 

Exploitation of 3D structural data is a key factor for 
SBDD being enhanced, and the prediction of protein 
functions and possible binding sites in proteins have be-
come quite popular in SBDD, especially at front-ends to 
molecular docking [5, 6, 7, 8, 9] or alternative binding 
sites are sought otherwise.  

In this paper, we propose a protein-function- predic-
tion method which is mainly based on the geometrical 
features of proteins. Proteins with similar three-
dimensional structures often have related functions even 
if their one-dimensional amino acid sequences are not 
alike. If the conformation of a protein is destroyed, its 
function will also disappear. Hence we focus on the geo-
metrical features that belong to proteins and if the active 
sites of a protein with unknown function are similar to 
those of another protein with known function, then it is 
possible that two proteins share the same function [1, 7, 
10, 11]. The proposed method utilizes the observation 
that proteins with related functions are likely to share 
certain similarities in their three-dimensional structures. 
Consequently, the structures of proteins with unknown 
functions are compared with those of active sites of which 
functions are already found by biochemists. Using the 
geometric hashing algorithm, we can search out structural 
similarities between protein structures and we predict the 
function of a protein as the one of its corresponding best-
matched active site structure. 



This paper is organized as follows. Some related 
works are discussed in section 2. The geometric hashing 
algorithm we use are detailed in section 3 while the ex-
perimental results are provided in section 4. Conclusion 
and our future directions are given in section 5 and 6. 

2. Previous Work 

As substantial protein structures are determined by 
high throughput machines, assigning functions to those 
novel proteins becomes a major task in recent years. The 
Protein Data Bank (PDB) [12] currently contains more 
than 19,500 structures and it is estimated the number of 
structures in the PDB may exceed 35,000 by 2005 [13]. 
Much effort has been put into finding the motifs, func-
tions, binding sites of proteins and many approaches 
based on different techniques are developed. 

The classical way of finding motifs in proteins is to 
find homologies of their one-dimensional amino acid se-
quences among proteins in a protein database using pro-
grams such as FASTA and PSI-BLAST. Waterman et al., 
Delcoigne and Hansen, and Needleman and Wunsch [14, 
15, 16] find sequence motifs by minimizing a cost func-
tion which represents the edit distances between se-
quences. Multiple alignment of sequences [17] is a NP-
hard problem and its computational time increases expo-
nentially with the sequence size. 

Using amino acid sequence data, Bill and Saman [18] 
extract protein motifs from sequences belonging to the 
same family by neuro-fuzzy optimization which involves 
a statistical method to find short patterns with high fre-
quency and then uses neural network training to optimize 
the final classification accuracy. 

Based on signal processing techniques, Kevin B. 
Murray et al. [19] use wavelet transform to detect and 
characterize repeating motifs in protein sequences and 
structural data. 

G. Patric, Jr. and Pieter F.W. Stouten [1] use a geome-
try-based approach, PASS, which fills the cavities in a 
protein structure with a set of spheres and to identify a 
few of these spheres that most likely represent the centers 
of binding pockets. 

Herein, we propose a geometry-based approach which 
is able to predict the function of a protein and identify 
possible locations of the residues of active sites in a pro-
tein molecule. 

3. Algorithms 

Amino acids are the building blocks of a protein which 
plays an important role in many reactions in living things. 
There are twenty different types of amino acids in nature, 
each of which has a different property. An amino acid has 
four main parts: the acid group(COOH), the amino 

group(NH3), the carbon, the side chain(R-group). Figure 
1 explains the relationship among them. 

 

Figure 1. Amino acid structure 

Figure 2. Peptide plane 

When two amino acids link together, they use a pep-
tide bond which is formed by a dehydration process. A 
protein is constructed by linking amino acids to form a 
sequence which folds in space to generate a complex 
three-dimensional structure. When binding, a ligand may 
induce structural changes in the receptor protein. Never-
theless, in most cases, changes in backbone structure are 
negligible and only side-chain reorientation occurs on 
ligand binding. Therefore we use the plane formed by the 
atom N, Cα, and C as our reference frame shown in Fig-
ure 2. 

The three atoms N, Cα and C in each amino acid form 
a triangle which uniquely defines the position and orien-
tation of the amino acid in the three- dimensional struc-
ture of a protein. Therefore, all the N, Cα and C atoms of 
a protein molecule together act as a backbone or skeleton 
to which the side chains R are attached. Since the length 
of Cα - N and Cα - C are fixed, and N – Cα - C bond an-
gle is also changeless, the skeletons corresponding to two 



common substructures of two proteins will be exactly 
congruent. The correspondence between two triplets of 
points in three-dimensional space is sufficient to uniquely 
determine a rigid transformation (which would take one 
triplet onto the other). Making use of this fact, the geome-
try of the atoms attached to the Cα is perfectly determined. 
In particular, the three atoms N, Cα, C form a known tri-
angle from which we can define a frame. It can uniquely 
determine the position and orientation of a residue in 
space. With this mechanism, we can choose a single resi-
due as a basis. 

We now create a reference frame, that is, a basis, for 
each residue in a protein. A basis is calculated by the fol-
lowing steps and is illustrated in Figure 3. 

 

 

Figure 3. 3D reference frame 
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We calculate one basis for each residue, and then use 

the bases created to generate coordinates for each atom in 
a protein in the next step, geometric hashing algorithm. 

Three-dimensional conformation of a protein in space 
usually dominates its function. Thereby, proteins with 
related functions usually share some similarities among 
their three-dimensional structures. According to the above 
description, common structures among proteins of the 
same family can be the representatives of possible bind-
ing pockets. 

Herein we introduce geometric hashing algorithm [20] 
as our fundamental method to explore similarities among 

a set of proteins. The geometric hashing algorithm is a 
technique originally developed in computer vision for 
matching geometric features against a database of such 
features. In recognizing objects, geometric hashing is 
efficient and can easily be made parallel. Furthermore, it 
is not only especially attractive in model-based schemes, 
but also holds significant advantages in pair-wise object 
scene comparisons because of its ability to handle par-
tially occluded objects. 

To solve the problem that objects may appear based on 
different reference coordinates, coordinate information 
based on different reference frame of a model is encoded 
in the preprocessing step and stored in a large memory, in 
this case, a hash table. The contents of the hash table are 
independent of the scene and thus can be computed off-
line to reduce the time needed for recognition. Access to 
the memory is based on geometric information that is 
invariant of the object’s pose and computed directly from 
the scene. During the recognition phase, the method ac-
cesses the previously constructed hash table using the 
indices of the encoded coordinate information of the input 
object and finds their common spatial features.  

In short, the geometric hashing algorithm is composed 
of two stages: preprocessing and recognition. The basic 
idea is to store in a database at preprocessing time a re-
dundant representation of the models by rigid transforma-
tion. By doing so, the representation of the query object 
processed at recognition time will present some similari-
ties with that of some database models. Matching is pos-
sible even when the recognizable database objects have 
undergone transformations or when only partial informa-
tion is present. 

Common substructure matching of objects meets the 
problem of the transformation in their scale, that is, two 
same objects will be considered as different ones if they 
differ only in size. In our application, however, we won’t 
encounter this problem in that the relative distance of 
each atom in a protein molecule won’t change in nature. 
Hence it is quite suitable to use the geometric hashing 
algorithm in our algorithm. 

We now expound our idea in finding common parts 
within proteins and a formal methodology of the geomet-
ric hashing algorithm will be given. 

There are two steps, preprocessing and recognition, in 
the algorithm. Preprocessing step calculates new coordi-
nates of atoms in a protein with respect to each basis 
mentioned previously and recognition step intends to find 
the structural similarities among a set of proteins. We 
now discuss each step respectively. 

Preprocessing: Each residue in a protein can be re-
garded as a 3D reference frame. With each frame, we 
have three orthonormal vectors as the three new coordi-
nate axes, and then calculate the new coordinate for each 
atom in the protein with respect to the new reference 



frame. Based on the basis, the three-dimensional positions 
of all the residues are the features, which are inserted into 
the hashing table with an index. This step is performed 
without any knowledge of the database objects to be 
matched and hence can be done once for all. 

Recognition: Choose a reference frame of the query 
protein. For each different reference frame of a protein in 
the hashing table, we accumulate the number of the  
three-dimensional features matched, which is called vot-
ing. The number of matched features will be the match 
score of these two frames. The process is repeated with 
each frame of the query protein until all the reference 
frames of these two proteins have been tested. We keep 
the match with the highest score. Figure 4 shows how we 
complete the recognition process. 

 

 

Figure 4. Geometric hashing 

The hash function which calculates the index for each 
atom of a protein in the hash table uses the distance from 
origin to itself and the orientation of the atom as its hash 
value. For example, let A1 be an atom with the coordinate 
(x, y, z) with respect to a reference frame, we calculate its 
hash table index in the following way. 

Hash value of A1  = 2 2 2x y z+ + ............. (4) 
However, some other issues need to be considered 

here. Due to the low resolution of protein structural data 
from the Protein Data Bank, there might be inaccuracy in 
recognition among proteins. Moreover, it is also possible 
to incorrectly match geometrically similar proteins with 
different chemical properties. In order to enhance the 
performance of the method proposed, we adopt a fre-
quently used similarity matrix, Dayhoff PAM250, which 
is originally used for sequence alignment problems. The 
PAM250 similarity matrix is listed in Table 1. 

 

Table 1. PAM250 table 

When two reference frames match with each other, we 
accumulate the similarity score by looking up the similar-
ity matrix. We set a threshold distance 1Å, beyond which 
atoms will not be considered as a match. If no atoms can 
be matched within the threshold distance, we assign the 
score to the minimal score, which is –8, of the similarity 
matrix. The final score is normalized for perfect matching 
to have a unity score.  

The following shows the overall algorithm step by step. 
 
Preprocessing phase: 
For each protein structural data in the database do the 

following: 
1. Extract the 3D data of each atom in a protein. Assume 

that the data size is n 
2. For each reference frame, or basis, do the following: 

(a) Compute the coordinates (u, v, w) of the remaining
atoms in the coordinate frame defined by the basis.

(b) After proper quantization, use the hash index for 
each atom into a hash table data structure and in-
sert in the corresponding hash table by the infor-
mation of an atom. 

Recognition phase: 
When presented with an input structure of a protein,

do the following: 
1. Extract the atoms’ data of interest. Assume that S is the 

set of the interest atoms found. 
2. Choose an arbitrary reference frame of interest atoms 

in the structure. 
3. Compute the coordinates of the remaining atoms of 

interest in the new coordinate system . 
4. Appropriately quantize each such coordinate and ac-



cess the appropriate hash table; for every entry found 
there, cast a vote for the protein and the reference 
frame. 

5. Histogram all hash table entries that received one or 
more votes during step 4. Proceed to determine those 
entries that received more than a certain number, or 
threshold, of votes: Each such entry corresponds to a 
potential match. 

6. For each potential match discovered in step 5, recover 
the transformation T that results in the best least-
squares match between all corresponding proteins. 

7. go back to step 2 and repeat the procedure using a dif-
ferent reference frame. 

4. Experimental Results 

The International Union of Biochemistry and Molecu-
lar Biology (IUBMB) has classified enzymes into six 
classes. 

EC1   Oxidoreductase 
EC2   Transferase 
EC3   Hydrolase 
EC4   Lyase 
EC5   Isomerase 
EC6   Ligase 

 
They are classified according to their different chemi-

cal reactions. In the following paragraphs, we will discuss 
how and why we choose a certain data set as the input to 
our system. Furthermore, a list of results will be given to 
show the capability of our system and the proposed algo-
rithm. 

We classify every protein in enzyme class five accord-
ing to their functions and find the possible candidates of 
active sites of proteins belonging to this class. An active 
site of a protein determines the function of this protein. 
Thus proteins with similar functions share some similari-
ties in their shapes in the vicinity of their active sites. 
Hence we collect protein files containing site information 
from the Protein Data Bank and then extract site three-
dimensional structures from within these collected files to 
create our site database. Every site structure in the site 
database is related to a specific function and has an en-
zyme class number (E.C. No.) representing the class to 
which this active site belongs. 

In the followings, we describe how we choose test pro-
tein files to be compared with site structures in the site 
database. 

First, protein files belonging to enzyme class five are 
collected and we then keep those files, which have en-
zyme class numbers in order to verify the results and do 
not contain site information to prevent a bias in our ex-
periment since site structures are extracted from protein 
files containing site information in creation of site data-
base. If we select these files in as our test data, they will 
always match site structures in the site database perfectly, 
thus bias the results of our experiments. 

The way we conduct our experiment is explained in 
this section and the result will be shown. For every test 
protein, we use our algorithm to find common substruc-
tures between its three-dimensional structure and every 
site structures in the site database. The structural similar-
ity between a test protein structure and a site structure is 
calculated for every site structure in the site database and 
these similarities are then sorted in descending order. We 
compare the enzyme class number of a test protein with 
the enzyme class number of the site with highest struc-
tural similarity between the test protein structure and its 
own structure. If these two enzyme class numbers are the 
same, then we claim that we have correctly found the 
function of this test protein and their common substruc-
tures are possible locations of active sites of this test pro-
tein. The results are shown in Table 2. 

The result shows that we have correctly classified 39 
proteins out of 43 trials and the accurate rate is about 
90.7%. As we know, the E.C. No. is a four-number code. 
A test protein is not included when calculating the accu-
rate rate, if there exists a “99” in the E.C. No. of this test 
protein because an E.C. No. with a “99” is a miscellane-
ous collection of enzymes and there might be more than 
one function in that E.C. entry. 

Moreover, proteins with correct matches may have ac-
tive sites locating on the positions where their common 
substructures between themselves and the corresponding 
best-matched site structures are. 

In addition to the above experiment, we also verify 
that the structures of active sites of coronavirus protein 
extracted from human being and pig are alike. Kanchan et 
al.[21] have found the site structure of the coronavirus 
protein from pig and claim that coronavirus protein from 
human being is likely to have an active site on sequence 
number 41 and 144 of its amino acid sequence, that is, 
His 41 and Cys 144. We then utilize the information to 
extract the site structure from coronavirus from pig and 
compare this site structure with the one from human 
coronavirus. Figure 5 illustrates the result. 

Test 
protein 
pdb i.d. 

E.C. No. Site source 
protein pdb 
i.d. 

E.C. No. Match  Test 
protein 
pdb i.d. 

E.C. No. Site source 
protein pdb 
i.d. 

E.C. 
No. 

Match

1A31 5.99.1.2 1J5S 5.3.1.12 No  1G57 5.4.99.- 2CHT 5.4.99.5 Fair 
8CHO 5.3.3.1 1OPY 5.3.3.1 Yes  1FZT 5.4.2.1 1E59 5.4.2.1 Yes 
3GSB 5.4.3.8 1E7S 5.1.3.- No  1FKK 5.2.1.8 1D7I 5.2.1.8 Yes 
2SQC 5.4.99.- 1A7X 5.2.1.8 No  1FD9 5.2.1.8 1D7J 5.2.1.8 Yes 



1TCD 5.3.1.1 1CT1 5.3.1.1 Yes  1F8A 5.2.1.8 1PIN 5.2.1.8 Yes 
1QO2 5.3.1.1 1A7X 5.2.1.8 No  1DBF 5.4.99.5 2CHT 5.4.99.5 Yes 
1QNG 5.2.1.8 1CWO 5.2.1.8 Yes  1D9T 5.3.1.1 1TPC 5.3.1.1 Yes 
1OIS 5.99.1.2 1CWI 5.2.1.8 No  1D6M 5.99.1.2 1DYW 5.2.1.8 No 
1N1A 5.2.1.8 1D7I 5.2.1.8 Yes  1CYO 5.99.1.2 1O99 5.4.2.1 No 
1MUW 5.3.1.5 1GW9 5.3.1.5 Yes  1CLK 5.3.1.5 1GW9 5.3.1.5 Yes 
1MO0 5.3.1.1 1TPH 5.3.1.1 Yes  1CD5 5.3.1.1 1TPC 5.3.1.1 Yes 
1MNZ 5.3.1.5 1GW9 5.3.1.5 Yes  1C7H 5.3.3.1 1OPY 5.3.3.1 Yes 
1M7O 5.3.1.1 1CT1 5.3.1.1 Yes  1C5F 5.2.1.8 1CWL 5.2.1.8 Yes 
1M6J 5.3.1.1 1CT1 5.3.1.1 Yes  1BXB 5.3.1.5 1GW9 5.3.1.5 Yes 
1M5Y 5.2.1.8 1E7S 5.1.3.- No  1BTM 5.3.1.1 1TPH 5.3.1.1 Yes 
1M1B 5.4.2.9 1PYM 5.4.2.9 Yes  1BKF 5.2.1.8 1D7J 5.2.1.8 Yes 
1LOP 5.2.1.8 1CWF 5.2.1.8 Yes  1BHW 5.3.1.5 1GW9 5.3.1.5 Yes 
1L6F 5.1.1.1 1CWH 5.2.1.8 No  1B6C 5.2.1.8 1D7I 5.2.1.8 Yes 
1KOJ 5.3.1.9 1GZV 5.3.1.9 Yes  1B0Z 5.3.1.9 1GZV 5.3.1.9 Yes 
1JVM 5.2.1.8 1A7X 5.2.1.8 Yes  1AW1 5.3.1.1 1TPC 5.3.1.1 Yes 
1IHG 5.2.1.8 1CWL 5.2.1.8 Yes  1AMK 5.3.1.1 1TPH 5.3.1.1 Yes 
1I8H 5.2.1.8 1A7X 5.2.1.8 Yes  1AK4 5.2.1.8 1CWH 5.2.1.8 Yes 
1I7O 5.3.3.10 1GTT 5.3.3.10 Yes  1AG1 5.3.1.1 1HG3 5.3.1.1 Yes 
1I45 5.3.1.1 1TPW 5.3.1.1 Yes  1A41 5.99.1.2 1GW9 5.3.1.5 No 
1HOP 5.2.1.8 1BCK 5.2.1.8 Yes  8TIM 5.3.1.1 1TPH 5.3.1.1 Yes 
1GYJ 5.3.2.1 1GYY 5.3.2.1 Yes       

Table 2. The first and second columns are the pdb id and E.C. No. of test proteins re-
spectively, while the third and fourth columns are the pdb id and E.C. No. of the source 
proteins to which the sites belong. If the E.C. No. of the test protein is the same as the 
E.C. No. of the site source protein, it represents a correct prediction; otherwise a mis-
match. 

(a) (b) 
Figure 5. Similarity between functional site of coronavirus from pig and the whole struc-
ture of coronavirus from human. The blue atoms represent the three-dimensional com-
mon substructures between them. (a) The structure of the active site of coronavirus pro-
tein extracted from pig. (b) The structure of coronavirus from human. 

5. Conclusion 

In this paper, we have proposed a geometry-based al-
gorithm which is able to predict the possible functions 
and the locations of active sites in protein molecules.  

At first, we extract the active sites of all the proteins 
belonging to enzyme class five. For each protein with 
unknown locations of active sites, we compare it with all 
the site structures in our site database. In the process of 
comparing, the geometric hashing algorithm is used for 
common substructure matching. After the previous steps 



are done, the common substructure where the protein 
matches can be considered as a possible position of an 
active site. Furthermore, it is probable that the protein 
shares the same function with the most similar active site 
in the site database. 

In addition, a system is developed as well to demon-
strate the feasibility of the proposed algorithm. The sys-
tem has a visualization tool which displays the results 
visually on the screen and allows users to operate on them. 
We provide users a convenient way to control the behav-
iors of the system. 

6. Future Work 

Many steps in the proposed algorithm can be refined 
by more delicate approaches. This includes a new coordi-
nate representation for the protein backbone structure, a 
new measurement of the dissolubility of residues in a 
protein [22, 23, 24] and a fault-tolerant ability to protein 
structural data. In addition to the improvement in the al-
gorithm, we will also make efforts in accelerating the 
speed of prediction in order to handle massive structural 
data from structural genomics projects. 

Though it is convenient to use the system on personal 
computer, it is still desirable that users can interact with 
the system via network. In next step, we will port our 
system to a web-based environment along with a database 
with extracted information. The database will be free for 
download and users around the world can use the predic-
tion program by their web browsers. We’ll also integrate 
more biological information such as solvent degree for 
each amino acid in a protein molecule into our algorithm 
to improve the precision of the proposed algorithm. 
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