
Adaptive Solid Texturing for Web3D Applications

Bing-Yu Chen and Tomoyuki Nishita
The University of Tokyo

{robin, nis}@is.s.u-tokyo.ac.jp

Abstract
Solid texturing is a well-known computer graphics tech-
nology, but still has problems today, because it consumes
too much time if every pixel is calculated on the fly or has
a very high memory requirement if all of the pixels are
stored in the beginning. Although some methods have
been proposed, almost all of them need the support of spe-
cific hardware accelerators. Hence, these methods could
not be applied to all kinds of machines, especially the low-
cost ones available over the Internet. Therefore, we pre-
sent a new method for procedural solid texturing in this
paper. Our approach could almost render an object with
solid texturing in real-time using only a software solution.
Furthermore, to demonstrate that our approach is widely
applicable we choose pure Java for its implementation,
since it could not receive any benefit from the hardware
and could be executed on the Internet directly.

1. Introduction
Rendering an object with solid texturing [2] [4] [5] is a

useful method of showing an object realistically, since it
uses 3D coordinates as the parameters to represent the
appearance of the shape, but texture mapping only maps a
2D image onto the surface. Unfortunately, to calculate the
corresponding texture data on the fly is time consuming,
since the texturing function could involve a lot of compu-
tational time. Many people wish to pre-generate a 3D im-
age in the beginning so that they can use the 3D-texture
mapping functions in graphics libraries. However, if the
resolution of the 3D image is low, there is an aliasing
problem. If we increase the resolution of the image, the
storage requirement becomes a big problem to handle.
Moreover, for a solid texturing program running on the
Internet, it is also difficult to download a huge 3D image.

2. Adaptive Solid Texturing
Utilizing the cache technology to store some informa-

tion for re-using is a common hardware technique. For
procedural solid texturing, people may use a lookup table
to store a sequence of random numbers to enhance the
performance [3]. Basically, in order to cache the calcu-
lated texture data in memory, we use a �cache cube� just
like other 3D-texture mapping methods require. Initially,
the cache cube is empty, since there is no texture data has
been calculated. When rendering an object, the system
checks the cache cube first to see if there is already any

corresponding texture data, which is contained in a �voxel�.
If the voxel does exist, the pixel is rendered using the ex-
isting voxel, otherwise the desired texture data is calcu-
lated and stored into the cache cube at its corresponding
position as a new voxel, and then the pixel is then ren-
dered with the newly calculated data.

Since the required texture data is calculated on demand,
it is not necessary to generate a cache cube before the
raster process. Moreover, if the cache cube is pre-
generated, even if we assume that it is a low-resolution
one containing just 128x128x128 voxels, we still have an
un-compressed file size of more than 8MB. This kind of
huge data size is difficult to transmit through the narrow
Internet bandwidth and requires a lot of memory to store,
and it cannot even offer good quality visual effects as

 (a). Figure 1

 (a) (b)
Figure 1: (a) Results of different cache cube size

and (b) cache cube conception

Figure 1

ha
sh

ta
bl

e

voxel

convert

cache cellcu
be

 si
ze

 =
 1

02
4

cu
be

 si
ze

 =
 1

28

cache cube

Fortunately, when rendering an object, the visible area
of the object is only a small portion of the whole shape.
Therefore, there is only a relatively small amount of tex-
ture data that needs to be calculated and stored in the
cache cube, so that the cache cube is sparse. To store the
calculated texture data in a �sparse cache cube�, we sepa-
rate each texture coordinate into two parts, one of which is
the �global index�, and the other is the �local index�.
Therefore, the cache cube is subdivided into several cells
due to the global index. Each cell is classified as either a
�cache cell� which contains one or more voxels according
to the size of the local index or just as an �empty cell� if
there is no voxel located within it. Therefore, we can use a
hashtable to store the cache cells by using the converted
global index, since it could give us good performance for
insertion and traversal as (b).

Following the well-known definition of MIP-Mapping
[6], we define the LOD (Level-of-Detail) parameter of our
system, so the most suitable level of the cache cube for

each pixel on the screen is decided by it. Moreover, since
we also provide the LOD mechanism in our system, mul-
tiple cache cubes with different resolutions are used.

The implementation is achieved by modifying the ker-
nel of jGL [1], which is a graphics library for Java and
also developed by us. When our system is started up, it
first checks which levels of the cache cubes are currently
used by interrogating the LOD parameter. Initially, the
maximum size of the cache cube is not set, and the num-
ber of local index bits is fixed. Once the system receives
an out-of-memory exception, the current maximum level
of the cache cube will be released, and the maximum size
of the cache cube will be set to be one level lower than the
current maximum level. Therefore, the client could
achieve the optimum quality of the procedural solid tex-
turing commensurate with its performance.

3. Results
To measure the performance of our approach with re-

spect to the traditional methods, we used a marble textur-
ing function and a simple cube as our 3D model in order
to reduce the effects of the object complexity. In Table 1,
we make comparisons of our new method and two previ-
ous methods, one of which calculates the texture data on
the fly, and the other which generates a 3D image first and
then renders with 3D-texture mapping which is also done
by software. For accelerating the performance, we also use
a lookup table to cache the random numbers. The test-
platform is a notebook PC with an Intel Mobile Pentium
III 850MHz CPU, 128MB memory. The applet window
size is 500x500. Obviously, both of previous solid textur-
ing and our approaches do not require the preparation of a
3D image, but this is essential for 3D-texture mapping.

 previous solid

texturing
3D-texture
mapping

single cache
cube

multiple cache
cubes

fill 3D
image 0 ms 42.82 ms 0 ms 0 ms

first loop 0.82 fps 13.64 fps 12.96 fps 5.52 fps
rest loops 0.76 fps 13.95 fps 14.19 fps 9.72 fps
resolution ∞ 128x128x128 1024x1024x1024

Table 1: Comparisons of adaptive solid texturing
and two previous methods.

During the rendering state, the 3D-texture mapping
and using single cache cube in our approach could achieve
a real-time response, but the traditional solid texturing
could not. To get a similar quality of the previous solid
texturing, we use multiple cache cubes with LOD control-
ling. Although the performance is a little slower then us-
ing a single cache cube, but the appearance result is much
better than using a low resolution one.

The result of viewing the inner texture is shown in
Figure 2 left. Because our method does not only simulate
the surface of the object, but also reserves a space for stor-
ing the interior texture data, showing the inner texture of

an object is akin to showing an invisible portion. More-
over, an integrated example is shown in Figure 2 right,
which is a museum and a marble Venus model is exhibited
in it.

Figure 2: Rendering results.
For the Internet users, since we used only pure Java to

develop all of the algorithms and the executable byte-code
size is less than 40KB (jar-compressed), the use of our
system on the web 1 is possible. Moreover, unlike 3D-
texture mapping, our approach has no requirement to gen-
erate any cache cube at the out-set, and all of the calcula-
tion and resolution adjusting is done on the fly, so users
will not need to take up a lot of time downloading huge
image data files or waiting for something to be prepared.

4. Conclusion
In this paper, we have proposed a new and simple

method to render an object with procedural solid texturing
for almost all kinds of machines over the Internet. Al-
though the implementation only uses pure Java, the user
could also achieve an almost real-time interactive response.
Since there are several low-cost machines over the Inter-
net, we also provide a mechanism to control the resolution
of the cache cubes automatically in accordance with the
capability of the client machine.

References
[1] B.-Y. Chen and T. Nishita. jGL and its applications as a

web3d platform. Proc. of Web3D 2001, pages 85-92, 2001.
[2] D. S. Ebert, F. K. Musgrave, D. Peachey, K. Perlin, and S.

Worley. Texturing and modeling: a procedural approach,
2nd ed., AP Professional, 1998.

[3] J. P. Lewis. Algorithms for solid noise synthesis. Computer
Graphics (SIGGRAPH 89 Proc.), 23(3):263-270, 1989.

[4] D. R. Peachey. Solid texturing of complex surfaces. Com-
puter Graphics (Proc. of SIGGRAPH 85�), 19(3):279-286,
1985.

[5] K. Perlin. An image synthesizer. Computer Graphics (Proc.
of SIGGRAPH 85�), 19(3):253-262, 1985.

[6] L. Williams. Pyramidal parametrics. Computer Graphics
(Proc. of SIGGRAPH 83�), 17(3):1-11, 1983.

1 http://nis-lab.is.s.u-tokyo.ac.jp/~robin/jST

