
 

 

長さ制約付き糸モデルを用いた破れのシミュレーション 
Tearing Simulation using Length-Constrained Yarn Models 

 

1. Introduction 
Both cloth simulation and rupture simulation are important areas 

of research in computer graphics. One of the most common cloth 

models is based on a simple mass-spring system with some strain 

limiting method for constraining yarn lengths to achieve 

inextensibility of cloth. Unfortunately, with strain limiting, the 

simulation of cloth tearing becomes difficult. In real fabrics, a yarn 

will break when its strain reaches the breaking point; however, due 

to the constraint on strain values unrelated to applied forces, actual 

strain values cannot be directly computed from the simulation 

result. Hence, we propose a method to support breaking of length 

constrained yarn by estimating its strain through its stress that 

would have been exerted if strain limiting were not performed. 

With our method, various breaking mechanisms of yarns can be 

performed by only adjusting some parameters.  

 

2. Related Work 
Based on elastic model, the fact that most fabrics do not stretch 

under their own weight leads to the necessity of very stiff springs 

for a mass-spring cloth model, which induces the numerical 

instability of simulation [8]. As a result, a variety of different ways 

for stretch resistance has been continuously proposed; from 

Provot’s iterative post-processing edge constraint [7], to a more 

recent constraint method based on impulse [2]. Some alternative 

ways of stabilizing stiff simulation were also proposed; for 

example, implicit integration method [1], position based dynamics 

method [6], and fast projection method [4]. 

 These works, and many of their sequels, have a common goal 

to limit the maximal strain to a threshold value. Accordingly, these 

kinds of method are suitable for ordinary situation, but they are 

problematic in the case of excessive stretch, or when rupture should 

be occurred. The method proposed in [5] describes how to deal 

with tearing cloth. However, it tears cloth by not exactly enforcing 

strain limits; when and where yarns are cut were not directly 

related to applied external forces and cloth material properties, but 

dependent on a strain limiting algorithm. 

 

3. Proposed Yarn Tearing Simulation Model 
Our method adds tear-ability to length-constrained yarn models, 

while benefiting from their numerical stability. We first describe 

an ideal yarn model in Sec. 3.1; as in material science, the 

strength and elongation of a yarn in our work are in reference to 

its stress-strain curve. To determine when and where to cut yarns, 

Sec. 3.2 describes a method for estimating strain values, not from 

length-constrained simulation results themselves, but by 

calculating tensions that would have acted on yarns if length 

constrains were not used. Once strain values are obtained, we can 

reproduce characteristic behaviors of a yarn, where it slightly 

extends elastically as predicted by Young modulus (Sec. 3.3), and 

then begins irreversible deformation when stress goes beyond the 

yield point (Sec. 3.4).  

3.1 Ideal Yarn Model 
An analysis of the stress-strain curve of a fiber (Figure 1) reveals 

that the relationship is a fairly steep line in the initial region, which 

means yarns are almost inextensible until the yield point (see Sec. 

3.4) is reached. The ratio of the stress over the strain in the initial 

region is known as Young modulus.  

 

Figure 1: Typical stress-strain curve of a fiber [3] 

In ideal yarn simulation based on a mass-spring system, 

extremely stiff springs are needed to depict large Young modulus of 

yarns. An example of a mass-spring system is shown in Figure 2. 

Given a mesh of 𝑛 vertices and q edges, the total forces acting 

on a vertex 𝑖 are the sum of all external forces 𝐹𝑒𝑥𝑡 𝑖 , highly stiff 

spring forces 𝐹𝑠𝑡𝑖𝑓𝑓 𝑖 , and other internal forces 𝐹𝑖𝑛 𝑖 . 

𝐹𝑖 = 𝐹𝑒𝑥𝑡 i + 𝐹𝑠𝑡𝑖𝑓𝑓 i + 𝐹𝑖𝑛 i  

Owing to a net force, its velocity and position could be advanced 

from 𝑣𝑖  and 𝑝𝑖  to 𝑣𝑖
′  and 𝑝𝑖

′ . However, to avoid the stiff 

equations, which are numerically unstable, non-stiff springs are 

frequently used instead, then some length constraints are applied to 

gain the final velocity 𝑣𝑖
" and position 𝑝𝑖

". As a result, the strain 

values are no longer related to the stress-strain curve of a yarn. 

 

Figure 2: An example of a mass-spring system 

 
Figure 3: The idea of our system. We perform ordinary 

length-constrained yarn simulation (left), where we first 

advance the system by some time step using non-stiff spring, 

followed by application of length constraints. Our idea is to 

compute tension 𝑇𝑖𝑗  of stiff spring forces (right) that would 

produce equivalent simulation results after time stepping 

without length constraints 



 

 

3.2 Tension Computation 
Our scheme is to find the tensions 𝑇𝑖𝑗  of each edge that would 

have been exerted by stiff springs and would have brought the 

system to 𝑣𝑖
"  and 𝑝𝑖

"  without strain limiting (Figure 3). From 

tension 𝑇𝑖𝑗  and the yarn radius r, the stress can be computed as 

σij = Tij Πr
2 , from which the strain for each edge can be obtained 

using the stress-strain curve. Then, a yarn will be cut when this 

strain value reaches the strain at breaking point. 

Assuming forward Euler integration, if a vertex 𝑖 with mass 𝑚𝑖  

connected to 𝑘  edges is simulated with time step ∆t , the 

following equation must be satisfied in order to match the updated 

velocity to the length-constrained simulation result 𝑣𝑖
". 

𝑣𝑖
" = 𝑣𝑖 +

∆𝑡

𝑚𝑖
 𝐹𝑒𝑥𝑡 𝑖 + 𝐹𝑖𝑛 𝑖 + 𝑇𝑖𝑗

𝑘

𝑗=0

  

In case of yarn, where the number of edges is less than the 

number of vertices(𝑞 < 𝑛), these systems can be directly solved 

for 𝑇𝑖𝑗 . However, in case of cloth ( 𝑞 > 𝑛 ), this is an 

under-determined problem; since 𝑞 edges require 𝑞 unknowns, 

but there are only 𝑛 equations for 𝑛 vertices. In this case, we can 

estimate tension 𝑇𝑖𝑗  by utilizing least squares solution with 

regularization that keeps 𝑇𝑖𝑗  as small as possible. 

min
Tij

   𝑣𝑖 +
∆𝑡

𝑚𝑖
 𝐹𝑖 + 𝑇𝑖𝑗

𝑘

𝑗=0

 − 𝑣𝑖
" 

2

+ 𝜆   𝑇𝑖𝑗  
2

𝑘

𝑗=0

𝑛

𝑖=0

𝑛

𝑖=0

  

Here, λ  is a regularization parameter that controls tradeoff 

between accuracy and the empirical risk. In our test system, lambda 

is set to 10−6, which is small enough to get a reasonable solution, 

without system unstable. 

3.3 Updating Strain Limit 
As can be seen in the stress-strain curve (Figure 1), yarn is 

lengthened according to stress applied. To include this behavior 

into the simulation, we perform a threshold updating for strain 

limitation in accordance with Young modulus. Without external 

applied forces, the threshold value is set to near zero, while the 

value is changed according to stresses (obtained as described in Sec. 

3.2) when some forces are applied. 

3.4 Handling Yield Points 
A yield point is the point at which a material begins to deform 

plastically. Once the yield point is passed, the material will not 

return to its original shape, even when the applied force is removed. 

This characteristic is also merged to our model by updating the rest 

length of an edge when its stress and strain exceed the yield point.  

In addition, the failure behavior of a real yarn is changed 

according to the strain rate. That is, the more time is taken to break 

a yarn, the less vigorousness of breakage will be. The increment of 

the rest length not only affects the final length of a yarn after 

breakage or removal of external forces, but also reduces spring 

forces of simulation at low strain. Thus, different failure of yarns 

behaviors at different rates of extension can also emerge.  

 

4. Results 
We have conducted several experiments to demonstrate that our 

method can produce different kinds of yarn breaking behaviors, 

while maintaining numerical stability thanks to the length 

constraints. The computation time for simulating yarn having 25 

vertices was 0.1 second per frame..  

Figure 4 shows a comparison of breaking behaviors of two kinds 

of yarns as animation sequences. To make the right side yarn 

stronger than the left side yarn, we set the Young modulus and also 

breaking point of the right side yarn larger than the left side one. So, 

when the same amount of force is applied to both yarns, the weaker 

one will be torn earlier and more vigorously. 

 

Figure 4: Example frames from animations of 2 kinds of 

yarns tearing. The animation sequences are ordered from top 

to bottom. The weaker yarn on the left is actually torn earlier, 

but here we match the frames for a comparison purpose.  

For further detail and some more example results, please see 

supplementary material. 

 

5. Conclusions and Future Work 
We have demonstrated a yarn simulation technique that allows 

both inextensibility and tear ability. As our scheme can be 

implemented as an additional step, the integration into an existing 

simulation system is effortless. A variation in the quality of yarns 

can be achieved by only changing Young modulus, yield point or 

breaking point. 

Although only yarns are considered in this paper, we believe that 

the presented approach could be easily extended to handle cloth as 

well, which we plan for future work. 
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