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Abstract 
 
Free-Form Deformation (FFD) is an efficient technique 
for editing the shapes of 3D models, and widely used in 
Computer-Aided Design (CAD), computer animation, 
computer graphics entertainment etc. The basic idea of 
some famous previous FFD approaches deforms a target 
3D model by adjusting some control points of a 3D lat-
tice surrounding the model. It is a tedious work, espe-
cially when the lattice contains too many control points. 
Moreover, how to place the control points of the lattice 
to make them cover the region of the target model is 
also a problem, and it is also difficult to keep the geo-
metric measurement for the deformed model. Therefore, 
in this paper, a novel FFD method without any lattice-
like structure is proposed by borrowing the idea of non-
distortion texture-mapping for free-form surfaces. By 
using this method, the shape of the deformed model due 
to a given parametric surface can be predicted easily, so 
that the user can get his or her desirable results more 
intuitively and has no necessary to place the control 
points of a proper lattice. Moreover, since this method 
is simple, efficient, and has a real-time response, it is 
more suitable for doing the animation with thin objects. 
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1. Introduction 
 
Recently, computer graphics technologies have been 
applied to several fields, such as movie industry, video 
game, CAD, and scientific visualization. Obviously, the 
expression of 3D models is also an important part of the 
computer graphics technologies. The 3D models are 
usually represented by some primitives such as points, 
lines, and polygons. Although complicated and beauti-
ful models can be rendered now with a lot of such 
primitives by using graphics hardware, how to deform 
such models to be people�s desirable shapes generally, 
intuitively, and efficiently is still a problem. 
 
FFD is an efficient technique in computer graphics for 
providing a general modification of a 3D model such as 
twisting, bending, and stretching. Sederberg and Parry 
first introduced this method from the practical view-
point in 1986 [1]. By using this method, the users first 
generate some control points called a lattice to contain a 
3D model which is a target object for deformation, and 

then adjust the control points to deform the parametric 
space inside. Finally, the deformed parametric space is 
mapped onto the target model automatically. A lot of 
related approaches are based on this method, and it has 
become a useful and well-known technique for 3D 
model deformation. 
 
Several methods of FFD are mostly based on the above 
methods, although there are some differences about the 
definitions of the lattices. However there are some prob-
lems while doing the FFD processes. First, the relation-
ship between the lattice and the target model is unclear, 
so it is hard to grasp intuitively that how desirable 
deformation can be obtained if the control points of the 
lattice are adjusted. Then, how to place the control 
points of the lattice to proper positions to make the us-
ers to control the shape well is very difficult. Further-
more, it is also difficult to keep the geometric shape of 
the model after deformation, and possible to have a dis-
tortion problem of the deformed shape. 
 
Therefore, we propose a novel FFD method in this pa-
per without any lattice-like structure to prevent the users 
to setup the control points and adjust them. The basic 
idea of our approach is to utilize the technology of tex-
ture-mapping [2], since texture-mapping can make a 
mapping relationship between a 2D texture image with 
a 3D free-form surface as to wrap the image to fit the 
shape of the surface. Hence, we can also find a mapping 
relationship between a 3D model and a parametric sur-
face by just replacing the texture image in the texture-
mapping to be a 3D model. Unfortunately, the main 
problem of the texture-mapping itself is the distortion 
problem if we just use the linear mapping. So, we bor-
row the technology of making non-distortion texture-
mapping [3] to prevent this problem. Then, the user can 
deform a 3D surface as they wish by just making a de-
sirable parametric surface which is easier than adjusting 
the control points of a lattice. 
 
 
2. Related Work 
 
Barr introduced an efficient method with some restric-
tions to deform a 3D model by using the combinations 
of four operations [4]. Then, a deformation technique is 
proposed by Sederbarg and Parry [1], which is widely 
available and almost all subsequent methods are based 
on it. Coquillart proposed an extension of it, called Ex-
tended Free-Form Deformation (EFFD), which uses 
several low resolution lattices, called �chunk�, for de-
formation [5]. Thereby, a complicated lattice can be 



defined without raising the resolution of the chunks, 
since it can be a combination of several chunks, but it is 
difficult to maintain the continuity of the form in the 
case of connection of the chunks. Coquillart and Jan-
céne used EFFD method to build animations called 
Animated Free-Form Deformation (AFFD) [6]. 
 
Griessmair and Purgathofer proposed a new FFD 
method based on B-Spline with three valuables, and 
optimized the mesh division after deformation [7]. By 
using the general FFD method, the relationship between 
a lattice and a target model is obscure, so that to adjust 
the control points of the lattice is difficult to understand 
intuitively. Hsu et al. aimed to solve this problem and 
proposed a method to control the target model directly 
[8]. By using this method, a desirable shape could be 
generated by adjusting arbitrary vertices directly of the 
model, and then the corresponding control points of the 
lattice are calculated backward to acquire the shape. 
Therefore, desirable results can be acquired even for the 
local deformation. 
 
Kalra et al. thought up a Rational Free-Form Deforma-
tion (RFFD) method to use a rational parametric volume 
to simulate the movement of facial muscles [9]. The 
method proposed by Lamousin and Waggenspack, Jr. 
allows the users to do the local deformations by using a 
B-Spline or controlling the shape by weighting the con-
trol points of the lattice, called NURBS-based Free-
Form Deformation (NFFD), and succeeded in raising 
the flexibility of FFD [10]. Like EFFD method, it is also 
possible to combine two or more lattices, and the shape 
could still be smoothly connected only by piling up a 
segment in the connection part of the lattices. Moreover, 
Feng and Peng also proposed a fast accurate B-Spline 
FFD method [11]. In this method, the target model is 
surrounded by a B-Spline volume, but the problems of 
placing and controlling the control points are the same 
as the previous methods. 
 
Obviously, to adjust the control points of a lattice is not 
intuitive; to make the 3D model deformation to be eas-
ier, a more intuitive method is needed. Lazarus et al. 
used an axis instead of using a lattice to try to provide 
an efficient and intuitive deformation method called 
Axial Deformations (AxDf) [12]. Chang and Rockwood 
used a Bézier curve to define the desirable skeleton of 
the deformed object [13]. Singh and Fiume used wires 
for deformation [14]. Although these methods provide 
simpler control methods than previous ones, the user 
also needs to place a proper axis or some suitable wires 
for deformation. Feng et al. provided another FFD 
method by using two parametric surfaces called shape 
surface and height surface [15]. This method gives users 
more flexibility for deformation and has an intuitive 
controlling, but the deformed results have a distortion 
problem. 
 
Therefore, we propose a novel method to deform the 
surface of the target 3D model by a given parametric 
surface, so that the user can image what will be gener-
ated after the deformation. By utilizing the technology 
of non-distortion texture-mapping, the distortion effect 

of the deformed object is decreased. Moreover, for do-
ing the animation of the 3D model deformation, a real-
time system is desired by the users. Since the proposal 
method is efficient and has a real-time response, it is 
suitable for doing the animation task. 
 
 
3. Deformation by a Given Parametric 

Surface 
 
To use a given parametric surface to do the 3D model 
deformation, the user first selects a well-defined surface, 
such as the surface of a cone or a cylinder, or generates 
a parametric one by himself or herself. The selected 
well-defined surface or generated parametric one is the 
desired shape after the target model is deformed, i.e. the 
deformed result will be like the shape along the given 
surface. 
 
The mapping relationship between the given parametric 
surface and the target 3D model is like the mapping 
between a free-form surface and a 2D texture image, 
because in texture-mapping, the texture image is 
mapped onto the curved surface, and in our approach, 
the target model is mapped onto the given parametric 
surface, if we think of the texture image as a plane in a 
three dimensional space. 
 
Unfortunately, although texture-mapping is a well-
known technology in computer graphics, and all graph-
ics libraries support it, such as OpenGL, there is a well-
known problem that the texture image is distorted be-
cause the texture data on the flat image plane is mapped 
onto the curved surface. Hence, if we just use the tradi-
tional texture-mapping method to map the target model 
to the given parametric surface, the distortion is also a 
problem for us. Therefore, how to perform the mapping 
with less distortion is what we have to solve first. 
 
To solve the distortion problem of the texture-mapping, 
some methods are proposed. Peachey first faced to 
minimize this distortion problem [16]. Bier and Sloan, 
Jr. separated the texture-mapping process into two 
passes [17]: the 2D texture image is first mapped onto a 
simple intermediate surface, and then this surface is 
projected onto the target 3D model. Lévy and Mallet 
comprised numerical computations of physical proper-
ties stored in fine grids within texture space, and then 
generated the grids which are suitable for finite element 
analysis [18]. Ma and Lin also proposed an approximate 
non-distortion texture-mapping method to solve this 
problem [3]. 
 
3.1 Flattened Surface Generation 
 
In Ma and Lin�s method, the curved surface is flattened 
to a 2D plane. Except for some kinds of 3D curved sur-
faces such as the surface of a cylinder or a corn which is 
called �developable surface�, other general surfaces like 
the Bézier surface cannot be completely flattened to 2D 
planes without any distortion, so they could only have 
approximate flattened surfaces as shown in Figure 1. 
 



 
(a)     (b) 

Figure 1: (a) a Bézier surface and (b) its flattened sur-
face. 

Figure 1: (a) a Bézier surface and (b) its flattened sur-
face. 
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The algorithm for flattening the parametric surface is 
described in Appendix. When generating a flattened 
surface, the range of P  in Appendix is a critical point 
to be concern about. Assume the range is set to be 

The algorithm for flattening the parametric surface is 
described in Appendix. When generating a flattened 
surface, the range of P  in Appendix is a critical point 
to be concern about. Assume the range is set to be r , 
where  is a positive integer. If r  is enlarged, the pre-
cision of the flattened surface is better, and since there 
were few steps to convergence in practice, it could also 
get a good performance. 
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Figure 2: another flattened result of Figure 1 (a) when 

setting r . 
 

1=r

3=

As the Bézier surface shown in Figure 1 (a), if we set 
, the flattened result will be unusable as shown in 

Figure 2. To get a proper flattened surface, a larger r  is 
needed. The flattened surface shown in Figure 1 (b) is 
the result of setting r . How to set a proper r  for a 
good flattened surface is an experimental problem and 
depends on the number of grids of the Bézier surface. 
 

r

In Figure 3, the relationship of the number of grids of 
the Bézier surface is shown in Figure 1 (a) and the flat-
tened surface generation performance with different r  
is measured. When the number of grids is increased, the 
performance becomes worse, and the result with a small 

 becomes unusable like Figure 2. Moreover, to en-
hance the calculating performance, the sampling points 
for the range r  is set to be the distance of the grid of 
the parametric surface as shown in Figure 4. 
 
Therefore, the corresponding points for mapping are 
computed by comparing coordinate system of the flat-
tened surface with that of the texture, so that the tex-
ture-mapping with less distortion which geometrical 
distances are maintained is achieved. In our approach, 
before doing the 3D model deformation, the given pa-
rametric surface is flattened to a 2D plane by using this 
method. That means the geometrical distance between 

two vertices of the target model could be kept on the 
deformed model. 
 

 
Figure 3: performance testing for flattened surface gen-

eration due to the number of grids and r . 
 

 
(a)     (b) 

Figure 4: sampling points for (a) 1=r and (b) 3=r . 
 
3.2 3D Model Deformation 
 
By using a given parametric surface to do the 3D model 
deformation, we first flatten the surface, and then put 
the model onto the flattened surface, so that the model 
can get a proper corresponding mapping with the para-
metric surface. Moreover, unlike the other conventional 
FFD methods, the proposed method is done without 
generating any lattice-like structure, and the deforma-
tion task is also easier than before. 
 
To get a smooth deformed object, we have to subdivide 
the target 3D model, if the size of the polygon of the 
model is larger than the size of the grid of the flattened 
surface. We first project all the vertices, edges, and 
faces of the target model to the flattened surface, and 
then compute the following three types of points with 
the grid of the flattened surface of the given parametric 
surface: 
 
(a) The vertex points which are defined as the original 

projected vertices of the target model. 
 
(b) The edge points which are generated by intersected 

the original projected edges of the target model 
with the grid of the flattened surface. 

 
(c) The face points which are generated by inserted 

the cross points of the grid of the flattened surface 
inside the original projected faces of the target 
model. 
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For example, if we project the polygon at the bottom of 
a cube onto a flattened Bézier surface, there will be a 
square on the flattened surface, and the generated edge 
points and face points are shown in Figure 5. The vertex 
points are the four corners of the square, the edge points 
are the blue points on the four edges, and the face points 
are the red points inside the square. The flattened sur-
face in Figure 5 is the flattened result of the Bézier sur-
face shown in Figure 9 (a). 
 

 
(a)     (b) 

Figure 5: (a) edge points and (b) face points. 
 
Then, the edge points and face points are projected 
backward to the original parametric surface, and the 
corresponding points on the target model are also gen-
erated by using bi-linear interpolation. Finally, the gen-
erated corresponding points are displaced along the 
normal vectors of the parametric surface. Hence, there 
are two corresponding points for each vertex point, edge 
point, and face point: one is on the parametric surface, 
and the other is on the surface of the target model. Al-
though there are several generated edge points and face 
points, to make the deformed model not to contain too 
much newly generated vertices, the curvatures of the 
corresponding points on the parametric surface of the 
edge points and face points are computed, so that only 
the bumpy region due to the parametric surface needs to 
be subdivided. 
 

 
(a)     (b) 

Figure 6: (a) mark the un-removable edge points and 
face points on the edges consisted by them; 
(b) mark other edge points due to the face 
points. 

 
To reduce the numbers of the edge points and face 
points, we first calculate the curvature of one projected 
edge with the parametric surface, and mark the edge 
points, where the curvatures are higher than a given 
threshold ε , to be un-removable. The edge point at the 
opposite side of the marked edge point is also marked. 
Then, the face points on the edge linked by the marked 

edge points are detected as shown in Figure 6 (a). If 
there is a face point on the edge also has a curvature 
higher than the threshold ε , the endpoints of the other 
edge which consists of the face point are also marked as 
Figure 6 (b). And then, check the other projected edges 
again to see if there still have un-removable edge points. 
Finally, the target model can be subdivided due to the 
newly generated points. 
 
Moreover, the user can choose where to put the target 
model onto a part of the given parametric surface for 
animation or just fitting the region of the surface. To 
keep the continuity of the surface of the deformed ob-
ject, the user could only put the target model onto the 
given surface, and the projected vertices could only be 
located inside the flattened surface. 
 
 
4. Results 
 
There are two 3D models in Figure 7: (a) is a simple 
thin plate which has only 6 polygons, and (b) is a dol-
phin model. Figures 8 - 9 show the deformation results 
of the simple model in Figure 7 (a) along the shape of 
different Bézier surfaces and a cylinder, respectively. 
 

 
(a)     (b)  

Figure 7: (a) a simple thin plate and (b) a dolphin model. 
 

 
(a)     (b) 

Figure 8: (a) a Bézier surface and (b) a deformation 
result along it. 

 
The performance of our approach is listed in Table 1. 
The process of both flattening the given parametric sur-
face and deforming the target 3D model due to the sur-
face are performed. The testing platform is a PC with an 
Intel Xeon 2GHz CPU, 1GB memory, and a 3Dlabs 
Wildcat II 5110 graphics accelerator with OpenGL sup-
port. The range r  used for flatten the surface is set to be 
3. Although the time for flattening the surface is much 
larger than the time for deforming the target model, the 
flattening process is just a pre-process and could be 



done at off-line and independent with the complexity of 
the target model. 
 

 
(a)     (b) 

Figure 9: deforma-
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Figure 11: the user interface of our system and there is a 

dolphin model put on a flattened surface. 
 
F b) shows the deformation of a complex do
phin model as shown in Figure 7 (b). The deformation 
is along a Bézier surface shown in Figure 10 (a). The 
graphical user interface (GUI) of our system is shown in 
Figure 11. The desirable Bézier surface and the relative 
position of the target model on the flattened surface of 
the Bézier surface could be controlled through the sys-
tem. In the screen of Figure 11, the dolphin model of 
Figure 7 (b) is put onto the flattened surface of the Bé-
zier surface of Figure 10 (a). Moreover, since each 

polygon of the original dolphin model is smaller than 
the grid of the flattened surface, there is no subdivision 
in the deformation process. 
 
S
able for doing animation about deformation. For exam-
ple, the dolphin model in Figure 7(b) is deformed to 
simulate the swimming as shown in Figure 12. To do 
the animation, the dolphin is put onto a parametric sur-
face like Figure 13, then the dolphin can be deformed 
along the surface in real-time, although it contains 
73,665 polygons. 
 

 
Figure 12: a swimming dolphin. 

 
Figure 13: a dolphin deformed along a parametric sur-

face. 

T
affects the performance significantly, which could be 
controlled by users through our system, because the 
complex parametric surface has more grids to be flat-
tened and the new points used for subdividing the target 
model are also increased. However, to use a parametric 
surface with more grids for model deformation also 
means to get a better quality of the deformed result. 
Moreover, although the numbers of the edge points and 
face points are increased if the number of grids is in-
creased, the number of vertices of the deformed model 
is not increased too much, since the newly generated 
vertex is added to the target model when it is needed. 
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W
distortion deformation which maintains the geometric 
shape even after deformation by utilizing the technique 
of texture mapping with less distortion. Because the 
deformation is performed along a given 3D parametric 
surface which the user could generate easily, it is easy 
to predict the result shape after the deformation. More-
over, using a given parametric surface to do the defor-
mation, the adjustment of the control points of the pa-
rametric surface more is intuitive and intelligible than 
the one of the lattice used in previous FFD methods. 
 



To deform the thin model by using our system, the de-
formed model could get the result with less distortion, 
since the faces of the model far from the parametric 
surface have worse deformed results than others. To 
minimize the distortion, the user could move the flat-
tened surface in the middle of the model.  
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Appendix: Optimal Texture Mapping [3] 
 
The next equation defines the errors between the curved 
surface and its flattened surface: 
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where ( )tiii yxX ′′′ = ,  and )  and the co-
ordinate value which used in the next step of the itera-
tive algorithm is obtained according to the following 
equation: 
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where ρ  

of th
f C

is a small positive number. The flattened sur-
face e target surface is obtained by reducing the 
value o . S


