
JavaGL - A 3D Graphics Library in Java for Internet Browsers

Bing-Yu Chen, Tzong-Jer Yang, and Ming Ouhyoung

Communications and Multimedia Laboratory,
Department of Computer Science and Information Engineering,

National Taiwan University, Taipei, Taiwan, R.O.C.

Abstract

This paper presents a 3D graphics library, or JavaGL1,
written in Java to provide 3D graphics capabilities over
network. To make the 3D graphics library easy to learn and
use, we define the application programming interface (API)
in a manner quite similar to that of OpenGL, since OpenGL
is a de facto industry standard. Furthermore, we have also
developed a network library, or JavaNL2, and combined it
into JavaGL, so that a programmer can develop multi-
participant 3D graphics applications easier using JavaGL
and JavaNL together. Implementation issues and
performance evaluations are especially addressed.

1. Introduction

As the Internet and World Wide Web (WWW) become so
popular, many Internet-based products, including Network
Computers [1] and WebTVs, have been developed.
Furthermore, in the visible future, 3D web navigation (e.g.,
VRML) will be a reasonable demand for web browsers.
However the Internet itself is a heterogeneous network
environment, if we want to deliver WWW contents with 3D
information , we need a 3D graphics capability in each
different platform. Therefore, we decide to develop a 3D
graphics library that is platform independent. Java is chosen
as our programming language for its hardware-neutral
feature, and its wide availability on many hardware
platforms, including embedded systems.

We also notice that a multi-participant interactive
environment would be a potential demand for Internet
applications, hence we also developed a Java network
library, called JavaNL, to help programmers to develop
multi-participant applications easier.

We begin in section 2 and 3 with descriptions of some
implementation issues when developing JavaGL and
JavaNL, and show some results in section 4. The
conclusions and future work are presented in section 5.

1 Http://www.cmlab.csie.ntu.edu.tw/~robin/JavaGL.
2 Http://www.cmlab.csie.ntu.edu.tw/~robin/JavaNL.

2. JavaGL - A 3D graphics library in Java

JavaGL is designed to have an API similar to that of
OpenGL [2], since OpenGL is a de facto industry standard,
and many programmers have been familiar with OpenGL’s
API.

Functions in OpenGL can be divided into 3 categories:
OpenGL Utility Library (GLU), OpenGL (GL), and
OpenGL Extensions to native window Systems (GLX or
WGL), as shown in Figure 1(a).

Applications

GLU

GL

GLX
or

WGL

X or Windows 95/NT

AUX

Applications

GLU
 GL

Java Virtual Machine

GLX
(Java

version)Graphics Kernel

AUX

(a) (b)

Figure 1. (a)The hierarchy of OpenGL modules. (b)The hierarchy of
JavaGL modules.

GL implements primitive 3D graphics operations, including
rasterization, clipping, etc.; GLU provides higher level
OpenGL commands to programmers by encapsulating these
OpenGL commands with a series of GL functions; GLX or
WGL deals with function calls to native window systems.

Besides these three interfaces, there is an OpenGL
Programming Guide Auxiliary Library, called AUX or
GLAUX, which is not an official OpenGL API, but is
widely used. We also implement GLAUX in our JavaGL
package.

The implementation of JavaGL follows the specifications of
OpenGL [4], while the AUX library is implemented
according to the OpenGL Programming Guide [5]. We also
refer to Graphics Gems for better implementation
algorithms [6][7][8]. The hierarchy of JavaGL modules is
shown in Figure 1(b).

The graphics kernel shown in Figure 1(b) contains atomic
3D graphics operations, and is illustrated in the following
section.

2.1 Implementation of JavaGL graphics kernel

The graphics kernel is transparent to programmers, which
means if there is a better implementation, the graphics
kernel can be replaced without notifications to application
developers. Figure 2 shows the hierarchy of the graphics
kernel, and each box represents a Java class.

Context Pointer

gl_context gl_list

Clipping Pointer

gl_cp_clippinggl_nf_clipping

gl_geometry

gl_graphics

gl_lightinggl_select

gl_2d_clipping

Figure 2. The hierarchy of JavaGL’s graphics kernel.

When a rendering command is issued to the context pointer,
the context pointer will check the state of OpenGL. If the
state of OpenGL is normal, the rendering command is sent
to gl_context directly; if the state of OpenGL is stalling to
the display list, the rendering command is sent to gl_list.

gl_list records a sequence of rendering commands, and
eventually calls gl_context for rendering.

The gl_nf_clipping, gl_cp_clipping, and Clipping Pointer
have the same relationship with that between gl_context,
gl_list, and Context Pointer. gl_nf_clipping is the clipping
class for default near and far clipping planes, while
gl_cp_clipping is the clipping class for user defined clipping
planes.

The other classes are gl_select for selection, gl_lighting for
lighting calculation, gl_geometry for drawing all kinds of
geometric objects, gl_2d_clipping for 2D clipping functions,
and gl_graphics that is the lowest level of drawing functions
in the graphics kernel.

2.2 Performance enhancement issues

Performance is a great challenge for both 3D graphics and
Java, hence a great challenge for JavaGL. Moreover,
JavaGL is designed to operate over the Internet, where
network bandwidth affects the overall performance
significantly. These considerations make the implementation
of JavaGL complex.

According to our experiences, we develop the following
design philosophies to speed up JavaGL’s performance.

1. Utilize class inheritance to avoid “if-then-else”
statements – OpenGL is a state machine, and it’s
usually necessary to determine if some status is enabled
or not, which takes time to check. We utilize class
inheritance to avoid these frequent checks. After
deciding which status is enabled, we cast an object to its
proper class type, and the following rendering
commands will be routed to proper functions
automatically without any further checks.

 For example, when implementing the display list, we set
a flag to indicate whether the rendering commands are to
be stored in a display list or to be executed immediately.

 In the case of “if-then-else" implementation, each
rendering command needs to check if the flag of the
display list is set or not with many “if-then-else”
statements, and these “if-then-else” statements will slow
down the execution speed.

 In the case of “class inheritance" implementation, each
rendering command has two class implementations, one
is to render with the display list, and another is to render
without the display list. Both classes are inherited from
the same parent class. Once the flag of the display list is
checked for the first time, a rendering object is casted to
its proper class type, and all the following rendering
commands will be executed correctly without any further
checks of the flag.

2. Make frequently used routines faster – Polygon
rasterization, shading, depth testing, clipping, etc., are
frequently used routines, and are optimized with faster
algorithms and manual code optimization.

3. Divide frequently used routines into smaller ones – If
a routine contains two or more operations that are
frequently used, we divide this routine into several small
and simple ones. The purpose is to reduce unnecessary
network transmissions for unused code segments.

 For example, to fill a polygon, we must do the color
interpolation if the polygon is filled with smooth shading.
However if the polygon only needs a flat shading, the
color interpolation would be unnecessary, and the
corresponding code segment would be redundant.
Therefore, we divide all drawing functions into several
smaller ones, such as drawing functions with or without
depth testing, drawing functions with flat shading or
smooth shading, etc., and optimize these functions.

4. Group rarely used routines into a larger one –
Contrarily, if two routines are similar, and one is rarely
used, we combine these two routines if the combination
won’t increase code size too much. The purpose is to
reduce JavaGL’s total code size, which is increased

when we divide frequently used routines into smaller
ones.

 For example, we had two rendering routines with or
without clipping originally. Since the former one is
mostly used, we combine these two routines, and
optimize the conditional test to redirect a rendering
command to an appropriate code segment efficiently.

3. JavaNL - A network library in Java

In our experiences, an Internet application will be more
attractive if it provides several participants to interact with
each other. JavaNL, a multi-participant interactive network
library, is developed to remove most of the programming
burdens on maintaining multi-participant interactions over
the Internet.

JavaNL adopts concepts of Distributed Interactive
Simulation (DIS) [9][10][11] with some modifications. DIS
is originally designed for military exercise simulations over
WAN (Wide-Area Network), and takes multi-participant
interactions into account, hence we chose DIS as our design
principles of JavaNL.

3.1 DIS vs. JavaNL

DIS is a set of IEEE standards including IEEE Std 1278.1-
1995 [9][10] for application protocols and IEEE Std
1278.2-1995 [11] for communication services and profiles.
IEEE P1278.3 is for exercise management and feedback,
and has not been standardized so far.

DIS defines a large set of data types for communications,
and we use only a subset to develop our JavaNL. The
principles of JavaNL complying DIS are listed in the
following, where a simulation entity represents a data unit
with some data type.

1. There is no central computer that controls the entire
simulation.

2. Autonomous simulation applications are responsible for
maintaining the state of one or more simulation entities.

3. Changes in the state of an entity are communicated by its
controlling simulation application.

4. Perception of events of other entities is determined by
the receiving application.

In DIS, each application uses PDUs (Protocol Data Units)
to communicate with each other, and keeps all simulation
information locally, as shown in Figure 3(a).

JavaNL modifies some PDUs’ formats, and the detailed
PDU formats can refer to [18]. In general, an application
can call JavaNL’s functions to send and receive data, and
the multi-participant simulation is automatically maintained
by JavaNL. Using JavaNL, an application needs not to
implement the complex DIS, but instead of a simple set of
function calls. The modified control flow of JavaNL is
shown in Figure 3(b).

DIS ApplicationDIS Application DIS ApplicationDIS Application

PDUs PDUs

Network

JavaNL ApplicationJavaNL Application

JavaNLJavaNL

JavaNL ApplicationJavaNL Application

JavaNLJavaNL

PDUs
Network

messagesmessages NL commands

(a) (b)

Figure 3 (a) The control flow of DIS. A DIS application needs to maintain
all the simulation information necessary, and uses PDUs to
communicate with each other. (b) The control flow of
JavaNL that provides PDU transmission capability.

3.2 The control flow of PDUs between applications

Four additional PDUs, Join Request, Join Accept, Join
Reject, and Disconnect, are defined for JavaNL only. These
four additional PDUs are used in communication with a
simulation manager. When a simulation application creates
a simulation, it becomes a simulation manager, and waits for
other simulation applications to join. If there is a simulation
application that wants to join the simulation, it sends a Join
Request PDU to the simulation manager. If the simulation
manager agrees the request, it sends a Join Accept PDU
with all the simulation information to the simulation
application that requests to join; if the simulation manager
denies the request, it sends a Join Reject PDU to the
simulation application that requests to join. The whole
process is shown in Figure 4.

Simulation Manager

Create Simulation ExerciseCreate Simulation Exercise

Register & Create
Entities

Register & Create
Entities

Play the Simulation Exercise &
Wait Other Applications Join

Play the Simulation Exercise &
Wait Other Applications Join

Simulation Application

Join Simulation ExerciseJoin Simulation Exercise

Create EntitiesCreate Entities

Play the Simulation ExercisePlay the Simulation Exercise

Join Request

Join Accept

Figure 4. The control flow of PDUs in JavaNL.

A simulation manager is only needed when a simulation is
to be created, or when an application wants to join the

current simulation. Besides the above situations, the
simulation manager behaves like other simulation
applications, and all simulation information packed into
PDUs are exchanged between all simulation applications
automatically.

3.3 The control flow of PDUs in JavaNL

JavaNL provides applications a simple interface to access
PDUs from the network. When an application uses JavaNL
to create a client or server thread, another thread, or
nl_network_agent, is created automatically. The
nl_network_agent maintains several PDU queues:
PDUInQueue stores PDUs received from the network;
PDUOutQueue stores PDUs to be sent out from the
application; MSGQueue holds messages to inform the
application that there are events or PDUs to handle. The
control flow of PDUs is shown in Figure 5.

JavaNLJavaNL

nl_network_agentnl_network_agent

PDUOutQueue

nl_tcp_sendernl_tcp_sender nl_udp_sendernl_udp_sender

PDUInQueue

nl_tcp_receivernl_tcp_receiver nl_udp_receivernl_udp_receiver

Network ApplicationNetwork Application

MSGQueue

Network

polling

polling

polling

pollingput

put

put put

Figure 5. PDU sending and receiving in JavaNL.

If an application wants to communicate with other
applications, it calls JavaNL functions to write PDUs to
PDUOutQueue. The nl_network_agent constantly polls the
PDUOutQueue, and if there are PDUs in the queue, it will
call nl_udp_sender or nl_tcp_sender to send the PDUs out.

If a PDU arrives, it will be received by nl_tcp_receiver or
nl_udp_receiver, and will be buffered in PDUInQueue. The
nl_network_agent constantly polls the PDUInQueue, and if
there are PDUs in the queue, it will write a message to
MSGQueue to inform the application, or will process the
PDUs locally. The application needs to poll the MSGQueue
via JavaNL functions, and retrieves PDUs if necessary.

4. Results

Currently, we have implemented over 160 OpenGL
functions in JavaGL, including functions of GLAUX, GLU,
and GL. These functions are 2D/3D transformation, 3D
projection, depth buffer, smooth shading, lighting, material,
display list and selection. Functions not supported so far are
mainly for anti-aliasing and texture mapping. In the future,
OpenGL Utility Toolkit (GLUT) [12] using JavaGL will be
provided, too.

We also provide 16 examples on our JavaGL web page.
These examples are selected from the OpenGL
Programming Guide [5], and can be executed directly in
Internet browsers supporting Java.

To evaluate JavaGL’s performance, we use a test program
that renders 12 spheres with different materials, where each
sphere contains 256 polygons, as shown in Figure 6. The
performance of the test program is measured on both a SUN
Ultra-1 workstation and an Intel Pentium-200 PC. For
comparison, we also rewrote the same program with Mesa
3-D graphics library [13], that is a software-based 3D
graphics library with an API similar to that of OpenGL
using C programming language, and measured the rendering
time. We also rewrote the same program with hardware
accelerated OpenGL on both platforms. The performance
comparisons are listed in Table 1 and Table 2.

Figure 6. Twelve spheres rendered with JavaGL. Each sphere contains 256
polygons. This program is an example in OpenGL Programming
Guide [5] (code from Listing 6-3, pp. 183-184, Plate 16).

Graphics Library Environment Rendering
Time (ms)

JavaGL 1.0 beta 3 SUN JDK 1.0.2

SUN JIT 1.0.2

4984

Mesa 2.1 GNU C 2.7.2.1 1085

OpenGL for

Creator3D 1.0

GNU C 2.7.2.1

Hardware accelerated (Creator3D)

138

Table 1. A performance comparison on a workstation. The workstation
configuration is SUN Ultra-1 Model 170E, 128 MB memory, 24-
bit display, Sun Solaris 2.5.1.

Graphics Library Environment Rendering
Time (ms)

JavaGL 1.0 beta 3 Sun JDK 1.0.2 16700

JavaGL 1.0 beta 3 Symantec Café 1.51

Symantec JIT 2.0 beta 3

4070

OpenGL for

Windows 95 1.0

Microsoft Visual C++ 4.2

Hardware accelerated (ET-6000)

189

Table 2. A performance comparison on a PC. The PC configuration is Intel
Pentium-200 CPU, 64 MB memory, 24-bit display, Microsoft
Windows 95.

On the SUN workstation, the test program with Mesa is

about 4 times faster than that with JavaGL, which is better
than the performance claimed by SUN that Java is about 20
times slower than C [14]. The performance can be further
improved if a better Java interpreter or compiler exists.

On the PC platform, we execute the test program using the
SUN JDK 1.0.2 [15] and the Symantec Café 1.51 [16] with
JIT 2.0 beta 3. By using the Just-In-Time (JIT) [17]
compiler, we obtain an over 4 times performance speedup.

Figure 7 shows our department building with 5273 triangles,
and the rendering time is 6150 ms on an Intel Pentium-200
PC with 64MB memory. The department building is
rendered by an applet using JavaGL, and all 3D graphics
functions are obtained from a web server.

Figure 7. Our department building rendered with JavaGL on Netscape
Navigator 4.0pr2. This model contains 5273 triangles and takes
6150 ms on a PC with Intel Pentium-200 CPU and 64 MB
memory.

To demonstrate the usage of JavaNL, we developed a multi-
participant building walkthrough application that allows
multi-participants interacting with each other in a LAN
environment, as shown in Figure 8(a). The system hierarchy
is shown in Figure 8(b).

Java Virtual Machine

JavaNLJavaGL

Multiparticipant
Building

Walkthrough Tool
Participant

A
Participant
B

(a) (b)

Figure 8. (a) A multi-participant building walkthrough application. There
are 3 participants in the environment currently, and this figure
shows one participant’s view. The other 2 participants are
represented by cubes. (b) The system hierarchy of a multi-

participant building walkthrough application using JavaGL and
JavaNL.

In this application, participants are represented as cubes,
and if one participant changes his position, other
participants will notice a position change of a cube. The
performance is listed in Table 3. We also measured the
round-trip time of JavaGL PDU, Java UDP, and C UDP,
and the results is listed in Table 4. Java introduces a little
more overhead when sending the same UDP packet, and
JavaNL needs more time because JavaNL has to pack
information into a PDU.

Platform Workstation PC

Refresh
Time (ms)

230 130

Refresh Rate
(frames/sec)

4.3 7.7

Environment SUN Ultra-1 170E

128 MB memory

24-bit display (Creator 3D)

SUN Solaris 2.5.1

10 Base 2 Ethernet

Intel Pentium-200

64 MB memory

24-bit display (ET 6000)

Microsoft Windows 95

10 Base T Ethernet

Interpreter SUN JDK 1.0.2

SUN JIT 1.0.2

Symantec Café 1.51

Symantec JIT 2.0 beta 3

Table 3. Performance of a multi-participant building walkthrough
application. The model used contains 84 triangles, and one cube
representing one participant takes additional 12 triangles. The
total number of triangles rendered is 120 triangles.

Round trip
time of

PDU in JavaNL UDP packet in Java UDP packet in C

Time (ms) 338 4 1

Table 4. The round trip time of different packets. This evaluation is
measured by sending a packet to another host and receiving the
packet from the host. The packet is of length 192 bytes. Note
that JavaNL needs time to pack information into a PDU.

5. Conclusions and Future Work

Since we upload JavaGL to our web server, there have been
over 1000 people around the world visit our web page. We
also received dozens of e-mails concerning the use of
JavaGL. Some would like to collaborate with us, and some
want to use JavaGL to develop their applications. This
encourages us to further improve JavaGL and JavaNL.

JavaGL is being applied to develop a Java-based VRML 2.0
browser in our laboratory. The goal of this VRML browser
is to provide users all the necessary functions from servers
so that users do not have to install additional hardware or

software for 3D graphics applications. JavaGL meets this
requirement because it’s implemented purely by Java that is
designed for Internet.

Using JavaNL to develop a multi-participant interactive
application is much easier than before. To add a chat
function in the multi-participant building walkthrough
application, we only took less than 10 minutes to finish this
work with JavaNL.

Performance is a great challenge for any Java applications.
We expect that the performance will be improved by better
Java interpreters and Java compilers, and will be greatly
improved by new Java chips and faster CPUs.

All the demo codes and examples are available in our web
site at Http://www.cmlab.csie.ntu.edu.tw/~robin/JavaGL,
and visitors are welcome.

6. Acknowledgments

This work is a part of the Multimedia Digital Classroom
(MDC) project developed at the Communications and
Multimedia Laboratory, National Taiwan University. The
MDC project is sponsored by National Science Council
(NSC) under the grant NSC 85-2622-E-002-015.

7. References
[1] “Network Computer,” Network Computer, Inc., 1997.

Http://www.nc.com.

[2] “OpenGL WWW Center,” Silicon Graphics, Inc., 1997.
Http://www.sgi.com/Technology/openGL.

[3] “Distributed Interactive Simulation,” Institute for Simulation
and Training, University of Central Florida, 1997.
Http://www.ist.ucf.edu/labsproj/projects/dis.htm.

[4] Mark Segal, and Kurt Akeley, “The OpenGL Graphics
Systems: A Specification (Version 1.1),” Silicon Graphics,
Inc., 1996. Http://www.sgi.com/Technology/
openGL/glspec/glspec.html.

[5] Jackie Neider, Tom Davis, and Mason Woo, “OpenGL
Programming Guide,” Addison-Wesley, 1993.

[6] Andrew S. Glassner, “Graphics Gems,” Academic Press, Inc.,
1990.

[7] James Arvo, “Graphics Gems II,” Academic Press, Inc., 1991.

[8] David Kirk, “Graphics Gems III,” Academic Press, Inc.,
1992.

[9] “IEEE Standard for Distributed Interactive Simulation –
Application Protocols (IEEE Std 1278.1-1995),” Institute of
Electrical and Electronics Engineers, 1996.

[10] “Enumeration and Bit-encoded Values for Use with IEEE Std
1278.1-1995, Standard for Distributed Interactive
Simulation – Application Protocols,” Institute for Simulation
and Training, University of Central Florida, 1996.

Http://ftp.sc.ist.ucf.edu/SISO/ dis/library/enumerat.doc.

[11] “IEEE Standard for Distributed Interactive Simulation –
Communication Services and Profiles (IEEE Std 1278.2-
1995),” Institute of Electrical and Electronics Engineers,
1996.

[12] Mark J. Kilgard, “Graphics Library Utility Toolkit,” Silicon
Graphics, Inc., 1996. Http://www.sgi.com/
Technology/openGL/glut.html.

[13] Brian Paul, “The Mesa 3-D Graphics Library,” 1997.
Http://www.ssec.wisc.edu/~brianp/Mesa.html.

[14] Arthur van Hoff, Sami Shaio, and Orca Starbuck, “Hooked on
Java,” Addison-Wesley, 1996.

[15] “The Java Developers Kit Version 1.0.2,” Sun Microsystems,
Inc., 1996. Http://www.javasoft.com/ products/jdk/1.0.2.

[16] “Symantec Café,” Symantec, Co., 1997. Http://
www.symantec.com/cafe.

[17] “The JIT Compiler Interface Specification,” Sun
Microsystems, Inc., 1996. Http://www.javasoft.com/
doc/jit_interface.html.

[18] Bing-Yu Chen, “The JavaGL 3D Graphics Library & JavaNL
Network Library,” Master thesis, Dept. of Computer Science
and Information Engineering, National Taiwan University,
Taiwan, 1997.

8. Authors

Bing-Yu Chen received the BS and MS degree in
Computer Science and Information Engineering from the
National Taiwan University, Taipei, in 1995 and 1997,
respectively. His research interests include computer human
interface, computer graphics, virtual reality, Java
programming language, and Internet technologies.

Tzong-Jer Yang received the BS degree in the
Mathematics from the National Tsing-Hua University, Hsin-
Chu, in 1992. He received the MS degree in the Computer
Science and Information Engineering from the National
Taiwan University, Taipei, in 1994. He is now a Ph.D.
candidate there. His research interests include computer
graphics, virtual reality, and Internet technologies.

Ming Ouhyoung received the BS and MS degree in
Electrical Engineering from the National Taiwan University,
Taipei, in 1981 and 1985, respectively. He received the
Ph.D. degree in Computer Science from the University of
North Carolina at Chapel Hill in 1990. He was a member of
the technical staff at AT&T Bell Laboratories, middle-town,
during 1990 and 1991. Since August 1991, he has been an
associate professor in the Department of Computer Science
and Information Engineering at the National Taiwan
University and later became a professor in 1995. He has
published over 90 technical papers on consumer electronics,
computer graphics, virtual reality and multimedia system.

He is a member of ACM and IEEE.

