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Abstract—In this paper, we propose a framework to develop 
an M2M-based (machine-to-machine) proactive driver assistance 
system. Unlike traditional approaches, we take the benefits of 
M2M in intelligent transportation system (ITS): 1) expansion of 
sensor coverage, 2) increase of time allowed to react, and 3) 
mediation of bidding for right of way, to help driver avoiding 
potential traffic accidents. To develop such a system, we divide it 
into three main parts: 1) driver behavior modeling and 
prediction, which collects grand driving data to learn and predict 
the future behaviors of drivers; 2) M2M-based neighbor map 
building, which includes sensing, communication, and fusion 
technologies to build a neighbor map, where neighbor map 
mentions the locations of all neighboring vehicles; 3) design of 
passive information visualization and proactive warning 
mechanism, which researches on how to provide user-needed 
information and warning signals to drivers without interfering 
their driving activities. 

Keywords—connected vehicle; intelligent transportation system,  
driver assistance system, internet-of-things 

I.  INTRODUCTION 
he most profound technologies are those that disappear. 
They weave themselves into the fabric of everyday life 
until they are indistinguishable from it, dubbed by Mark 

Weiser [1] [2]. The internet-of-things (IoT) [3] [4] [5] [6] is a 
realization of the ubiquitous computing vision, whereas (1) the 
best computer is a quiet, invisible servant; (2) the computer 
should extend your unconscious; (3) technology informs but 
does not demand our attention. The usefulness of IoT will 
emerge when products, applications, and services are 
connected and interacting with each other. 

Intelligent transportation system (ITS), which has been 
extensively researched in the last decade, complies advanced 
mechanisms to provide innovative, proactive services relating 
to traffic management and driving safety. For example, drivers’ 
behaviors are limited to their line of sight. Connected vehicles 
cannot only share their sensory information, but also actively 
send out alerts to nearby vehicles in danger [7]. Forming an 
even larger vehicular network, comprising connected vehicles 
and infrastructures, make it possible to proactively perform 
load balancing across multiple routes. It is anticipated that 
traffic accidents can be eliminated from one of the leading 

causes of death [8] and the catastrophic ones can be effectively 
prevented. 

In this paper, we present the challenges arise from realizing 
intelligent transports, and provide insights on resolution in the 
presence of machine-to-machine (M2M) communications, 
including vehicle-to-vehicle (V2V), vehicle-to-infrastructure 
(V2I) and vehicle-to-cloud (V2C). In terms of ubiquitous 
computing, the internet-of-things in ITS (1) is a large-scale 
distributed computing server; (2) can extend human perception; 
(3) interacts with one another and, most importantly, with 
human beings to ensure against potential traffic violations and 
accidents. 

II. PROBLEM FORMULATION 
Traffic violations do not necessarily lead to traffic 

collisions, if timely warnings can be sent out in accordance 
with the traffic situation. However, due to the line of sight, the 
perceptual capabilities of any individuals are limited. In terms 
of ITS, things (or devices) work not just as individuals, but as 
members of a hierarchy. Thus, it is necessary to consider the 
problem of not just individual groups, but also the problem of 
sets of groups as a whole. 
 

 
Fig. 1. The hierarchy of the ITS problem 

 
As shown in Fig. 1, lines are used to indicate roads. 
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aggregating every bit of information, whereas communication 
(C) and user experience (X) address connectivity and usability, 
respectively, in an ad hoc manner, to ensure against potential 
traffic collisions. Apart from the above problems, 
crowdsourcing also plays an essential role in development of 
analytics. Learning from crowdsourcing can serve as the key to 
making ITS reality. 

To develop such a proactive driver assistance system based 
on M2M communications, we divide it into three main parts 
and several technical components, as shown in Fig. 2. The 
three parts are 1) driver behavior modeling and prediction, 2) 
M2M-based neighbor map building, where neighbor map 
mentions the locations of all neighboring vehicles, and 3) 
design of passive information visualization and proactive 
warning mechanism. 

 

 
 

Fig. 2. System flowchart of the proactive driver assistance system. 
 

The rest of the paper is organized as follows. Next, the 
analytics and reasoning methodology is described, prior to 
which the data collection process, as well as the data, is 
presented. In Sec. V, the constraints and limitations in 
communication will be addressed. In Sec. VI, we explore the 
variety of design challenges of the frontend exposed to end-
users. Finally, we present the concluding remarks and future 
outlook in Sec. VII. 

III. DATA COLLECTION 
 Scooters are one of the most important transportation 
means in Taiwan. Out of 22 million registered vehicles in 
Taiwan, scooters account for 67.2% of the vehicles - every 
1.56 persons in Taiwan own a scooter. It is popular due to its 
higher fuel efficiency, lower sale price, and better ability to 
move through heavy traffic jams in the urban area, compared to 
a regular passenger car. However, also due to its lower sale 
price, which results in less safety features incorporated in it, 
and its higher mobility, which increases the probability of a 
collision with other vehicles, scooters have contributed to more 
than 80% of deaths in traffic accidents in Taiwan, causing 
more than 2,000 fatalities annually in the past decade. It is 
therefore crucial to develop a safety system that can help to 
improve the safety of the scooters on the road, while the 
solution needs to be able to be implemented within the cost 
margin of a regular scooter, which usually sells for 

approximately 2,000 U.S. dollars, about one tenth of that of a 
regular passenger car. 

 One possible solution to utilize a mobile device, such as a 
smartphone, to implement some of these safety features. As the 
market penetration rate of smartphones grows to be over the 
50% mark globally, they are owned by the majority of the 
drivers and thus, when the safety features are implemented on 
the smartphone, it does not increase the cost of the vehicle. In 
addition, smartphones have many built-in sensors that can be 
used to observe the driving behavior of the scooter drivers and 
the surrounding vehicles; these sensors include gyroscopes, 
accelerometers, cameras, GPS, etc. If behavior models can be 
established and used to predict hazardous behaviors in advance 
with the collected smartphone sensor data, then advance 
warning can be provided to the driver of that vehicle, or, via 
some forms of communications, to the driver of a neighboring 
vehicle. The behaviors of the scooters are significantly 
different from the behaviors of cars, due to its smaller 
dimensions and that it has one more degree of freedom in its 
movement - the lean angle of its body, i.e., roll angle. Although 
there have been many efforts in collecting driving behavior 
data for cars, to the best of our knowledge, there is almost no 
efforts in collecting extensive driving behavior data for 
scooters or motorcycles. 

 

 
(a) The data collection screen 

 
(b) The file upload screen 

 
Fig. 3. The screenshots of the data collection Android app 
 

 To obtain the necessary data for developing various scooter 
driver behavior model, in June to September 2013, we have 
conducted a large-scale data collection event, in which 100 
scooter drivers are hired to collect sensor data during their 
daily use of scooters, using an app that we developed that is 
executed on their own Android smartphone. Before the event, 
we have also distributed phone mounts to all participants, so 
that their smartphones can be placed on the handlebar of the 



scooters and the back camera of the smartphones can be used 
to capture video of the surrounding environment of the scooters. 
The app functions as a video event data recorder for the user, 
but in addition to recording the video and the audio, it also 
collects data from many sensors in the phone. Table I shows 
the type of sensors that we used in the smartphone for data 
collection and their description. Note that some of the listed 
sensors are virtual sensors, whose data is calculated with the 
raw data collected by other sensors. Data collected by the 
smartphones is uploaded to a back-end server via cellular data 
connections or WiFi connections in real-time. Fig. 3 shows two 
screenshots of the data collection Android app. 

 

 
Fig. 4. The footprints of the participating scooter drivers over the 3-
month event duration. 
 

 Over the 3-month period, a large amount of data was 
collected. The following summarizes some statistics of the 
collected data: (1) 10,858 video files, with a total size of 473.8 
GB, were collected. Most of the files are 10 minutes in length. 
(2) In total, we collected 28,273 kilometers of driving behavior 
data. Out of the 100 participants, 8 of them collected more than 
1,000 kilometers of data, while 22 of them collected 100 - 

1,000 kilometers of data. (3) The majority of the participants 
operate the vehicle in the urban area of Taipei city, while some 
of them operate the vehicle in other parts of Taiwan. Fig. 4 
shows the footprints of the participants during the data 
collection event. 

IV. ANALYTICS AND REASONING METHODOLOGY 
In this section, we will present two main technical 

components for anticipatory reasoning: driver behavior 
learning and neighbor map building. 

A. Driver Behavior Learning 
In the past few years, researchers have spent lots of money 

and human efforts to study how to improve the quality of 
driving and to avoid traffic accidents caused by improper 
driving behavior with the aid from computers [9]. In 2009, a 
study reported by the American Automobile Association 
(AAA) Foundation for Traffic Safety shows that there are 56% 
of deadly crashes between 2003 and 2007 involve one or more 
unsafe driving behaviors typically associated with aggressive 
driving [10]. In this work, we want to analyze whether it is 
possible to predict dangerous events and to alert in advance 
using heterogeneous sensor data. Also we want to learn 
whether being able to recognize the driving styles of drivers 
can boost the above performance [11] [12].  

In this project, we have collected the heterogeneous sensor 
data of 100 drivers, which bring some handy benefits as well 
as some challenges. It is possible to use some rules to 
automatically generate some lower-level driver behavior, such 
as whether the driver stops at particular intersection at given 
time or whether the deriver makes a U-turn. The former can be 
obtained by check whether the speed is reduced to zero when 
approaching the intersection; while the later can be checked by 
whether the direction of the driver is changed to the opposite 
within a short amount of time.  

Given the drivers’ dataset with such automatically 
behavior, we try to create some forecasting models that utilize 
the existing data to prediction whether in the near future the 
drivers will perform such behaviors of interests. That is, we 
want to build a system knowing that a driver is not going to 
stop in the intersection (or is performing U-turn) several 

TABLE I.  DESCRIPTION OF THE COLLECTED SENSOR TYPES 

Sensor Frequency Description 
Video Camera 30 fps Video that is split into 10-min segments. The resolution of the video depends on the 

phone model, and is one of the following four: 1920x1080, 640x480, 320x240, or 
176x144. The video uses H.264/Advanced Video Coding (AVC). 

Microphone  The recorded audio is recorded as part of the video file, using the Adaptive Multi-Rate 
(AMR) coding. 

GPS 1 Hz Longitude, latitude, velocity, and bearing of the smartphone (vehicle) are logged. 
Accelerometer 10 - 30 Hz, depending on the phone model Measures the acceleration force in m/s that is applied to the device on all three physical 

axes (x, y, and z), including the force of gravity. 
Linear 

accelerometer 
10 - 30 Hz, depending on the phone model Measures the acceleration force in m/s that is applied to the device on all three physical 

axes (x, y, and z), excluding the force of gravity. 
Gyroscope 10 - 30 Hz, depending on the phone model Measures the device’s rate of rotation in rad/s around each of the three physical axes (x, y, 

and z). 
Magnetic field 10 - 30 Hz, depending on the phone model Measures the ambient geomagnetic field for all three physical axes (x, y, z) in T. 

Orientation 10 - 30 Hz, depending on the phone model Measures degrees of rotation that the device makes around all three physical axes (x, y, z) 
 



seconds before this driver conducts such action. With such 
mechanism, we can than forecast some dangerous behavior 
(e.g. red-light runner) and issue warning to the nearby vehicles.  

There are some other events of interests that we can hardly 
extract from data through writing simple rules, for instance, 
sudden change of lines or aggressive left turn. Usually these 
are more complicated behavior that might require human 
judgment to label. The second goal of this project is to create a 
semi-automatic framework that assists the users to identify or 
label such event more efficiently.  With a faithful label, then 
we can again design supervised system to model such 
behavior. The idea is to exploit semi-supervised or active 
learning to create a hypothesis of labels to query the users. 
Ideas such as dynamic time warping (DTW) based sequence 
matching can be also useful. 

To improve further of the above short-term learning 
method, we in cooperate with another learning module that 
can also learn the long-term behavior of motorcyclists. In this 
study, we assume that long-term behaviors of motorcyclists 
can reveal their tendency in their driving trajectories. 
Intuitively, we understand that some types of vehicle drivers 
tend not to obey traffic rules and we hope to extract patterns of 
the “bad” driving behaviors given the drivers' trajectories.  

We plan to find bad driving behaviors by detecting 
anomaly trajectories from a collection of trajectory set. The 
assumption is that most drivers are likely to follow traffic 
rules most of the time and we consider their trajectories the 
normal part of the trajectory set; on the other hand, some 
drivers may break rules by changing lanes frequently, 
speeding, sharply turn to the left, etc, and we consider those 
behaviors anomalies in the set. To detect anomalies for bad 
driver prediction, we first find a dissimilarity measure or a 
“distance” to describe how different between each pair of two 
trajectories, then by using the dissimilarity measure, we can 
cluster trajectories into several groups and hopefully each 
group contains trajectories of similar patterns. Given the 
clustering result, we can find anomalies from the outlier group, 
minor group, or trajectories not belonging to any groups, and 
we can then find bad drivers from the anomalies1. 

To combine the short-term and long-term learning modules 
together, we simply transform the above dissimilarity measure 
to coordinates by either Multidimensional scaling (MDS), 
Isomap or any similar techniques, and feed the resultant 
coordinates to the attribute set that is belonged to the short-
term learning part and we can have a complete attribute set for 
the final learning task. 

B. Neighbor Map Building 
Data from a number of heterogeneous sensors such as GPS, 

odometer, inertial measurement unit (IMU), laser scanners, 
cameras and RGB-D cameras used by connected vehicles and 
moving entities has to be fused properly and efficiently. There 
are two levels to fuse the heterogeneous data. First, for fusion 

                                                             
1 The anomaly trajectories may have the “strangeness” due to several 
reasons and not necessarily the ones that are owned by bad drivers. However, 
we believe that those trajectories are in a small part of the set and can be 
removed before our prediction procedure. 

between the nodes, an algorithm for simultaneous localizing 
and tracking vehicles [13] [14] is utilized to obtain sub-meter 
accurate localization which is necessary for driver warning 
systems. Second, for fusion within the nodes, algorithms to 
detect moving objects from laser scanner and stationary 
cameras is exploited to provide pedestrians, motorcycles, 
bikes, and cars information in the heterogeneous sensor fusion 
scheme. 

For ITS applications, a sensor fusion scheme is composed 
by a road-side unit with cameras and laser scanners, and 
moving vehicles, including several motorcycles with GPS 
information, one motorcycle with laser scanners, and one car. 
Each node (vehicle or infrastructure) processes data retrieved 
from its sensors and detects the nearby moving objects. All the 
information is fused into local believes to represent the traffic 
scene. These beliefs are shared (as shown in Fig. 5) and 
propagated by communication modules to nearby vehicles or 
roadside units. All received believes are fused via the belief-
merge module with each nodes own believes and the 
representation of the traffic environment is obtained which can 
be used by other applications, such as driver warning systems. 
The sharing and fusion of each nodes believes can avoid the 
delays or data lost problems within the unstable traffic 
environments, and it is beneficial for improving the driving 
safety rather than sharing sensor measurements. 

 

 
Fig. 5. An overview of belief-based sensor fusion. 
 

V. COMMUNICATION 
Our system uses the IEEE 802.11 solution to support 

communication between vehicles and roadside units (RSUs). In 
the infrastructure or ad hoc mode of an IEEE 802.11 network, 
devices can only receive MAC-layer frames within the same 
basic service set (BSS). Although such MAC-layer filtering 
improves efficiency and energy consumption, it will become a 
serious problem for moving vehicles since vehicles in the 
vicinity of each other may not necessarily belong to the same 
BSS. The IEEE 802.11p standard (also known as Dedicated 
Short Range Communication or DSRC) solves the problem by 
introducing a wildcard BSS ID. By using a wildcard BSS ID, a 
vehicle can receive all frames from nearby vehicles in the same 
channel without association or authentication.  



 Unfortunately, the cost and availability are always the deal 
breakers for DSRC in vehicular communications.  Instead of 
using DSRC radios, we rely on off-the-shelf IEEE 802.11b/g 
radios and enable the so-called monitoring mode and injection. 
The monitoring mode allows an IEEE 802.11 network 
interface card (NIC) to capture MAC-layer frames without 
associating with an access point or ad hoc network, while the 
injection allows a NIC to transmit a frame with no intended 
recipient. We have found that NICs using Atheros AR9271, 
Realtek RTL8187L or Intel JC82546MDE chipsets with 
modified drivers [15] [16] [17] support the monitoring mode 
and injection. The achievable throughput of the resulting 
802.11b/g NICs is shown in Fig. 6. The result shows that 
when transmitting at 54 Mbps (11g) with a payload size of 
1523 bytes, two vehicles can achieve a throughput of up to 17 
Mbps, which is much higher than our per-vehicle throughput 
requirement of 1.1Mbps. 
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Fig. 6. Achievable throughput when using IEEE 802.11 b/g NICs 
with the monitoring and injection. 
 

 In order to make our implementation transparent to the 
upper layers, four application programming interfaces (API) 
are also developed. For example, Comm_Open(interface, node 
ID) specifies the NIC and transmitter node ID. A pcap, a 
structure that links to the queues of received and buffered 
packets, is then created. Comm_Send(pcap, belief) 
encapsulates the belief into a packet and inserts the packet into 
the buffer queue for transmission.  If the size of a belief is 
larger than 1523 bytes, the belief is fragmented. Finally, 
Comm_Receive(pcap) retrieves the belief from a received 
packet. By using these APIs, a vehicle can easily broadcast 
and receive belief from any other vehicle in the same 
neighborhood. 

VI. USER EXPERIENCE 
Rearview mirrors exploit human peripheral vision to 

eliminate driver’s attention blind spots for safety driving. 
However, users only check the rearview mirrors when they 
want to, rather than the critical situations that they need to. In 
the busy traffics, users tend to pay more attention on the road 
condition in the front than the potential hazards behind them. 
To increase driver's awareness on their attention blind spots, 
some vehicle manufacturers have started to provide blind spot 
warning mechanism on the rearview mirror. Conventional 
blind spot warning mechanism [18] uses a blinking point light, 

vibrating the steering wheel, or making audible sound alert to 
notify driver to take a glance at the rear mirror while lane 
switching. Nevertheless, when the driver checks the view in 
the mirror, they still need time to comprehend the real scene 
before react to it. The insufficient information of the current 
warning mechanism neither helps drivers making a just-in-
time decision, nor takes an appropriate reaction. The slow 
reaction time also hinder the primary driving tasks. 

The traffic monitoring ITS can analyze the traffics to 
recognize the various potential hazards. The system can detect 
a dangerous events such as a rush driving out of drivers' sight, 
and forward corresponding proactive warning message, 
including sufficient information of the fact and the suggested 
action to perform [19], to the drivers who may concerned. By 
utilizing this capability of ITS, we can provide a more 
informative warning messages for drivers to take proper 
reactions in shorter time. 

In this work, we propose an AR-based visualization 
technique, Augmented Rearview, to visualize the potentially 
hazardous events detected by the ITS. The visualization of 
hazardous events, such as switching lanes, dangerous driving, 
etc., are directly overlaid on the real scenes displayed in the 
electronic rearview mirror. The simple visualization is 
seamlessly integrated with the real scene, providing semantic 
means that the type of events can be comprehensible in a 
glimpse [20]. The high-saliency features that we used in 
visualization also help users perceive the warnings by their 
peripheral vision effectively, without hindering the focus 
driving tasks [21]. 

We have implemented a VR system with simulated reality 
through immersive driving simulation. A 7-inch display is 
used to serve as the electronic rearview mirror. The rear-view 
obtained from the camera that set in the simulated graphic 
context is shown on the rearview mirror. In the simulated 
traffics, the screen visualizes the proactive warning message 
on the rearview in real-time. We also build the proof-of-
concept device of AR electronic rearview mirror using 5-inch 
smartphone embedded a 2 Mega-Pixel camera and motion 
sensors inside. Visualization is directly added on the real view 
obtained from the camera, and the consistency between the 
camera viewports and the overlaid graphic events is 
maintained by the device's built-in compass. 

Early users feedbacks gathered from a pilot user study 
show that users are positive on perceiving the proactive 
warning as soon as possible. Also, they can comprehend the 
semantic meanings of the provided visualization in a glimpse, 
and appreciate for the sufficient information provided before 
reacting to the events. 

In future work, we will conduct a formal user study to 
evaluate the efficiency of these visualization techniques. We 
will also attempt transplanting or incorporating our 
visualization techniques with wearable display, such as 
Google glass, or providing always glance-able driver-centered 
information on the helmet glass to increase driver's peripheral 
awareness. 



VII. CONCLUSION AND FUTURE WORK 
 In this paper, we propose a framework to develop an 
M2M-based proactive driver assistance system. Unlike 
traditional approaches, we take the benefits of M2M in ITS: 1) 
expansion of sensor coverage, 2) increase of time allowed to 
react, and 3) mediation of bidding for right of way, to help 
driver avoiding potential traffic accidents. To accomplish such 
a system, several technical components are proposed, such as 
data collection, driver behavior modeling and prediction, 
sensor fusion, neighbor map building, communication, and 
HCI design. Although this is an ongoing project and there still 
can be some improvements for each component, this paper 
gives a beginning of how to achieve connected vehicle safety 
and further provides future directions for new research. 

 In the future, first we will keep improving each component 
and the system integration performance. Second, compare to 
current passive warning, we will further research on the 
problem of proactive traffic accident avoidance, for example 
right of way mediation for traffic events, such as change lanes, 
turn left vs. go straight, make a U-turn, etc., to improve driving 
safety. 
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