
1

A Generic Shared Window Architecture and Some Issues

Chee-Wen Shiah, and Wen-Chin Chen

Communication and Multimedia Lab.
Department of Computer Science and Information Engineering

National Taiwan University, Taipei, Taiwan, R.O.C

Abstract

The shared workspace had been considered as a significant feature of the

synchronous concurrent engineering environment. An efficient way to provide shared

workspace is the shared window system (or shared application system) which lay

between the applications been shared and the underlying window management system

(WMS). With shared window system, the single-user applications can be transparently

shared among multiple participants without any modification under collaboration

environment. There are three different paradigms to implement a shared window

system: event-sharing paradigm, UI-image-sharing paradigm, and request-sharing

paradigm. This paper will discuss the characteristic and implementation differences

among these three sharing paradigms, and then propose a generic shared window

system architecture to embody all of them in single architecture. Two crucial function

groups: sharing activity management and I/O redirection/reproduction, will be

separately designed within this generic architecture.

Several critical implementation problems such as: latecomer problem,

application spontaneous sharing problem, and cross-platform sharing problem, will

also be discussed. Finally, an application recorder/player system using request-sharing

paradigm was proposed to illustrate the utilization of application sharing technique on

non-CSCW scenario.

1 Background

The shared workspace, which provides an identical visual and operable

working area among geographically separated participants, had been proved to be the

most important feature of a synchronous collaboration system.[] There are two basic

approaches to achieve the objective of shared workspace. The first, called

collaborative-aware approach, relies on the development of so-called collaborative-

aware applications, which directly support multiple, simultaneously active user input,

and/or synchronize the output to all participants.[] The second, called collaborative-



2

transparent approach, introduces some mediate layers between existing single-user

applications and underlying window management system (WMS) to support multiple

user operations and output distribution, and makes the applications transparently

sharable.[] The greatest drawback of the collaboration-aware approach is that all

applications been shared must be specially redesigned from scratch. To leverage the

large base of existing single-user applications, we adopt the collaborative-transparent

approach to build our shared window system.

Before starting our discussion, the model of interaction between applications

and WMS should be understood. Most modern WMSs (such as: X-window, MS

Windows, OS/2, Presentation Manager, Macintosh System…) employ similar concept:

concealing the peripheral hardware detail, providing the applications a high-level

interface to perform graphical output, and using message-passing mechanism to

communicate with applications. (see Fig. 1.)

The basic idea of shared window system is to intercept the events and/or

requests flowing between WMS and applications, and distribute them among all

participants.[] In some WMS (e.g. X-window system), the client/server model is

adopted, and a standardized network protocol (e.g. X-protocol) is used to transmit

those requests/events. We called them network-aware window systems. On the other

hand, those network-unaware WMSs (e.g. MS Windows, Macintosh system) ignore

potential telecooperation and result in high-degree interlocking among structures of

applications, operation system, and I/O devices.[] The network-awareness will

Fig. 1. The interactions between Applications
and Window Management System.

Applications

output

requests

input/notify

events

Window Management System



3

significantly affect the implementation complexity of the requests/events intercepting.

2 Shared Window System Paradigms

As described above, a shared window system (SWS) is a mediate layer reside

between applications and WMS to provide application sharing services. Hence, the

capability to redirect request and/or event streams is essential. Dealing with the

intercepted stream data in different ways, there are three sharing paradigms to build an

SWS. The first one, called event-sharing paradigm, focuses on synchronizing of the

events sent into/from shared applications. The second one, called UI-image-sharing

paradigm, detects and refreshes the image content changing of the user interface (i.e.

windows) of shared applications. The last one, called request-sharing paradigm,

intercepts, distributes, and reproduces all output related requests and input events. In

this section., we will discuss these three sharing paradigms in great detail.

2.1 Event-sharing Paradigm

The basic requirement of an event-sharing SWS is that all participants must

execute the same application on their machines. By collecting and synchronizing input

events produced, those applications will behave in the same way, such that the

objective of share workspace can be achieved. From this point of view, the event-

sharing SWS is pretty much like an input synchronizer. Fig.2. shows the system

architecture of an event-sharing SWS. The implementation topics of event-sharing

SWS include: intercepting, collecting, and rerouting of events. Therefore, an event

interceptor module is invoked to catch events came from local/remote WMS; an event

reproducer module is invoked to supply application the filtered events; and a shared

activity manager module is invoked to collect all intercepted events and follow certain

floor control rule to choose proper events for distributing.

Due to the shared applications must be run on all participant sites, the pure

event-sharing SWS is naturally a replicated system. The filtered events is manipulated

instantly by locally executed applications, so the event-sharing SWS can gain very

short user responding time. Furthermore, the typical event packets are pretty small and

consume very low network bandwidth to carry. However, a pure event-sharing SWS

suffers from certain drawbacks. For example, the applications been shared must be

deterministic. An application is deterministic if the output of application is determined

by certain user input. Typical non-deterministic applications are those using random



4

number or local system status to display certain information on UI. Therefore, the

event-sharing SWS could not guarantee, if non-deterministic applications are shared,

same status can be reached by only distributing same input events. Moreover, the

information been processed by event-sharing SWS contain only user input. Some

advanced collaboration features (such as: latecomer joining, spontaneous application

sharing, and cross-platform sharing) are difficult, even impossible, to implement.

2.2 UI-image-sharing Paradigm

Another intuitive thought to achieve shared workspace is to distribute the visual

content of applications’ user interface (UI) by hard-copying all UI images, we called it

UI-image sharing paradigm. The shared applications can only be executed on provider

site, and the other participants (called sharer) just receive the UI updating images sent

from the provider and need not to run the same applications. Therefore, the UI-image-

sharing SWS is naturally a centralized system.(see Fig.3.) The implementation criteria

of UI-image-sharing SWS include: finding out of the proper occasion (e.g. when UI

got updated) to capture UI images, reconstructing of the updating UI images, and

minimization of the transmission bandwidth. (e.g. introduce a dirty-block detecting

algorithm and/or image data compression algorithm) Moreover, input streams

Fig.2. The event-sharing architecture.

local input events

output

requests

filtered input events

Application A

Window Management System

Application Participant 1 Application Participant 2

local input events

output

requests

filtered input events

Application A’

Window Management System

Event Interceptor

Event Reproducer

Sharing Activity

Manager (SAM) Multi-point CSCW channel

Shared W
indow

 System

Event Interceptor

Event Reproducer

Sharing Activity

Manager (SAM)

Shared W
indow

 System



5

collecting capability should be considered in order to provide multi-user concurrently

operating ability.

Due to the UI updating of an application is achieved by sending output requests

to underlying WMS, intercepting certain types of output request could be an adapted

way to find out occasions to trigger UI grabbing function. The intercepted requests

should be by-passed to WMS without any modification. In provider site, an UI-image

monitor model is invoked to gather shared application’s UI updating, and an event

reproducer model is invoked to feed shared application the filtered input events. In

sharer site, an UI-image builder model is invoked to reconstruct the original UI

appearance of shared application. The event interceptor model is needed in both sites

to collect all input events which will be further filtered by SAM obeying certain floor

control rule.

Since the transmitted data is compose of input events and UI image blocks, it is

possible for UI-image sharing SWS to support advanced collaboration features (such

as: latecomer joining, spontaneous application sharing, and cross-platform sharing; see

section 4). Furthermore, the centralized architecture of UI-image sharing SWS can

eliminate the “deterministic shared application” problem which greatly harm the pure

event-sharing SWS. The UI-image sharing SWS, however, needs far more bandwidth

than an pure event-sharing SWS does.

Fig.3. The UI-image-sharing architecture.

remote

input events

Window Management System

local

input events

output

requests

filtered

 input events

Application A

Window Management System

UI Image

Monitor

Multi-point CSCW channel

Event

Interceptor

Sharing Activity

Manager (SAM)

Event

Reproducer

Sharing Activity

Manager (SAM)

UI Image

Builder

Event

Interceptor

Application Provider Application Sharer

image

information

remote

output requests

Shared W
indow

 System

Shared W
indow

 System



6

2.3 Request-sharing Paradigm

By comparison with distributing the visual content of applications, another way

to achieve shared workspace among participants is directly multiplexing applications’

output requests.[] We call this paradigm the request-sharing paradigm. The request-

sharing SWS is also a centralized system. In other words, the shared application is only

executed at provider site, and the SWS reside in sharer generates the “pseudo”

application objects by reproducing those intercepted output requests. The system

architecture of request-sharing SWS is shown as Fig. 4.

In provider site, the output requests of shared application are intercepted and

analyzed by request interceptor model, and then, by-passed to local request

reproducer model to accomplish original task. All request related local information

(e.g. memory content pointed by pointers, data structure invoked resources, …etc.)

must be further extracted and packed with request itself into shared packets which will

be distributed by local SAM model to all sharers. In sharer site, the SAM model

receives shared packets and unpacks them into original form, and then, feeds the

request reproducer model those unpacked data for local reconstructing.

The accomplishment of output requests is highly independent to underlying

WMS. For example, system object (e.g. window or resource) identifier (or handle) is

only meaningful on local system and must be re-mapped while reconstructing them on

other sites. In some WMSs, especially those network-unaware system like MS

Windows, requests are tightly coupled with local operating system such that some

requests use pointers to pass parameters. It could be a great challenge while

implementing a request-sharing SWS on such WMSs.

However, the I/O requests of an application make WMS to generate real system

objects, therefore, it is possible to accomplish certain UI updating (e.g. menu operating,

window re-sizing,…etc.) by only using input events. The network bandwidth utilization

can be more effective than that of UI-image sharing paradigm.



7

Table 1. shows the differences among three sharing paradigms above. The

discussion of lower three rows will be provided at section 4. We believe that the UI-

image sharing paradigm is currently the best one for implementing of an SWS.

Event-Sharing UI-image-Sharing Request-Sharing

Intercepted Data input events input events +

UI- image blocks

input events +

output requests

System Architecture replicated centralized centralized

App. Deterministic yes no no

Implementation Difficulty easiest easy hard

Consumed Bandwidth lowest highest medium

Response Time 1-way network delay 1-or 2-way network delay +

UI-image constructing time

1-or 2-way network delay +

requests constructing time

Cross-Platform Constrain (see

Sec. 4)

yes no currently, yes

Latecomer Joining

(see Sec. 4)

replay from beginning

(log file needed)

simple

(log file unneeded)

feasible

(log file needed)

Spontaneous Sharing

(see Sec. 4)

- simple

(log file unneeded)

feasible

(log file unneeded)

Table 1. Comparison of three different sharing paradigms.

3 Generic Shared Window System Architecture

In recent times, the implementation of different sharing paradigm based SWS

appeared in total different architectures.[][] The fact is that key functionality (such like:

session control, floor control, transport control,…etc.) of an SWS is almost the same

Fig.4. The request-sharing architecture.

remote

output requests

remote

input events

Window Management System

local

output requests

local

input events

output

requests

filtered input events

Application A

Window Management System

Application Provider Application Sharer

Event

Interceptor

Event

Reproducer

Request

Interceptor

Request

Reproducer

Multi-point CSCW channel
Sharing Activity

Manager (SAM)

Sharing Activity

Manager (SAM)

Shared W
indow

 System

Shared W
indow

 System

Event

Interceptor

Request

Reproducer



8

among these different architectures, and need not to be re-designed from ground. A

generic sharing system architecture which embodies replaceable different paradigms in

single SWS is augmented to convince the inter-paradigm analyzing procedure. As

Fig.5 shown, an SWS is separated into three components: pseudo WMS layer (PWL),

pseudo application layer (PAL), and sharing activity manager (SAM). The PWL and

PAL are sharing-paradigm-dependent and must be replaceable, while the SAM is

sharing-paradigm-independent and can be reusable. Each component will be discussed

in detail below.

3.1 Pseudo WMS Layer (PWL)

The aim of PWL component is to interact with shared applications such that

applications can be shared in unaware. The role of PWL is just like a typical WMS

which feed applications the proper events and/or accept output requests from

applications. Two models, hence, is separated in further: input proxy which feed the

filtered events, and output monitor which intercept and/or extract request related

information. For centralized system, the shared applications are only executed on

provider site, therefore, PWL is only performed on provider site.

In event-sharing system, the input proxy receives event packets from SAM,

Fig.5. The generic shared window architecture.

remote output

requests

remote input

events

Window Management System

local output

requests

output
requests controller’s

input events

Application A

Window Management System

Input

Monitor

Input

Proxy

Output

Monitor

Output

Proxy

Pseudo WSM Layer

Pseudo App. Layer

Multi-point CSCW channel

Shared W
indow

 System

Shared W
indow

 System

Application Provider Application Sharer

Sharing Activity

Manager (SAM)

Sharing Activity

Manager (SAM)

Input

Monitor

Output

Proxy

local input

events

controller’s

input events

Application A’

Input

Proxy



9

translates them into the form that applications expect, and then feed them to

applications. The output monitor is a dummy model and need not to do anything. All

output requests are directly sent from applications to underlying WMS.

In UI-image-sharing system, the input proxy is the same as that in event-

sharing system. The output monitor detects the UI updating of applications by

monitoring certain output requests. It does not modify or even parse the content of

requests but only obtain the opportunity for triggering image-grabbing process of

output proxy (in PAL). All requests are by-passed (with the trigger flag which tell

output proxy the UI content is changed) to output proxy which then sends them to

WMS and/or perform the image-grabbing process.

In request-sharing system, the input proxy is also the same as that in event-

sharing system. The output monitor intercepts all output requests of shared

applications, extracts extra information (e.g. pointer data, resource data, …etc.) from

applications if necessary, packs them into certain format, sends them to SAM, and then

by-passes current request to output proxy (in PAL).

3.2 Pseudo Application Layer (PAL)

Form the view point of WMS, an SWS is just another typical application whose

input and/or output behavior is determined by shared applications in certain degree.

The aim of PAL component of SWS is to simulate the I/O behavior of shared

application. There are two models in PAL to achieve this goal: input monitor which

intercepts all events sent to applications by WMS, and/or output monitor which

performs original output requests and/or grabs UI content updating. The PAL

component is needed both in provider and sharer sites but accomplish different

functions when playing different role.

In event-sharing system, the input monitor intercepts all input events which

generated by users and sent out from WMS, packs them into certain format that SAM

respect, then transmits to SAM for further filtering. The output proxy is a dummy

model since we don’t pay any attention on output and totally rely on application

themselves which running on all sites.

In UI-image-sharing system, the input monitor is the same as that event-sharing

system. At provider site, the output proxy performs original requests from output

monitor by simply by-passing to WMS. If trigger flag is set, output proxy must



10

execute the image-grabbing process to obtain, pack, and transmit the minimal dirty UI-

image block to SAM. At sharer site, the output proxy receives and unpacks the dirty

image block from SAM, then reconstructs the original UI-image by sending proper

output requests to WMS. To obtain the minimal dirty UI-image block, it is helpful for

output proxy to maintain certain UI related data structure, such as: top-most window

list, window visible region, window content image cache, and window content dirty

cache,…etc.

In request-sharing system, the input monitor is the same as that event-sharing

system. At provider site, the output proxy simply by-passes current request from

output monitor to WMS to perform original output task. At sharer site, the output

proxy receives from SAM the request packets which contain extra request related data.

Those extra data must first be restored on local system for further pointer or ID

referring. Moreover, all resource IDs (or handles) should be translated into local value

to match the local system status of sharer site. It is necessary to maintain an ID

mapping table for this purpose. When all parameters of current request are properly

processed (i.e. restored and re-mapped), the output proxy could safely reproduce that

request.

3.3 Sharing Activity Manager (SAM)

The SAM component is the common and paradigm-independent part of any

SWS in our architecture. It centrally manages all application sharing activities on local

site and works together across network with other SAMs to exchange information. An

typical SAM provides following capabilities:

l Basic conferencing related functionality, includes: sharing session management

(e.g. open, join, leave, and close), and packet exchanging. In order to hide the low-

level network communication detail and to accomplish the network interoperability,

adopting a standardized conferencing protocol (i.e. T.120 serial specifications)

could greatly simplify the implementation of SAM.

l Floor control mechanism, by which the SWS determine which participant gain

the control right of the shared application. Several fundamental floor control

functions such as: requesting, confirming, releasing, passing, and taking of the floor,

should be provided within SAM component.[]

l SWS specific capabilities, for example: telepen (or annotation) which provide



11

freehand drawing capability within shared workspace, and telepointer which

provide visual cue for multiple user positioning.

 Besides, there are some optional capabilities which can improve the sharing

quality, such like: virtual desktop, palette (or color table) optimization, nearest font

face matching, …etc. All of them are related to default output capability (or system

property) of local WMS, we called it WMS capability localization problem. Since the

capability localization problem is sharing paradigm independent, it is better to be

handled by SAM. This problem could be solved by capability negotiating.[T.SHARE]

 4 Issues and Solutions

 To be an useful collaboration tool, the SWS should meet some human-human

interaction requirements, for example: latecomer joining which allow non-initial

participants to join sharing session, spontaneous application sharing which allow an

already executed application to be shared, and cross-platform sharing which allow

sharing session be arisen among different WMS platforms. All these issues and

corresponding solutions could be paradigm-dependent.

 4.1 Latecomer Problem and Solution

 When the latecomer joined into a sharing session, the sharing activity had already

proceeded for a while and, therefore, the shared applications were no longer at the

initial state. To make sure the SWS of the latecomer could accept the subsequent

sharing packets, the state of shared applications on the latecomer site must be

synchronized by some ways to that of other participant sites.



12

 

 For event-sharing paradigm, the information be processed by SWS contains

only input events. To make shared applications, which was initiated on the latecomer

site, to reach synchronous state, the only way is through the replaying of all events

generated within sharing session. An event log file, in which all events were recorded,

is needed to accommodate event replaying. The log file could be kept within all initial

participants for the reason that the latecomer could receive it from nearest participant.

Fig.6-(1) illustrates the four stages of latecomer joining of event-sharing paradigm.

 The participant A is the nearest participant to latecomer L, and is assigned to be

the log file supplier while L asking to join. Before L accomplishing his joining, the

whole sharing session should be halted to prevent potential problems (e.g. packet lost,

out of synchronization, …etc.). As long as the log file was transmitted and replayed

without any lost, the latecomer joining could be completed. However, the resulting

state of shared application of L is not guaranteed to be the same with that of A if the

shared application is non-deterministic. Moreover, the time spent to accomplish L’s

joining is increased as the session progressing.

 For UI-image-sharing paradigm, the current state of the shared application

could be entirely determined by the UI appearance. While the latecomer requests for

joining, it is sufficient to synchronize the UI status by simply grabbing certain window

images on provider site and reconstructing them on latecomer site. To efficiently

 
 AP

 AP

 AP

 Network

 AP

 AP

 AP

 Network
 AP

 AP

 AP

 AP

 Network  AP

 AP

 AP

 AP

 Network

 request

 

 (1)  (2)

 (3)  (4)

 Fig.6-(1). Latecomer joining of event-sharing paradigm.

 AP: applications been shared. (each participant needs one)

 Log: events logging file. (non-chairman participants can keep his local copy if necessary)

 A, B, C: initial conferees.



13

accomplish image grabbing and reconstructing tasks, it is essential for application

provider to maintain a top-most window list (or hierarchy) of the shared application.

Fig.6-(2) illustrates the four stages of latecomer joining of UI-image-sharing paradigm.

 

 Participant A is the provider of the shared application. When A received the

joining requests from latecomer L, it halted the sharing session, extracted the window

hierarchy of shared application, captured the content images, and then transmitted the

window hierarchy and images to L. After the arrival of first packet, L started to

reconstruct UI contents according to the received information. A could continue the

sharing session with L after receiving the L’s complete-joining acknowledgment.

 No matter how late L come, the time required to join an UI-image based sharing

session is almost the same and is dependent on the number and the size of window

involved.

 For request-sharing paradigm, in fact, the shared application was reproduced

on sharer site by creating real system objects. There were tow approaches to achieve

latecomer joining. In first approach, all requests and events are recorded by provider

and reproduced by latecomer. It is easy to implement but suffered from the drawback

of required time and space increasing while session proceeding. In second approach,

which was proposed and implemented on X-Window by Chung [Chung 93], an object

 

 Fig.6-(2). Latecomer joining of UI-image-sharing policy.

 AP: applications been shared. (only provider needs one)

 UI: output result of AP’s user interface.(identical among all participants)

    : window hierarchy of shared applications.

 A: application provider

 B, C: initial conferees.



14

status table is maintained by provider and transmitted to latecomer for reconstructing.

It can eliminate the obstacle of time/space increasing of later joining. Fig.6-(3)

illustrates the four stages of latecomer joining of request-sharing paradigm using

Chung’s approach.

 4.2 Spontaneous Application Sharing and Solution

 » ¡© ú¦ U¼ Ò« ¬¤ UÀ ³¥ Îµ {¦ ¡¦ Ûµ o© Ê¦ @̈ É° ÝÃ Dª º® t² §» P¹ ê§ @

­ «Â I

 

 

 Fig.6-(3). Latecomer joining of request-sharing policy.

 

 AP: applications been shared. (only provider needs one)
 UI: output result of AP’s user interface.(identical among all participants)
    : internal data structure of the shared window system. (such like: resource/window hierarchy)
 A: application provider
 B, C: initial conferees.
 L: latecomer conferee.

 



15

 

 The second method is hard to implement since that all WMSs do not support

comprehensive status querying/restoring services of run-time system objects.

 4.3 Cross-platform Sharing Problem and Solution

 » ¡© ú¦ b³ q¥ Î¦ @̈ É¬ [º c¤ U¡ A¹ F̈ ì̧ ó¥ ­¥ x¦ @̈ Éª º¥ ī à© Ê

n packet translation

 

 

 Fig.7-(1). Spontaneous sharing of UI-image-sharing architecture.

 AP: applications been spontaneously shared. (only provider needs one)

 UI: output result of AP’s user interface.(identical among all participants)

    : window hierarchy of shared applications.

 A: application provider

 Fig.7-(2). Spontaneous sharing of request-sharing architecture.

 AP: applications been spontaneously shared. (only provider needs one)

 UI: output result of AP’s user interface.(identical among all participants)

    : internal data structure of the shared window system. (such like: resource/window hierarchy)

 A: application provider



16

n general transport protocol

 5 Recorder and Player

 » ¡© ú¦ b¦ @̈ Éµ øµ ¡§ Þ³ N¦ b° O¿ ý» P¼ ½© ñ¤ Wª ºÀ ³¥ Î

 6 Conclusion

 In this paper, we propose a generic shared window architecture which regulate

the implementation concept and hide the adopted sharing paradigm. Since the most

important sharing management functions are independent to the adopted sharing

paradigm, it is possible to reuse same sharing management module among different

sharing paradigms based SWS. In this generic architecture, an SWS is consisted of

three system components: pseudo application layer (PAL), pseudo WMS layer (PWL),

and sharing activity manager (SAM). The first two components (PAL and PWL) are

paradigm dependent and must be replaced from different paradigm based SWSs. The

third component (SAM), which appeared as the kernel of an SWS, is paradigm

independent and could be reused.

 

n ´ £¥ X¤ £¦ P¦ @̈ Éµ ¦² ¤¤ U¤ §Ä dº I­ «» s° ÝÃ D¡ A¿ ð̈ ìª Ì° Ý

Ã D¡ AÀ ³¥ Îµ {¦ ¡¦ Ûµ o© Ê¦ @̈ É° ÝÃ Dª º̧ Ñ̈ M¤ èª k

n ´ £¥ X¹ F¦ ¨̧ ó¥ ­¥ xµ øµ ¡¦ @̈ Éª º̈ ãÅ é¤ è® ×

n ´ £¥ X¹ F¦ ¨̧ ó¥ ­¥ xµ øµ ¡¦ @̈ Éª º̈ ãÅ é¤ è® ×

7 Reference


