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DEFINING COMPLEX SINUSOIDS

Definitions

Complex sinusoids play a very important role in Electrical and Computer Engineering, especially
communications and signal/image processing. The most general mathematical formula is:

x t Ae j t( ) = +ω φ0b g

In this continuous-time signal, as in the real continuous-time sinusoid, the independent variable
is time, t . The other variables indicate:

! The magnitude, x t A( ) =
! The angle, ∠ = +x t t( ) ω φ0b g

As with the real sinusoid, A > 0 is called the amplitude, the frequency ω0  is measured in “radi-
ans per second” and so is often called the “radian frequency,” and the phase is φ. Using the Euler
identity, we can write the complex sinusoid as

x t A t jA t( ) cos sin= + + +ω φ ω φ0 0b g b g
Consequently, we can see that the real cosine wave studied in the previous class could be written

x t Ae A tj t( ) Re cos= = ++ω φ ω φ0

0
b go t b g

Consider the complex sinusoid
x t e j t( ) .= −10 2 60 0 2π πa f

Since the signal is complex, we can plot the real part vs. time and the imaginary part vs. time:
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The imaginary part of the signal is 90° ahead of the real part. Note from the description of the
complex sinusoid that the frequency can be either “positive” or “negative.” What do the
“positive” and “negative” frequencies represent physically? Simply, they represent clockwise
and counter-clockwise motion. More specifically for us, the complex representation will allow us
to specify a specific quadrant in the polar plot, which means that we can exactly specify an
angular value between 0 and 2π  radians (or between −π and π radians).
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Furthermore, the complex exponential form will allow us to use simple algebra in place of
remembering the cumbersome (and hard to remember) trigonometric identities that developed in
the previous class meeting. For example, Consider that
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but also

This will help us computationally. However, we have another reason also to consider the
complex sinusoid notation, and that is the notion of the rotating “phasor.”

Phasors

Define the “phasor transform” of the complex signal

x t Ae X Aej t j( ) = ↔ =+ω φ φ0b g

Notice that
x t Xe j t( ) = ω0

The complex value X  is called the “complex amplitude” or phasor. One more useful definition is
obtained from writing the complex sinusoid as

x t Ae j t( ) ( )= θ

where  the angle θ φ( )t w t≡ +0 . In the phasor transform, the frequency variable is not present (it
has been “integrated out”). If we think of the phasor as a function of time, it rotates (either
clockwise or counter-clockwise according to the sign of the frequency) once per period. Consider
the rotating demo from the text:
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Another way to visualize the Euler Identity is to examine the demonstration that is the sum of
two complex conjugate rotating phasors:
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In this example, consider the following:
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Thus, the real cosine of frequency ω0  is actually the sum of two complex sinusoids with ±ω0 .
These two complex sinusoids contribute half of the amplitude each.

Tuning Fork Example System

Newton’s Law, F ma= , when applied to the tuning fork system described in the text becomes:
F ma
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This yields the “differential equation”

d x t

dt

k

m
x t

2

2
0

( )
( )+ =

From our table of derivatives, we can guess that the solution is a sine wave. Suppose that we
have x t t( ) cos= +ω φ0b g . Then
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Consequently,
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Now, consider the more general complex case where x t e j t( ) = +ω φ0b g. Taking the derivatives is
straightforward
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Substitution yields
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This example suggests that music (and other signals) can be created from sinusoids of varying
frequencies (and amplitudes).
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