
ECE 2713, Digital Signals and Filtering
Day 3: Using Matlab

Created by Victor DeBrunner Page 1 of 9 Last printed 08/20/99 3:06 PM

MATLAB INTRODUCTION

MATLAB (matlab from now on) is a powerful software program for writing numerical
analysis software used in simulating, analyzing and designing systems. In fact, it has
become a de facto standard in many engineering communities. Because it is so easy to
play "what if?" with this program, we will use it extensively throughout the semester.
First, we need to become familiar with the software.

Objectives:
1. Use matlab to perform complex arithmetic
2. Generate and plot signals and complex valued functions
3. Develop matlab programs and save and load data
4. Develop some programming ‘savvy’

First, you should learn how to invoke matlab. This will depend on which version you are
using and what machine you are using. ECN has the windows version for the PC, and you
can purchase the Student edition (windows or non-windows) at the bookstore. In addition,
some of you may have access to Unix versions for various machines or the Mac version.
Each computer system is slightly different, but once you are in matlab, the look and feel
will be the same. The first time you invoke matlab, you should run several of the
demonstration programs, invoked by typing “demo” at the matlab prompt (indicated by
the >>).

Matlab provides on-line help using the “help” command. For example, consider the
command:

» help filter

 FILTER One-dimensional digital filter.
 Y = FILTER(B,A,X) filters the data in vector X with the
 filter described by vectors A and B to create the filtered
 data Y. The filter is a "Direct Form II Transposed"
 implementation of the standard difference equation:

 a(1)*y(n) = b(1)*x(n) + b(2)*x(n-1) + ... + b(nb+1)*x(n-nb)
 - a(2)*y(n-1) - ... - a(na+1)*y(n-na)

 If a(1) is not equal to 1, FILTER normalizes the filter
 coefficients by a(1).

 When X is a matrix, FILTER operates on the columns of X. When X
 is an N-D array, FILTER operates along the first non-singleton
 dimension.

 [Y,Zf] = FILTER(B,A,X,Zi) gives access to initial and final
 conditions, Zi and Zf, of the delays. Zi is a vector of length
 MAX(LENGTH(A),LENGTH(B))-1 or an array of such vectors, one for

ECE 2713, Digital Signals and Filtering
Day 3: Using Matlab

Created by Victor DeBrunner Page 2 of 9 Last printed 08/20/99 3:06 PM

 each column of X.

 FILTER(B,A,X,[],DIM) or FILTER(B,A,X,Zi,DIM) operates along the
 dimension DIM.

 See also FILTER2, FILTFILT (in the Signal Processing Toolbox).

At this point, it does not need to be clear just what the actual usage of this command is,
just recognize that the help facility gives you all of the necessary input/output information
to use the command.

Matrices: variables and operations

Now, notice that the inputs and outputs are defined as vectors. This is the strength of
matlab. For example:

» M = [1 2 6; 5 2 1]

M =

 1 2 6
 5 2 1

» N = [2 2 2; 1 1 1; 3 3 3];
» whos
 Name Size Bytes Class

 M 2x3 48 double array
 N 3x3 72 double array

Grand total is 15 elements using 120 bytes

The function “whos” lists all variables in the workspace. Note that the “;” suppresses
printing the result! The size of any variable can be obtained at any time using the “size”
command:

» size(M)

ans =

 2 3

The matrix M has 2 rows and 3 columns, and is listed by whos as a 2x3 matrix variable.
We can create a vector using the “:” operator:

» firstrow=M(1,:)

firstrow =

 1 2 6

ECE 2713, Digital Signals and Filtering
Day 3: Using Matlab

Created by Victor DeBrunner Page 3 of 9 Last printed 08/20/99 3:06 PM

» thirdcolumn=M(:,3)

thirdcolumn =

 6
 1

This operator can be very useful in addressing portions of a matrix. We will also often use
it to define regularly spaced vectors using a shorthand notation:

» t=0:0.01:1;
» size(t)

ans =

 1 101

The t vector is the vector (of times) that is evenly spaced
1

100
 seconds between 0 and 1

second inclusive. We’ll print the first few elements to get a better feel of what this means:

» t(1:5)

ans =

 0 0.0100 0.0200 0.0300 0.0400

Matlab operates on vector variables directly. Let’s recall matrix multiplication. If we want
to multiply two matrices, let’s say the matrix M and N defined above, what is the first
thing that we must check? Note that the number of columns of M is equal to the number
of rows of N. Thus, M N× is defined, and the result has a size calculated

2 3 3 3 2 3x x xa f a f a f× =

A A
The computation of N M× is not defined because the number of columns of N do not
match the number of rows of M. Matrix multiplication is defined using the dot product of
two vectors:

x y x x x

y

y

y

x y x y x y

N

N

N N

, ≡

L

N

MMMM

O

Q

PPPP
= + + +

1 2

1

2

1 1 2 2

!
"

#
Then, each element of the resultant matrix is the dot product of the corresponding row
and column of the two multiplied matrices. In detail, the element in the 1st row and 1st

column of the resulting matrix is the dot product of the 1st row of left hand multiplier
“dotted” with the 1st column of the right hand multiplier, and so forth. In our example,
the result is:

ECE 2713, Digital Signals and Filtering
Day 3: Using Matlab

Created by Victor DeBrunner Page 4 of 9 Last printed 08/20/99 3:06 PM

» P=M*N

P =

 22 22 22
 15 15 15

Note that the result in the 2nd row and 3rd column can be obtained:

» M(2,:)*N(:,3)

ans =

 15

Subtraction and addition are supported, the matrix sizes must be identical in each case for
the operation to be defined. The result is a point-by-point subtraction or addition. Matlab
also provides a point-by-point multiplication (and division and power) operator via the .*
(or ./ or .^) operators. In our example, the two matrices are of unequal length. However,
we can use a portion to provide an example of this powerful contruct:

» M

M =

 1 2 6
 5 2 1

» N

N =

 2 2 2
 1 1 1
 3 3 3

» M.*N(1:2,:)

ans =

 2 4 12
 5 2 1

Matrix division involves the notion of “inverse” which we do not use in this class.
However, the easiest manner to divide appropriate sized matrices is to use the “\”
operator, as in the example
» [1 2 3;4 5 6;7 8 10]\[1;2;3]

ans =

 -0.3333

ECE 2713, Digital Signals and Filtering
Day 3: Using Matlab

Created by Victor DeBrunner Page 5 of 9 Last printed 08/20/99 3:06 PM

 0.6667
 0

Sometimes when using the division, you’ll get something like
» [1 2 3;4 5 6;7 8 9]\[1;2;3]

Warning: Matrix is close to singular or badly scaled.
 Results may be inaccurate. RCOND = 2.055969e-018.

This means that all results are subject to user scrutiny; often the results are incorrect!

Predefined variables

The variables "j" and "pi" are pre-defined variables in matlab which are set every time
matlab is invoked. They can be changed during a session, so be careful! If you change a
predefined variable, you can reset the value simply by typing the "clear x" command,
where 'x' is the variable name, e.g. "clear pi" resets the variable pi to its correct value of
3.1416.

Graphics

In this class, we’ll use two plotting commands extensively: “plot” and “stem.” Consider
the following matlab code:

» n=0:99;
» x=cos(0.1*pi*n+pi/4);
» plot(n,x)
» title('cos(0.1*pi*n+pi/4)')
» xlabel('time')
» ylabel('amplitude')

that produces the plot

0 10 20 30 40 50 60 70 80 90 100
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
cos(0.1*pi*n+pi/4)

tim e

a
m

p
lit

u
d

e

ECE 2713, Digital Signals and Filtering
Day 3: Using Matlab

Created by Victor DeBrunner Page 6 of 9 Last printed 08/20/99 3:06 PM

Note that this plot produces a “continuous-time” plot of the waveform. A “discrete-time”
plot of the waveform is produced using the following

» n=0:99;
» x=cos(0.1*pi*n+pi/4);
» stem(n,x)
» title('cos(0.1*pi*n+pi/4)')
» xlabel('time')
» ylabel('amplitude')

0 10 20 30 40 50 60 70 80 90 100
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
cos(0.1*pi*n+pi/4)

tim e

a
m

p
lit

u
d

e

Options such as line colors, types and end heads can be changed, see “help plot” and
“help stem” for details. Matlab can draw to multiple figure windows using the “figure”
command. Furthermore, multiple plots in a single window can be drawn using the
“subplot” command. The “print” command allows graphics windows to be printed or
saved to a file. On ECN, this command seems to cause the most problems for students.
Ask the SA on duty for help when needed. If you can’t get satisfaction from the SA,
report the problem, the time, the room, and the SA’s name to me. The director of ECN,
John Hawley, has directed the faculty to report this information so that he can improve
service. The “copy” command in the graphics window menu can also be used to import
the graph into windows documents such as word processors.

Programming constructs and flow

Sequences of commands that you plan to commonly use can be saved in an “.m” file. M-
files come in two types: Command sequences and Functions. Command sequences may
be edited in any file with the .m extension, and run from matlab simply by typing the
name of the file without the extension. In version 5, the matlab-provided editor is
preferred. All variables created in the execution of the M-file will be kept in the matlab
memory (and consequently seen by executing the “whos” command). Names of M-files
in the current directory can be obtained by typing the “what” command, which also
shows the names of .mat (data) files. Functions are also typed in a text file with the
extension .m. However, functions are like program subroutines--- variables are passed

ECE 2713, Digital Signals and Filtering
Day 3: Using Matlab

Created by Victor DeBrunner Page 7 of 9 Last printed 08/20/99 3:06 PM

and returned using a conventional syntax, and any variables created inside the function
are not available outside of the function.

For example, let's consider a timing problem. A Command sequence file is written and
stored in the file timing, the text of which is shown in Figure 1.

Typing “timing” at the matlab prompt will run this matlab script. Notice that the
commands are echoed to the screen. You may want to include the line “echo off” to
suppress this feature of matlab (See help on “echo.”). Typing “whos” after executing this
file (i.e. after typing “timing” at the matlab prompt will show that all declared variables
are available in the workspace!

Let's take an example of a matlab function. In fact, all of the matlab commands you
have been using so far are functions. Many (though not all) are even M-files, which you
can copy over to your working directory and change! An example of a user-defined M-
file is the Sa(x) function written using the built-in Sinc(x) function from matlab:

Notice that the input and output variables are defined in the function call. The text on a
line following a "%" character is a comment. Typing “help Sa” at the matlab prompt after
saving this file results in the comment lines immediately after the function declaration
line (the first line) and before the first executable matlab command being echoed to the
screen. You should always provide for this facility when you write M-files. Type “whos”
and you will see that no internal variables (like y) are available.

This example function doesn't show it, but advanced programmers always check input
and output arguments as much as possible to prevent misuse of the function and to
provide programming flexibility. Matlab provides the built-in variables “nargin” and

clear
N=6000;
t=cputime;
for k=1:N
 x(k)=0;
end % for
loop_time=cputime-t
t=cputime;
x=zeros(1,N);
com_time=cputime-t

 Figure 1: Text of timing.m

function y=Sa(x)
% function y=Sa(x)
% compute sine-over-argument
y=sinc(x/pi);

Figure 2. Example Functions

ECE 2713, Digital Signals and Filtering
Day 3: Using Matlab

Created by Victor DeBrunner Page 8 of 9 Last printed 08/20/99 3:06 PM

“nargout” to keep track of the number of input and output variables. You can use the
nargin variable to build subroutines that use a variable number of inputs, where the
number of inputs depends on the particular use of the routine.

 Finally, matlab control functions follow the well-developed outline in the class text:
• if-else
• for loops
• while loops

Explanation and examples will follow throughout the semester via examples.

Tips and programming savvy

Data may be saved and loaded using the “save” and “load” commands (see help on the
precise syntax you may want to use). Data files are saved with the extension “.mat.”

Some very useful commands for initializing vectors and matrices are the functions
“zeros” and “ones.” The size of a matrix or vector is obtained using the commands
“size” or “length.” Command flow may also be directed by matlab commands. For
instance, we may initialize a vector of zeros using the following sequence of commands:

>> for k=1:1000
>> x(k) = 0;
>> end

We may also use the single command

>> x = zeros(1,1000);

The second method is preferred because matlab is an interpretive language. Because
matlab interprets commands during run-time, matlab must determine the end of the loop
each time control passes through the loop (you may have conditions to break out of the
loop), and matlab must also allocate one new memory location during each pass to
accommodate the increasing size of the vector x. This means that loops should be avoided
if at all possible in matlab, and they can almost always be avoided by careful use of the
indexing options and the “.” operators (.*, ./ and .^). For instance, suppose that we want
to generate the decaying sinusoid:

x t e t tt() . cos ,.= + ° ≥−15 2 60 10 00 5 πb g
We could use the loop sequence:

» t=0:0.005:1;
» for i=1:length(t)
 x(i)=1.5*exp(-0.5*t(i))*cos(2*pi*60*t(i)+pi/18);
 end % for i
» plot(t,x)
» title('Plot of decaying exponential signal')
» ylabel('amplitude')
» xlabel('time')

ECE 2713, Digital Signals and Filtering
Day 3: Using Matlab

Created by Victor DeBrunner Page 9 of 9 Last printed 08/20/99 3:06 PM

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1.5

-1

-0.5

0

0.5

1

1.5
P lot of decay ing exponential s ignal

a
m

p
lit

u
d

e

t im e

This for loop requires 0.76 seconds to run on my 200MHz pc. A better matlab construct
uses the “.*” command:

» x=1.5*exp(-0.5*t).*cos(2*pi*60*t+pi/18);

This option only requires 0.01 seconds to run on my 200MHz pc, a savings of 76 times!
In more sophisticated programs, this time savings becomes extremely significant.

Matlab maintains several ways to obtain hardcopy results. The “diary” command can be
used to record your keystrokes and matlab results in an ASCII text file. See help to learn
how to use this command.

	MATLAB(INTRODUCTION
	Matrices: variables and operations
	Predefined variables
	Graphics
	Programming constructs and flow
	Tips and programming savvy

