
 1

A Performance Comparison of Clock vs. Event
Synchronization Protocols

ABSTRACT
Sensor network applications often need accurate temporal
information on observations reported from distributed
sensor nodes to correctly infer application semantics. Since
the nodes’ local clocks can go out-of-sync due to clock
drifts, a networked time synchronization protocol is needed
to keep their clocks synchronized to a reference clock. In
this paper, we provide a performance comparison between
two classes of time synchronization protocols called clock
synchronization (clock-sync) and event synchronization
(event-sync), considering different ad-hoc network sizes,
node mobility, and traffic volume. The main difference
between clock-sync and event-sync is that clock-sync
synchronizes nodes’ local clocks to a global reference clock,
whereas event-sync synchronizes events’ generation times
from different source nodes to their sink nodes’ local clocks.
Although these two classes of time synchronization
methods have their perspective limitations in application
scenarios, they are comparable in that they also share a
large application domain with none of these limitations. In
order to fully understand the tradeoffs between these two
classes of time-synchronization protocols, we have
conducted extensive simulations to measure the impact of
different network and traffic dynamics on their performance.
Our simulations have shown that (1) event-sync provides
much better accuracy than clock-sync; and (2) clock-sync
scales better in traffic overhead than event-sync under
increasing traffic volume. Results of this study are used to
derive a selection guideline on how to choose the optimal
class of time synchronization protocols under different
sensor network and traffic dynamics.

Keywords
Time synchronization, sensor networks, performance
evaluation.

1. INTRODUCTION
In recent years, academics and industrial researchers have
come up with very creative and successful application
scenarios in using wireless sensor networks (WSNs)[1][2]
to address a wide array of real-world problems, such as

monitoring health conditions of our elders living
independently at their home[3][4], tracking endangered
species across large remote habitats[5], detecting pollution
level in the open ocean, and monitoring soil and pest
conditions on agricultural farms[6]. In order to infer correct
application semantics, it is necessary to attach accurate
temporal information on the observations reported from
distributed sensor nodes. Consider a small sensor network
with two sensor nodes placed on either side of a room
entrance. These two sensor nodes can sense and report the
presence of an elder. In order to infer whether an elder is
entering or leaving this room, it is necessary to compare the
timestamps on two observations reported from two sensor
nodes. Since the local clocks on these two sensor nodes can
go out-of-sync over time due to clock drifts, comparing
their unsynchronized timestamps may lead to an incorrect
conclusion. To address this problem of unsynchronized
local clocks, a time synchronization algorithm is needed in
the wireless sensor network.

The approach taken by traditional time synchronization
methods is to synchronize sensor nodes’ local clocks to a
global reference clock. In this paper, we refer to this class
of synchronization mechanisms as clock synchronization
(clock-sync). However, not all applications require their
nodes’ local clocks to be synchronized. For example, if we
only need to know the temporal ordering of observations, it
is sufficient to synchronize the timestamps among these
observations at a sink node that infer application semantics.
This class of time synchronization methods is called event
synchronization (event-sync).

These two classes of time synchronization have different
assumptions and limitations on application scenarios. For
examples, the clock-sync does not work in sparse wireless
sensor network in which the sensor nodes may not always
be fully connected. On the other hand, the event-sync
does not provide a global reference clock to the applications.
Despite their differences, these two classes of time
synchronization protocols share a large domain of sensor
network applications, in which the networks are not sparse
and the knowledge of relative event time is sufficient.
Take the examples of the sensor network applications that

 2

track the in/out-flow of merchandizes in stock or
monitoring the habitat of a bio-diverse island. There are a
limited number of more powerful sink (or called gateway)
nodes that collect observations from sensor nodes and then
execute application logics to process, e.g., temporal
information on these observations. In these applications, it
is sufficient to synchronize the timestamps contained within
observations according to the sink node’s clock, rather than
to synchronize the sensor nodes’ clocks with the sink node’s
clock or a global clock. Under this common application
domain, these two classes of time synchronization
mechanisms are both applicable; therefore, it becomes
meaningful to understand and compare their performance
tradeoffs and to help application developers choose the
appropriate class of time synchronization under different
network and traffic scenarios.

We have not found any existing studies that compare
performance of these two classes of time synchronization
mechanisms under different network and traffic dynamics
(e.g., node size, node mobility, traffic volume, etc.).
Without them, developers of sensor network applications
can only rely on their intuitions to predict their performance.
For example, in a large scale sensor network, intuitions say
that since clock-sync maintains a global clock by
exchanging sync messages (overhead) across a large
number of sensor nodes, it is likely to generate a high
volume of overhead traffic; thus expensive. Intuitions also
suggest that for a traffic pattern of infrequent events,
event-sync is likely to produce a smaller amount of
overhead because it synchronizes only a small number of
events traveling a limited area of the network.
Nonetheless, these are only intuitions. Motivated to test
these intuitive hypothesis, we compare quantitative the
performance tradeoffs between the two classes of time
synchronization mechanisms.

We believe that our work is the first to provide detailed and
quantitative analysis comparing these two classes of time
synchronization mechanisms. We have selected two
recently proposed synchronization protocols from each
class: TPSN [7] representing the clock-sync class and TSS
[8] representing the event-sync class. We have conducted
extensive ns-2 simulation experiments on TPSN and TSS to
evaluate, analyze, and compare their performances under
different network and traffic dynamics. Based on the
simulation results, we derive a selection guideline on how
to choose the better time synchronization mechanisms
given different performance requirements and network and
traffic dynamics.

The remainder of this paper is organized as follows. Section
2 presents the background of time synchronization for
wireless ad hoc networks. Section 3 describes simulation
setup and implementation of two classes (clock-sync and
event-sync) of mechanisms in the simulator. It also defines
evaluation strategy and evaluation metrics for comparing

their performance. Section 4 reports our simulation results
and performance comparison. Section 5 derives the
selection guideline from the simulation results. Section 6
draws our conclusion and future work.

2. BACKGROUND
2.1 Related Work
Time synchronization mechanisms for wireless sensor
network can be categorized into two general classes – clock
synchronization and event synchronization.

In the clock synchronization, several promising algorithms
have been proposed in recent years. For examples, Elson et
al. has proposed the Reference-Broadcast Synchronization
(RBS) [9]. The basic idea of RBS is as follows. In a
one-hop neighborhood, a beacon node is selected to
periodically broadcast a reference beacon to all its one-hop
neighbor nodes. When the neighbor nodes receive this
beacon, they exchange their beacon arrival timestamps
according to their local clocks. Since all one-hop neighbor
nodes are likely to receive the same beacon around the
same time, each neighbor node can then estimate the clock
offset between its local clock and any one of its one-hop
neighbor node’s local clock by simply taking the difference
between its beacon arrival timestamp and its neighbor
node’s beacon arrival timestamp. To extend this protocol to
a multi-hop network, consider a network divided into
multiple clusters. There will be some nodes that bridge
adjacent clusters (i.e., they are within the intersection
regions of two or more adjacent clusters). These bridge
nodes can be used to estimate the clock offsets among
nodes residing in adjacent clusters. Based on experiments
with Berkeley Motes, the RBS authors have reported an
average synchronization error of 11 µs (using 30 reference
broadcasts) between one-hop neighbors, and the error
grows O(n) between nodes that are n hops away.

Moroti et al. has proposed the Flooding
Time-Synchronization Protocol (FTSP) [10]. The basic idea
of FTSP is as follows. A leader node is selected in the
sensor network. The leader node’s clock is used as the
global reference clock. To synchronize other nodes’ clocks
to the reference clock, the leader node periodically floods
the entire sensor network with its current time contained in
a sync message. When a node receives a sync message, it
records the leader’s reference time from the sync message
and the arrival time of that sync message. Then it floods
this sync message to its one-hop neighbors. Since a node
can receive the same sync message multiple times, i.e., one
from each of its one-hop neighbors, it can estimate its clock
offset and rate difference to the leader node. Based on
experiments with the 8x8 grid of Berkeley Motes, the FTSP
authors have reported an average synchronization error of
11.7 µs over 10 minutes.

Ganeriwal et al. has proposed the Timing-sync Protocol for
Sensor Networks (TPSN) [7]. TPSN is based on a spanning

 3

tree structure that connects all the nodes in the sensor
network. TPSN first selects a node to be the root of this
spanning tree. This root node periodically broadcasts a
sync-request message to its immediate child nodes in the
spanning tree (1st level nodes). After the root node
completes pair-wise synchronization with the 1st level
nodes, the 2nd round of pair-wise synchronization is started
between the 1st level nodes and its immediate child nodes
(the 2nd level nodes). The round of pair-wise
synchronization continues further down the spanning tree
until all nodes are synchronized. Based on experiments with
two adjacent Berkeley Motes, the TPSN authors have
reported an average synchronization error of 16.9 µs.

These three clock-sync methods have all shown a low
average synchronization error. We choose TPSN as the
representative of the clock-sync class based on two reasons:
(1) TPSN is more recent work, and (2) authors of TPSN
claims that TPSN can achieve twice as good precision as
RBS based on their reimplementation of RBS. We did not
choose FTSP because of its flooding mechanism. In a large
sensor network, flooding will generate heavy overhead. In
addition, given the similarity between FTSP and TPSN in
adjusting the clock, we believe that accuracy between them
is similar.

Time-stamp synchronization (TSS) [8] by Romer has
suggested that instead of synchronizing every node's clock
to a global time, one could obtain the event generation time
by estimating and accumulating its hop-by-hop delay.
This mechanism can determine the event timing relative to
the sink’s clock, a function that a clock synchronization
mechanism can also provide. We choose Romer’s
mechanism for the comparison because it is the only event
synchronization mechanism we have identified from the
literature.

2.2 Mechanism
TPSN [7] has two phases in its process: “level discovery
phase” and “synchronization phase”. A hierarchical
structure with a root node is first created in level discovery
phase. In synchronization phase, nodes synchronize their
clocks to the root node’s clock by using the hierarchical
structure constructed in the earlier phase.

a) Level Discovery Phase: This phase of TPSN happens
at the beginning, when the network has been setup. The
root node assigns itself a level 0 and broadcasts a
level_discovery packet to start this phase. This
level_discovery packet holds the node identity and the level
number of the root node. When its neighbors receive this
packet, they assign themselves a greater level number than
received in the level_discovery packet, say level 1. Then
they continue to broadcast level_discovery packets with
their own node identity and level number. This process lasts
until every node in the network is assigned a level number.
Note that once a node is assigned a level, it will ignore any
other level_discovery packets that are received afterward.

This makes sure no flooding will congest the network. At
the end of this phase, a hierarchical structure with a root
node is created for use in the later phase.

b) Synchronization Phase: In this phase, pair-wise
synchronization is achieved across the edges of the
hierarchical structure built in the earlier phase. We first
consider how to synchronize a pair of nodes through a
two-way message exchange. In Figure 1, there are two
nodes called A and B. t1 and t4 are the time measured
according to node A’s local clock; t2 and t3 are the time
measured according to node B’s clock. At time t1, node A
sends a synchronization_pulse packet to node B. The
synchronization_pulse packet holds the level number of
node A and the value of t1. Node B receives this packet at t2,
where t2 is equal to t1 + ∆ + d. ∆ represents the clock drift
between the two nodes, and d represents the propagation
delay. At time t3, node B sends back an acknowledgement
packet to node A. This acknowledgement packet holds the
level number of node B and the values of t1, t2, and t3.
Node A receives the packet at t4. Assuming that the clock
drift and the propagation delay do not change in this small
period of time, node A can calculate the clock drift and
propagation delay using (1):

2
)()(

;
2

)()(34123412 tttt
d

tttt −+−
=

−−−
=∆ (1)

Node A can then synchronize its local clock to B’s by
having information about the clock drift between them.

Figure 1. It shows the pair-wise synchronization of
TPSN, where t2 and t3 are measured in Node B’s clock,
and t1 and t4 are measured in Node A’s clock.

The root node starts this phase by broadcasting a time_sync
packet. Upon its reception, the nodes in level 1 wait for a
random time then send a synchronization_pulse packet to
the root node. The randomized waiting prevents collisions
caused by the contention for media access. The root node
replies acknowledgement packets accordingly. Therefore,
all nodes belonging to level 1 can correct their clocks
according to the clock of the root node. In addition, the
nodes in level 2 will overhear the two-way message
exchange because they have at least a neighbor at level 1.
Consequently, the nodes in level 2 will send
synchronization_pulse packet to their level 1 neighbors for
synchronization. This is applied recursively with nodes in
level i synchronizing their clocks to nodes in level i-1.
Eventually, every node in the network has its clock

t4 t1

t2 t3 B

A

 4

synchronized to the root node, and the global clock
synchronization is achieved.

Figure 2. It illustrates the event-sync of TSS. ACK1
departs at t1 and arrives at t2. Data2 arrives at the
sender at t3, and arrives at the receiver at t4. D is the
hop latency of Data2 at the sender.

Instead of synchronizing every node's clock, event-sync
estimates and accumulates the hop-by-hop latency. When
a data packet arrives at the sink, one can trace back, from
the accumulated latency, the packet generation time relative
to the sink’s clock. This mechanism can determine the
relative data generation time, a function that a global clock
synchronization mechanism provides as well.

The event synchronization approach is first proposed by
Romer [8]. The assumption is that the wireless links
among the nodes employ a CSMA/CA-like MAC-layer
mechanism where an acknowledgement is sent per data to
assure the reception of the data packet. The hop latency,
D, can be estimated using (2).

)()()(122314 ttttttD −−−−−= (2)

As depicted in Figure 2, t4 - t1 can be obtained using the
receiver’s clock and t3 – t2 from the sender’s clock. The
value of t3 – t2 can be piggybacked on the Data2 packet to
the receiver. With the approximation of t2 – t1, which is
the sum of the transmission and propagation delay of ACK1,
one may calculate the hop latency D of Data2 at the
receiver node. Immediately, the latency can be
accumulated and carried along with the data packet. Note
that to be able to estimate the hop latency with equation (2),
each node needs to keep two extra states: the ACK
departure time and the ACK arrival time of the latest data
packet. In addition, the mechanism will not be able to
estimate the hop latency for the first data packet of a flow.

3. SIMULATION
We have implemented the two time synchronization
mechanisms on the ns-2 simulator [11]. With an extensive
set of simulations, we compare the two mechanisms in
terms of accuracy and overhead. Below, we provide the
specifics of the simulation setup, evaluation metrics, and
evaluation variables.

3.1 Simulation Setup
In all of our simulations, we place the sensor nodes on a
predefined grid in a uniformly random fashion. The data
sink is fixed in the center of the grid with data sources
randomly chosen from others nodes. The communication
range of all nodes is set to be 250m. Other simulation
setup options include directed diffusion, a well-known
data-centric routing mechanism, and IEEE 802.11, a
popular wireless link technology. The simulation time is
400 seconds. The data accounted are restricted to those
collected after 100 seconds simulation time. This avoids
taking the start-up time instability into simulation results.

For all of the evaluation parameters, the base case is
defined to have 50 nodes on an 1118x1118m2 grid, and 10
of the sensor nodes are data sources. Each source sends a
100 bytes data packet every 5 seconds. Unless specified
otherwise, these are the default values for the parameters.

3.2 Evaluation Metrics
In order to evaluate the performance of event
synchronization and clock synchronization, the following
two metrics are investigated:

a) Error: which represents the difference between actual
data generation time and estimated data generation time.
The correctness of estimated data generation time is
important in that it is used to infer temporal relation and
ordering of detected events. Inaccurate temporal
information can cause incorrect application semantics.

b) Overhead: which represents the portion of traffic
produced due to synchronization mechanism over the total
traffic. Lower synchronization overhead implies higher
throughput and efficiency of the network.

3.3 Evaluation Variables
To compare the error and overhead of the two time
synchronization mechanisms, we simulate scenarios with
varying network size, node mobility, and data rates.

a) Network Size: For the simulations varying the network
size, we change the number of nodes from 20 to 100 with
an incremental interval of 10 nodes. In order to fix the
network density with increasing number of nodes, we vary
the grid size accordingly.

The event synchronization scheme calculates the event
generation time by subtracting accumulated hop-by-hop
delay from arrival time at the sink node. Therefore, the
error tends to grow as the network size increases because
the average path length in a larger network tends to be
longer. However, the clock synchronization scheme in this
study synchronizes the node clocks in a hierarchical fashion.
We expect the error of the clock synchronization scheme to
grow and in proportion to the rank of the hierarchy that is
built for synchronizing the nodes’ clocks.

 5

b) Node Mobility: The node mobility model works as
follows. Each node has a randomly generated target
location and moves to that location with a random speed
(maximum speed 20m/s). To change the level of node
mobility, we set the pause time between the target locations
from 0 to 400 seconds. A smaller pause time implies higher
mobility.

In the presence of node mobility, the hierarchy built for
clock synchronization may become invalid when a node
moves away from its parent node. Therefore, it may need to
reconstruct the hierarchy and add to the overhead traffic.
Since event-sync uses localized information, i.e., hop delay,
it is more adaptive to the change of network topology. Thus,
we expect that event-sync simulations experience a lower
degree of error than the clock synchronization in the
presence of node mobility.

c) Data Rate: For the simulations varying the data rate,
we decrease the period of sending a data packet from every
5 seconds to 0.5 seconds, with a decremental interval of 0.5
seconds. Changing the data rate changes the traffic
volume.

Since clock synchronization exchanges the synchronization
packets at a fixed period independent of traffic volume, the
overhead ratio will decrease as the data rate grows, and
decrease no more when the network is saturated. Since
event synchronization mechanism piggybacks a 16-byte
hop-by-hop delay in each data packet, the overhead ratio is
a fixed 16% given a packet size of 100 bytes.

4. EXPERIMENTAL RESULTS
We present here the simulation results of the two time
synchronization mechanisms. For each simulation
scenario, we generate ten random cases. The error and
overhead are obtained by running the mechanisms on the
same ten random cases per scenario. Each data point on
the plots shown here is the average of the ten random cases
for each scenario. While the ten random cases appear to
be sufficient to indicate the general performance trend, we
intend to increase the number of random cases to simulate
in the near future.

The accuracy of the clock synchronization mechanism,
TPSN, depends on the frequency of the pair-wise
synchronization (Section 2.2.B, Synchronization Phase).
The more frequent the pair-wise synchronization is done,
the higher the accuracy and overhead ratio we observe. In
other words, error and overheads are tradeoffs in TPSN.
Given that the event synchronization mechanism might not
be able to estimate the time for all event packets, it is not
fair to compare the accuracy of the two mechanisms by
looking at the average error of the valid packets. We,
therefore, tune the frequency of the pair-wise
synchronization in TPSN such that the overhead ratios of
the clock and event synchronization mechanisms are
comparable. Hence, in discussing the performance in

terms of error, we concentrate on the scaling properties of
the mechanisms rather independently. And we compare
closely the scaling trend of the mechanisms in terms of
overhead.

4.1 Summary of Simulation Results
Figure 3 and Figure 4 depict the error (unit: second) of the
clock and event synchronization mechanisms varying the
network size, node mobility, and data rate. Figure 6
compares the overhead of the two mechanisms. We find
that the error experienced by the event synchronization is
significantly lower than that of the clock synchronization in
all cases. However, there is an increasing amount of
events whose generation time could not be estimated by the
event synchronization mechanism when the nodes are
mobile. In terms of overhead, clock synchronization scales
better when the data rate increases but worse when the
network is more dynamic.

4.2 Error details
Figure 3 highlights the error of estimated generation time to
real event generation time of clock synchronization under
different network sizes, data rates, and node mobility. We
observe that the error of clock synchronization mechanism
increases generally to the network size, mobility, and data
rate. In particular, the error of clock synchronization
mechanism is more sensitive to the network size and
mobility.

A larger network size implies a higher rank of the clock
synchronization hierarchy (Section 2.2.a, Level Discovery
Phase). This also increases the accumulated errors along
the synchronization hierarchy due to the increased rank, and
thus explains the growing trend.

Mobility results in the change of synchronization hierarchy.
Until the hierarchy is re-discovered by the mobile node, the
clock could continue to go out of synchronization. This
explains the increasing error when the network is more
dynamic.

TPSN assumes symmetric delays as node pairs synchronize.
Given our simulation design where there is only one event
sink, the event packets will travel the network towards a
particular location. When the data rate is significantly
high, we observe a relatively moderate increase in error as
the two-way delays become more asymmetric.

Figure 4 shows the errors of event synchronization under
different network sizes, data rates, and node mobility. We
observe similar scaling trends of the event synchronization
mechanism to the clock synchronization mechanism. The

 6

error of event synchronization mechanism is also more
sensitive to the network size and mobility.

A larger network size implies a higher average path length.
The error accumulates along the event path from these
hop-by-hop latency estimations. The more hops there are
in the path, the larger the error.

Mobility influences directly the accuracy of the hop-by-hop
latency estimation, especially the part estimating the
transmission and propagation delay of ACK. This

transmission delay is calculated by dividing the average
ACK size to the wireless link bandwidth and the
propagation delay is set to the time to reach a node that is
about the average distance between 2 nodes apart. When
the nodes are mobile, the hop-by-hop latency estimation
will be less accurate.

The most significant observation is that the measurable
error of event synchronization is much smaller than that
clock synchronization, and the difference is about three to

 Figure 3. Error due to Clock Synchronization

Figure 4. Error due to Event Synchronization.

 7

four orders of magnitude. We, however, are cautious at
concluding whether the event synchronization mechanism
is better than the clock synchronization mechanism. The
reason is primarily that, using the event synchronization
mechanism, we might not be able to estimate the generation
time for the first event of a flow.

Consider a dynamic network. When the nodes move away
from each other, new paths will be established. The first
packets after such path changes, although will help the
subsequent estimations of the hop-by-hop latency (Section
2.2, Event Synchronization), will not have sufficient
information to compute their own hop-by-hop latencies.
As shown in Figure 5, when the mobility is high, the event
synchronization mechanism might not be able to estimate
the relative generation time for up to 14% of the events sent
in total.
4.3 Overhead details
Figure 6 presents the overhead ratio for clock
synchronization and event synchronization under different
network sizes, data rates, and node mobility. The
overhead ratio of event synchronization is constant 0.16,
because the overhead of the event synchronization
mechanism is a fixed 16-byte field per event packet and the
event packets are 100 bytes large on average.

We can see that the overhead of clock synchronization is
not very sensitive to the network size. Because when
network size increases, the amount of synchronization
packets increases and so is the amount of data packets.

We find that the overhead of clock synchronization grows
as node mobility increases. This is because the clock
synchronization mechanism needs to reconstruct the
synchronization hierarchy when the network topology
changes. The synchronization hierarchy is reconstructed by
sending extra control packets to rediscover the new
hierarchy. Since higher node mobility results in higher
frequency of topology changes, we observe the growing

trend in overhead. In contrast, no such hierarchy rebuilt is
necessary for the event synchronization mechanism.

As projected in the Simulation section, the overhead of the
clock synchronization mechanism decreases as the data rate
increases. We can see that the clock synchronization
mechanism scales better than the event synchronization
mechanism under high data rates.

5. DISCUSSION
Based on the experimental results, we derive the following

Figure 6. Overhead Comparison of Clock vs.

Event Synchronization.

Figure 5. Ratio of packets not synchronized by
the event synchronization mechanism.

 8

selection guideline for choosing a suitable time
synchronization protocol under various ad hoc network and
traffic dynamics, as well as application requirements.

(1) When energy consumption is a critical issue and the
traffic volume is high, clock synchronization protocol
is the better choice, because it involves low overhead
to synchronize under high traffic condition.

(2) When node mobility is high, clock synchronization is
still superior because all its successfully transmitted
packets are labeled with timing information. This is in
contrast to event synchronization protocol which has
the “broken-path” problem, i.e., a large number of
packets can have missing timing labels under high
node mobility.

(3) In all other cases, event synchronization protocol is the
preferred choice because it has better accuracy than
clock synchronization protocol.

Although event sync outperforms clock sync in accuracy
under most of the cases, event sync has a fundamental
limitation that it only synchronizes the events’ generation
times to the local clock of the events’ sink node. Consider
the case that there are more than one sink nodes in the
wireless sensor network. Since the clocks of different sink
nodes are not synchronized, temporal information from
events that go to different sink nodes are not synchronized.
If the application requires events to be labeled using a
global reference clock, event-sync is not applicable.

In order to solve the limitation of event-sync, we have come
up a hybrid approach that combines event-sync with
clock-sync. This hybrid method (1) applies event-sync to
synchronize all event streams from source nodes to the
local clocks of different sink nodes, and (2) runs clock-sync
over an overlay network to synchronize local clocks of all
sink nodes to a global reference clock. In (2), the pair-wise
synchronization procedure between sink nodes in clock
sync is now applied to the virtual hop-by-hop link between
two sink nodes in an overlay network, which is actually the
physical suboptimal shortest path between the two sink
nodes in the physical WSN. This hybrid approach
combines the advantages of the event-sync (higher accuracy)
and clock-sync (global clock). This promising hybrid
approach remains to be investigated in the future.

6. CONCLUSION AND FUTURE WORK
With an extensive set of simulations, we conclude the
following major findings:

(1) The network size influences strongly the error of the
two mechanisms but it has little effect on the overhead
ratio.

(2) The mobility impacts both the error and overhead
aspects. The event synchronization mechanism
begins to experience more events that are not

synchronize-able and in the meantime the clock
synchronization mechanism begins to degrade in
overhead.

(3) The data rate has little effect on the error aspect but it
could result in a lower overhead for the clock
synchronization mechanism.

The findings in 1 and 2 are rather counter-intuitive whereas
the finding 3 is straight forward. From these findings, we
are able to derive a set of guidelines for establishing the
time synchronization service on the WSNs. When the
network size is large, choose the event synchronization
mechanism. When the data rate is high, choose the clock
synchronization mechanism. When the node mobility is
high, choose clock synchronization mechanism if the error
is critical or data synchronization mechanism if the
overhead is priority.

For a higher degree of confidence, we plan to increase the
number of the random cases per scenario in the short-term
future. Emerging from the study is a hybrid solution that
connects the event sinks using the overlay network
technique. The validation and evaluation of the hybrid
solution will be for the longer-term future.
7. REFERENCES

[1] I. F. Akyildiz,W. Su, Y. Sankasubramaniam, and E.
Cayirci. Wireless Sensor Networks: A Survey.
Computer Networks, 38:393–422, 2002.

[2] A. Bharathidasan and V.A.S. Ponduru. Sensor
Networks: an Overview.

[3] B.G. Celler et al., An instrumentation system for the
remote monitoring of changes in functional health
status of the elderly, International Conference
IEEE-EMBS, New York, 1994, pp. 908–909.

[4] G. Coyle et al., Home telecare for the elderly, Journal
of Telemedicine and Telecare, 1 (1995) 183–184.

[5] A. Cerpa, J. Elson, M. Hamilton, J. Zhao, Habitat
monitoring: application driver for wireless
communications technology, ACM SIGCOMM’2000,
Costa Rica, April 2001.

[6] Zhuohui Zhang, Investigation of Wireless Sensor
Networks for Precision Agriculture, Paper number
041154, 2004 ASAE Annual Meeting.

[7] Saurabh Ganeriwal, Ram Kumar, and Mani B.
Srivastava. Timing-sync protocol for sensor networks.
In First ACM Conference on Embedded Networked
Sensor Systems (SenSys), November 2003.

 9

[8] Kay Romer. Time synchronization in ad hoc networks.
In ACM Symposium on Mobile Ad-Hoc Networking
and Computing (MobiHoc), October 2001.

[9] Jeremy Elson, Lewis Girod and Deborah Estrin,
Fine-Grained Network Time Synchronization using
Reference Broadcasts, In the proceedings of the fifth
symposium on Operating System Design and
Implementation (OSDI 2002), December 2002.

[10] Miklos Maroti, Branislav Kusy, Gyula Simon, and
Akos Ledeczi. The flooding time synchronization
protocol. Technical Report ISIS-04-501, Institute for
Software Integrated Systems, Vanderbilt University,
Nashville Tennessee, 2004.

[11] L. 4 Breslau, D. Estrin, K. Fall, S. Floyd, A. Helmy, J.
Heidemann, P. Huang, S. McCanne, K. Varadhan, H.
Yu, Y. Xu, and VINT Project. Advances in network
simulation. IEEE Computer, 33(5):59–67, May 2000.

