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ABSTRACT 
Sensor network applications often need accurate temporal 
information on observations reported from distributed 
sensor nodes to correctly infer application semantics. Since 
the nodes’ local clocks can go out-of-sync due to clock 
drifts, a networked time synchronization protocol is needed 
to keep their clocks synchronized to a reference clock. In 
this paper, we provide a performance comparison between 
two classes of time synchronization protocols called clock 
synchronization (clock-sync) and event synchronization 
(event-sync), considering different ad-hoc network sizes, 
node mobility, and traffic volume. The main difference 
between clock-sync and event-sync is that clock-sync 
synchronizes nodes’ local clocks to a global reference clock, 
whereas event-sync synchronizes events’ generation times 
from different source nodes to their sink nodes’ local clocks. 
Although these two classes of time synchronization 
methods have their perspective limitations in application 
scenarios, they are comparable in that they also share a 
large application domain with none of these limitations. In 
order to fully understand the tradeoffs between these two 
classes of time-synchronization protocols, we have 
conducted extensive simulations to measure the impact of 
different network and traffic dynamics on their performance. 
Our simulations have shown that (1) event-sync provides 
much better accuracy than clock-sync;  and (2) clock-sync 
scales better in traffic overhead than event-sync under 
increasing traffic volume. Results of this study are used to 
derive a selection guideline on how to choose the optimal 
class of time synchronization protocols under different 
sensor network and traffic dynamics. 

Keywords 
Time synchronization, sensor networks, performance 
evaluation.  
 
 

1. INTRODUCTION 
In recent years, academics and industrial researchers have 
come up with very creative and successful application 
scenarios in using wireless sensor networks (WSNs)[1][2] 
to address a wide array of real-world problems, such as 

monitoring health conditions of our elders living 
independently at their home[3][4], tracking endangered 
species across large remote habitats[5], detecting pollution 
level in the open ocean, and monitoring soil and pest 
conditions on agricultural farms[6]. In order to infer correct 
application semantics, it is necessary to attach accurate 
temporal information on the observations reported from 
distributed sensor nodes. Consider a small sensor network 
with two sensor nodes placed on either side of a room 
entrance. These two sensor nodes can sense and report the 
presence of an elder. In order to infer whether an elder is 
entering or leaving this room, it is necessary to compare the 
timestamps on two observations reported from two sensor 
nodes. Since the local clocks on these two sensor nodes can 
go out-of-sync over time due to clock drifts, comparing 
their unsynchronized timestamps may lead to an incorrect 
conclusion. To address this problem of unsynchronized 
local clocks, a time synchronization algorithm is needed in 
the wireless sensor network. 

The approach taken by traditional time synchronization 
methods is to synchronize sensor nodes’ local clocks to a 
global reference clock. In this paper, we refer to this class 
of synchronization mechanisms as clock synchronization 
(clock-sync).  However, not all applications require their 
nodes’ local clocks to be synchronized. For example, if we 
only need to know the temporal ordering of observations, it 
is sufficient to synchronize the timestamps among these 
observations at a sink node that infer application semantics.  
This class of time synchronization methods is called event 
synchronization (event-sync). 

These two classes of time synchronization have different 
assumptions and limitations on application scenarios.  For 
examples, the clock-sync does not work in sparse wireless 
sensor network in which the sensor nodes may not always 
be fully connected.  On the other hand, the event-sync 
does not provide a global reference clock to the applications.  
Despite their differences, these two classes of time 
synchronization protocols share a large domain of sensor 
network applications, in which the networks are not sparse 
and the knowledge of relative event time is sufficient.  
Take the examples of the sensor network applications that 
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track the in/out-flow of merchandizes in stock or 
monitoring the habitat of a bio-diverse island.  There are a 
limited number of more powerful sink (or called gateway) 
nodes that collect observations from sensor nodes and then 
execute application logics to process, e.g., temporal 
information on these observations. In these applications, it 
is sufficient to synchronize the timestamps contained within 
observations according to the sink node’s clock, rather than 
to synchronize the sensor nodes’ clocks with the sink node’s 
clock or a global clock. Under this common application 
domain, these two classes of time synchronization 
mechanisms are both applicable; therefore, it becomes 
meaningful to understand and compare their performance 
tradeoffs and to help application developers choose the 
appropriate class of time synchronization under different 
network and traffic scenarios.  

We have not found any existing studies that compare 
performance of these two classes of time synchronization 
mechanisms under different network and traffic dynamics 
(e.g., node size, node mobility, traffic volume, etc.). 
Without them, developers of sensor network applications 
can only rely on their intuitions to predict their performance. 
For example, in a large scale sensor network, intuitions say 
that since clock-sync maintains a global clock by 
exchanging sync messages (overhead) across a large 
number of sensor nodes, it is likely to generate a high 
volume of overhead traffic; thus expensive. Intuitions also 
suggest that for a traffic pattern of infrequent events, 
event-sync is likely to produce a smaller amount of 
overhead because it synchronizes only a small number of 
events traveling a limited area of the network.  
Nonetheless, these are only intuitions.  Motivated to test 
these intuitive hypothesis, we compare quantitative the 
performance tradeoffs between the two classes of time 
synchronization mechanisms.    

We believe that our work is the first to provide detailed and 
quantitative analysis comparing these two classes of time 
synchronization mechanisms. We have selected two 
recently proposed synchronization protocols from each 
class: TPSN [7] representing the clock-sync class and TSS 
[8] representing the event-sync class. We have conducted 
extensive ns-2 simulation experiments on TPSN and TSS to 
evaluate, analyze, and compare their performances under 
different network and traffic dynamics. Based on the 
simulation results, we derive a selection guideline on how 
to choose the better time synchronization mechanisms 
given different performance requirements and network and 
traffic dynamics.  

The remainder of this paper is organized as follows. Section 
2 presents the background of time synchronization for 
wireless ad hoc networks. Section 3 describes simulation 
setup and implementation of two classes (clock-sync and 
event-sync) of mechanisms in the simulator. It also defines 
evaluation strategy and evaluation metrics for comparing 

their performance. Section 4 reports our simulation results 
and performance comparison. Section 5 derives the 
selection guideline from the simulation results. Section 6 
draws our conclusion and future work. 

2. BACKGROUND 
2.1 Related Work 
Time synchronization mechanisms for wireless sensor 
network can be categorized into two general classes – clock 
synchronization and event synchronization.  

In the clock synchronization, several promising algorithms 
have been proposed in recent years. For examples, Elson et 
al. has proposed the Reference-Broadcast Synchronization 
(RBS) [9]. The basic idea of RBS is as follows. In a 
one-hop neighborhood, a beacon node is selected to 
periodically broadcast a reference beacon to all its one-hop 
neighbor nodes. When the neighbor nodes receive this 
beacon, they exchange their beacon arrival timestamps 
according to their local clocks. Since all one-hop neighbor 
nodes are likely to receive the same beacon around the 
same time, each neighbor node can then estimate the clock 
offset between its local clock and any one of its one-hop 
neighbor node’s local clock by simply taking the difference 
between its beacon arrival timestamp and its neighbor 
node’s beacon arrival timestamp. To extend this protocol to 
a multi-hop network, consider a network divided into 
multiple clusters. There will be some nodes that bridge 
adjacent clusters (i.e., they are within the intersection 
regions of two or more adjacent clusters).  These bridge 
nodes can be used to estimate the clock offsets among 
nodes residing in adjacent clusters. Based on experiments 
with Berkeley Motes, the RBS authors have reported an 
average synchronization error of 11 µs (using 30 reference 
broadcasts) between one-hop neighbors, and the error 
grows O( n ) between nodes that are n hops away. 

Moroti et al. has proposed the Flooding 
Time-Synchronization Protocol (FTSP) [10]. The basic idea 
of FTSP is as follows.  A leader node is selected in the 
sensor network. The leader node’s clock is used as the 
global reference clock. To synchronize other nodes’ clocks 
to the reference clock, the leader node periodically floods 
the entire sensor network with its current time contained in 
a sync message. When a node receives a sync message, it 
records the leader’s reference time from the sync message 
and the arrival time of that sync message. Then it floods 
this sync message to its one-hop neighbors. Since a node 
can receive the same sync message multiple times, i.e., one 
from each of its one-hop neighbors, it can estimate its clock 
offset and rate difference to the leader node. Based on 
experiments with the 8x8 grid of Berkeley Motes, the FTSP 
authors have reported an average synchronization error of 
11.7 µs over 10 minutes. 

Ganeriwal et al. has proposed the Timing-sync Protocol for 
Sensor Networks (TPSN) [7]. TPSN is based on a spanning 
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tree structure that connects all the nodes in the sensor 
network. TPSN first selects a node to be the root of this 
spanning tree. This root node periodically broadcasts a 
sync-request message to its immediate child nodes in the 
spanning tree (1st level nodes). After the root node 
completes pair-wise synchronization with the 1st level 
nodes, the 2nd round of pair-wise synchronization is started 
between the 1st level nodes and its immediate child nodes 
(the 2nd level nodes). The round of pair-wise 
synchronization continues further down the spanning tree 
until all nodes are synchronized. Based on experiments with 
two adjacent Berkeley Motes, the TPSN authors have 
reported an average synchronization error of 16.9 µs.  

These three clock-sync methods have all shown a low 
average synchronization error. We choose TPSN as the 
representative of the clock-sync class based on two reasons: 
(1) TPSN is more recent work, and (2) authors of TPSN 
claims that TPSN can achieve twice as good precision as 
RBS based on their reimplementation of RBS. We did not 
choose FTSP because of its flooding mechanism. In a large 
sensor network, flooding will generate heavy overhead. In 
addition, given the similarity between FTSP and TPSN in 
adjusting the clock, we believe that accuracy between them 
is similar.  

Time-stamp synchronization (TSS) [8] by Romer has 
suggested that instead of synchronizing every node's clock 
to a global time, one could obtain the event generation time 
by estimating and accumulating its hop-by-hop delay.  
This mechanism can determine the event timing relative to 
the sink’s clock, a function that a clock synchronization 
mechanism can also provide. We choose Romer’s 
mechanism for the comparison because it is the only event 
synchronization mechanism we have identified from the 
literature. 

2.2 Mechanism 
TPSN [7] has two phases in its process: “level discovery 
phase” and “synchronization phase”. A hierarchical 
structure with a root node is first created in level discovery 
phase. In synchronization phase, nodes synchronize their 
clocks to the root node’s clock by using the hierarchical 
structure constructed in the earlier phase. 

a)  Level Discovery Phase: This phase of TPSN happens 
at the beginning, when the network has been setup. The 
root node assigns itself a level 0 and broadcasts a 
level_discovery packet to start this phase. This 
level_discovery packet holds the node identity and the level 
number of the root node. When its neighbors receive this 
packet, they assign themselves a greater level number than 
received in the level_discovery packet, say level 1. Then 
they continue to broadcast level_discovery packets with 
their own node identity and level number. This process lasts 
until every node in the network is assigned a level number. 
Note that once a node is assigned a level, it will ignore any 
other level_discovery packets that are received afterward. 

This makes sure no flooding will congest the network. At 
the end of this phase, a hierarchical structure with a root 
node is created for use in the later phase. 

b) Synchronization Phase: In this phase, pair-wise 
synchronization is achieved across the edges of the 
hierarchical structure built in the earlier phase. We first 
consider how to synchronize a pair of nodes through a 
two-way message exchange. In Figure 1, there are two 
nodes called A and B.  t1 and t4 are the time measured 
according to node A’s local clock; t2 and t3 are the time 
measured according to node B’s clock.  At time t1, node A 
sends a synchronization_pulse packet to node B. The 
synchronization_pulse packet holds the level number of 
node A and the value of t1. Node B receives this packet at t2, 
where t2 is equal to t1 + ∆ + d. ∆ represents the clock drift 
between the two nodes, and d represents the propagation 
delay.  At time t3, node B sends back an acknowledgement 
packet to node A. This acknowledgement packet holds the 
level number of node B and the values of t1, t2, and t3.  
Node A receives the packet at t4. Assuming that the clock 
drift and the propagation delay do not change in this small 
period of time, node A can calculate the clock drift and 
propagation delay using (1):  
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Node A can then synchronize its local clock to B’s by 
having information about the clock drift between them. 

 
Figure 1. It shows the pair-wise synchronization of 
TPSN, where t2 and t3 are measured in Node B’s clock, 
and t1 and t4 are measured in Node A’s clock. 

The root node starts this phase by broadcasting a time_sync 
packet.  Upon its reception, the nodes in level 1 wait for a 
random time then send a synchronization_pulse packet to 
the root node. The randomized waiting prevents collisions 
caused by the contention for media access. The root node 
replies acknowledgement packets accordingly. Therefore, 
all nodes belonging to level 1 can correct their clocks 
according to the clock of the root node. In addition, the 
nodes in level 2 will overhear the two-way message 
exchange because they have at least a neighbor at level 1. 
Consequently, the nodes in level 2 will send 
synchronization_pulse packet to their level 1 neighbors for 
synchronization. This is applied recursively with nodes in 
level i synchronizing their clocks to nodes in level i-1. 
Eventually, every node in the network has its clock 
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synchronized to the root node, and the global clock 
synchronization is achieved.  

 

 
Figure 2. It illustrates the event-sync of TSS. ACK1 
departs at t1 and arrives at t2. Data2 arrives at the 
sender at t3, and arrives at the receiver at t4. D is the 
hop latency of Data2 at the sender. 

Instead of synchronizing every node's clock, event-sync 
estimates and accumulates the hop-by-hop latency.  When 
a data packet arrives at the sink, one can trace back, from 
the accumulated latency, the packet generation time relative 
to the sink’s clock.  This mechanism can determine the 
relative data generation time, a function that a global clock 
synchronization mechanism provides as well.  

The event synchronization approach is first proposed by 
Romer [8].  The assumption is that the wireless links 
among the nodes employ a CSMA/CA-like MAC-layer 
mechanism where an acknowledgement is sent per data to 
assure the reception of the data packet.  The hop latency, 
D, can be estimated using (2).  

)()()( 122314 ttttttD −−−−−=              (2) 

As depicted in Figure 2, t4 - t1 can be obtained using the 
receiver’s clock and t3 – t2 from the sender’s clock.  The 
value of t3 – t2 can be piggybacked on the Data2 packet to 
the receiver.  With the approximation of t2 – t1, which is 
the sum of the transmission and propagation delay of ACK1, 
one may calculate the hop latency D of Data2 at the 
receiver node.  Immediately, the latency can be 
accumulated and carried along with the data packet.  Note 
that to be able to estimate the hop latency with equation (2), 
each node needs to keep two extra states: the ACK 
departure time and the ACK arrival time of the latest data 
packet.  In addition, the mechanism will not be able to 
estimate the hop latency for the first data packet of a flow. 

3. SIMULATION 
We have implemented the two time synchronization 
mechanisms on the ns-2 simulator [11].  With an extensive 
set of simulations, we compare the two mechanisms in 
terms of accuracy and overhead.  Below, we provide the 
specifics of the simulation setup, evaluation metrics, and 
evaluation variables.  

3.1 Simulation Setup 
In all of our simulations, we place the sensor nodes on a 
predefined grid in a uniformly random fashion.  The data 
sink is fixed in the center of the grid with data sources 
randomly chosen from others nodes. The communication 
range of all nodes is set to be 250m.  Other simulation 
setup options include directed diffusion, a well-known 
data-centric routing mechanism, and IEEE 802.11, a 
popular wireless link technology.  The simulation time is 
400 seconds.  The data accounted are restricted to those 
collected after 100 seconds simulation time.  This avoids 
taking the start-up time instability into simulation results. 

For all of the evaluation parameters, the base case is 
defined to have 50 nodes on an 1118x1118m2 grid, and 10 
of the sensor nodes are data sources. Each source sends a 
100 bytes data packet every 5 seconds. Unless specified 
otherwise, these are the default values for the parameters. 

3.2 Evaluation Metrics 
In order to evaluate the performance of event 
synchronization and clock synchronization, the following 
two metrics are investigated: 

a)  Error: which represents the difference between actual 
data generation time and estimated data generation time. 
The correctness of estimated data generation time is 
important in that it is used to infer temporal relation and 
ordering of detected events. Inaccurate temporal 
information can cause incorrect application semantics. 

b)  Overhead: which represents the portion of traffic 
produced due to synchronization mechanism over the total 
traffic. Lower synchronization overhead implies higher 
throughput and efficiency of the network. 

3.3 Evaluation Variables 
To compare the error and overhead of the two time 
synchronization mechanisms, we simulate scenarios with 
varying network size, node mobility, and data rates.  

a) Network Size: For the simulations varying the network 
size, we change the number of nodes from 20 to 100 with 
an incremental interval of 10 nodes. In order to fix the 
network density with increasing number of nodes, we vary 
the grid size accordingly.  
 

The event synchronization scheme calculates the event 
generation time by subtracting accumulated hop-by-hop 
delay from arrival time at the sink node. Therefore, the 
error tends to grow as the network size increases because 
the average path length in a larger network tends to be 
longer. However, the clock synchronization scheme in this 
study synchronizes the node clocks in a hierarchical fashion. 
We expect the error of the clock synchronization scheme to 
grow and in proportion to the rank of the hierarchy that is 
built for synchronizing the nodes’ clocks. 
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b)  Node Mobility: The node mobility model works as 
follows.  Each node has a randomly generated target 
location and moves to that location with a random speed 
(maximum speed 20m/s). To change the level of node 
mobility, we set the pause time between the target locations 
from 0 to 400 seconds. A smaller pause time implies higher 
mobility.   

In the presence of node mobility, the hierarchy built for 
clock synchronization may become invalid when a node 
moves away from its parent node. Therefore, it may need to 
reconstruct the hierarchy and add to the overhead traffic. 
Since event-sync uses localized information, i.e., hop delay, 
it is more adaptive to the change of network topology. Thus, 
we expect that event-sync simulations experience a lower 
degree of error than the clock synchronization in the 
presence of node mobility. 

c)  Data Rate: For the simulations varying the data rate, 
we decrease the period of sending a data packet from every 
5 seconds to 0.5 seconds, with a decremental interval of 0.5 
seconds.  Changing the data rate changes the traffic 
volume.   

Since clock synchronization exchanges the synchronization 
packets at a fixed period independent of traffic volume, the 
overhead ratio will decrease as the data rate grows, and 
decrease no more when the network is saturated. Since 
event synchronization mechanism piggybacks a 16-byte 
hop-by-hop delay in each data packet, the overhead ratio is 
a fixed 16% given a packet size of 100 bytes. 

4. EXPERIMENTAL RESULTS 
We present here the simulation results of the two time 
synchronization mechanisms.  For each simulation 
scenario, we generate ten random cases.  The error and 
overhead are obtained by running the mechanisms on the 
same ten random cases per scenario.  Each data point on 
the plots shown here is the average of the ten random cases 
for each scenario.  While the ten random cases appear to 
be sufficient to indicate the general performance trend, we 
intend to increase the number of random cases to simulate 
in the near future. 

The accuracy of the clock synchronization mechanism, 
TPSN, depends on the frequency of the pair-wise 
synchronization (Section 2.2.B, Synchronization Phase).  
The more frequent the pair-wise synchronization is done, 
the higher the accuracy and overhead ratio we observe.  In 
other words, error and overheads are tradeoffs in TPSN.  
Given that the event synchronization mechanism might not 
be able to estimate the time for all event packets, it is not 
fair to compare the accuracy of the two mechanisms by 
looking at the average error of the valid packets.  We, 
therefore, tune the frequency of the pair-wise 
synchronization in TPSN such that the overhead ratios of 
the clock and event synchronization mechanisms are 
comparable.  Hence, in discussing the performance in 

terms of error, we concentrate on the scaling properties of 
the mechanisms rather independently.  And we compare 
closely the scaling trend of the mechanisms in terms of 
overhead.  

4.1 Summary of Simulation Results 
Figure 3 and Figure 4 depict the error (unit: second) of the 
clock and event synchronization mechanisms varying the 
network size, node mobility, and data rate. Figure 6 
compares the overhead of the two mechanisms.  We find 
that the error experienced by the event synchronization is 
significantly lower than that of the clock synchronization in 
all cases.  However, there is an increasing amount of 
events whose generation time could not be estimated by the 
event synchronization mechanism when the nodes are 
mobile. In terms of overhead, clock synchronization scales 
better when the data rate increases but worse when the 
network is more dynamic. 

4.2 Error details 
Figure 3 highlights the error of estimated generation time to 
real event generation time of clock synchronization under 
different network sizes, data rates, and node mobility.  We 
observe that the error of clock synchronization mechanism 
increases generally to the network size, mobility, and data 
rate.  In particular, the error of clock synchronization 
mechanism is more sensitive to the network size and 
mobility. 

A larger network size implies a higher rank of the clock 
synchronization hierarchy (Section 2.2.a, Level Discovery 
Phase).  This also increases the accumulated errors along 
the synchronization hierarchy due to the increased rank, and 
thus explains the growing trend.   

Mobility results in the change of synchronization hierarchy.  
Until the hierarchy is re-discovered by the mobile node, the 
clock could continue to go out of synchronization.  This 
explains the increasing error when the network is more 
dynamic. 

TPSN assumes symmetric delays as node pairs synchronize.  
Given our simulation design where there is only one event 
sink, the event packets will travel the network towards a 
particular location.  When the data rate is significantly 
high, we observe a relatively moderate increase in error as 
the two-way delays become more asymmetric. 

Figure 4 shows the errors of event synchronization under 
different network sizes, data rates, and node mobility.  We 
observe similar scaling trends of the event synchronization 
mechanism to the clock synchronization mechanism.  The 
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error of event synchronization mechanism is also more 
sensitive to the network size and mobility.   

A larger network size implies a higher average path length.  
The error accumulates along the event path from these 
hop-by-hop latency estimations.  The more hops there are 
in the path, the larger the error.   

Mobility influences directly the accuracy of the hop-by-hop 
latency estimation, especially the part estimating the 
transmission and propagation delay of ACK. This 

transmission delay is calculated by dividing the average 
ACK size to the wireless link bandwidth and the 
propagation delay is set to the time to reach a node that is 
about the average distance between 2 nodes apart.  When 
the nodes are mobile, the hop-by-hop latency estimation 
will be less accurate.   

The most significant observation is that the measurable 
error of event synchronization is much smaller than that 
clock synchronization, and the difference is about three to 

 
  

 
  
 

 
 

 
 Figure 3. Error due to Clock Synchronization 

 

  
 

  
 

 
Figure 4. Error due to Event Synchronization. 
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four orders of magnitude.  We, however, are cautious at 
concluding whether the event synchronization mechanism 
is better than the clock synchronization mechanism.  The 
reason is primarily that, using the event synchronization 
mechanism, we might not be able to estimate the generation 
time for the first event of a flow.   

 
Consider a dynamic network.  When the nodes move away 
from each other, new paths will be established.  The first 
packets after such path changes, although will help the 
subsequent estimations of the hop-by-hop latency (Section 
2.2, Event Synchronization), will not have sufficient 
information to compute their own hop-by-hop latencies.  
As shown in Figure 5, when the mobility is high, the event 
synchronization mechanism might not be able to estimate 
the relative generation time for up to 14% of the events sent 
in total. 
4.3 Overhead details 
Figure 6 presents the overhead ratio for clock 
synchronization and event synchronization under different 
network sizes, data rates, and node mobility.  The 
overhead ratio of event synchronization is constant 0.16, 
because the overhead of the event synchronization 
mechanism is a fixed 16-byte field per event packet and the 
event packets are 100 bytes large on average.   

We can see that the overhead of clock synchronization is 
not very sensitive to the network size.  Because when 
network size increases, the amount of synchronization 
packets increases and so is the amount of data packets.  

We find that the overhead of clock synchronization grows 
as node mobility increases.  This is because the clock 
synchronization mechanism needs to reconstruct the 
synchronization hierarchy when the network topology 
changes. The synchronization hierarchy is reconstructed by 
sending extra control packets to rediscover the new 
hierarchy. Since higher node mobility results in higher 
frequency of topology changes, we observe the growing 

trend in overhead.  In contrast, no such hierarchy rebuilt is 
necessary for the event synchronization mechanism. 

As projected in the Simulation section, the overhead of the 
clock synchronization mechanism decreases as the data rate 
increases. We can see that the clock synchronization 
mechanism scales better than the event synchronization 
mechanism under high data rates. 

 

5. DISCUSSION 
Based on the experimental results, we derive the following 

 

 
 

 
 

 
Figure 6. Overhead Comparison of Clock vs.  

Event Synchronization. 
 

 
 

Figure 5. Ratio of packets not synchronized by  
the event synchronization mechanism.  
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selection guideline for choosing a suitable time 
synchronization protocol under various ad hoc network and 
traffic dynamics, as well as application requirements.  

(1) When energy consumption is a critical issue and the 
traffic volume is high, clock synchronization protocol 
is the better choice, because it involves low overhead 
to synchronize under high traffic condition.  

(2) When node mobility is high, clock synchronization is 
still superior because all its successfully transmitted 
packets are labeled with timing information. This is in 
contrast to event synchronization protocol which has 
the “broken-path” problem, i.e., a large number of 
packets can have missing timing labels under high 
node mobility.  

(3) In all other cases, event synchronization protocol is the 
preferred choice because it has better accuracy than 
clock synchronization protocol.  

Although event sync outperforms clock sync in accuracy 
under most of the cases, event sync has a fundamental 
limitation that it only synchronizes the events’ generation 
times to the local clock of the events’ sink node. Consider 
the case that there are more than one sink nodes in the 
wireless sensor network. Since the clocks of different sink 
nodes are not synchronized, temporal information from 
events that go to different sink nodes are not synchronized. 
If the application requires events to be labeled using a 
global reference clock, event-sync is not applicable. 

In order to solve the limitation of event-sync, we have come 
up a hybrid approach that combines event-sync with 
clock-sync. This hybrid method (1) applies event-sync to 
synchronize all event streams from source nodes to the 
local clocks of different sink nodes, and (2) runs clock-sync 
over an overlay network to synchronize local clocks of all 
sink nodes to a global reference clock. In (2), the pair-wise 
synchronization procedure between sink nodes in clock 
sync is now applied to the virtual hop-by-hop link between 
two sink nodes in an overlay network, which is actually the 
physical suboptimal shortest path between the two sink 
nodes in the physical WSN.  This hybrid approach 
combines the advantages of the event-sync (higher accuracy) 
and clock-sync (global clock).  This promising hybrid 
approach remains to be investigated in the future. 

6. CONCLUSION AND FUTURE WORK 
With an extensive set of simulations, we conclude the 
following major findings: 

(1) The network size influences strongly the error of the 
two mechanisms but it has little effect on the overhead 
ratio. 

(2) The mobility impacts both the error and overhead 
aspects.  The event synchronization mechanism 
begins to experience more events that are not 

synchronize-able and in the meantime the clock 
synchronization mechanism begins to degrade in 
overhead. 

(3) The data rate has little effect on the error aspect but it 
could result in a lower overhead for the clock 
synchronization mechanism. 

The findings in 1 and 2 are rather counter-intuitive whereas 
the finding 3 is straight forward.  From these findings, we 
are able to derive a set of guidelines for establishing the 
time synchronization service on the WSNs.  When the 
network size is large, choose the event synchronization 
mechanism.  When the data rate is high, choose the clock 
synchronization mechanism.  When the node mobility is 
high, choose clock synchronization mechanism if the error 
is critical or data synchronization mechanism if the 
overhead is priority.   

For a higher degree of confidence, we plan to increase the 
number of the random cases per scenario in the short-term 
future.  Emerging from the study is a hybrid solution that 
connects the event sinks using the overlay network 
technique.  The validation and evaluation of the hybrid 
solution will be for the longer-term future. 
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