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Abstract 
 

Semantic-level content analysis is a crucial issue to 
achieve efficient content retrieval and management. In 
this paper, we propose a hierarchical approach that 
models the statistical characteristics of several audio 
events over a time series to accomplish semantic 
context detection. Two stages, including audio event 
and semantic context modeling/testing, are devised to 
bridge the semantic gap between physical audio 
features and semantic concepts. HMMs are used to 
model audio events, and SVMs and GMMs are used to 
fuse the characteristics of various audio events related 
to some specific semantic concepts. The experimental 
results show that the approach is effective in detecting 
semantic context. The comparison between SVM- and 
GMM-based approaches is also studied. 
 
1. Introduction 
 

With the rapid development of technologies in 
content creation, storage, and dissemination, 
tremendous amount of multimedia digital contents 
have been created and applied in many fields. However, 
the massive multimedia data, including video, audio, 
and text, impede users in content browsing, retrieval, 
and management. Many techniques of content analysis 
were proposed to facilitate content management in 
recent years. For example, digital content is classified 
and segmented by analyzing audio features in [1] and 
[2]. Furthermore, techniques on analyzing various 
types of video data were also proposed to facilitate 
content management [3, 4].  

Although the studies described above effectively 
achieve data classification and segmentation, the 
techniques which only consider data features still don’t 
meet users’ needs. An approach which takes users’ 
sense into account is necessary to provide 
semantic-level content retrieval/management. In [5], an 
approach based on HMM was proposed to detect 

highlight sound effects such as applause, cheer, and 
laughter in audio streams. The results of audio event 
detection provide the clues for exploring the semantics 
of a video segment. However, users would more likely 
to find a scene which possesses a complete semantic 
meaning rather than some specific audio/video events. 
For example, in an action movie, we would like to find 
the scene of gunplay, which may consist of gunshots, 
explosions, sounds of jeeps, and screams from soldiers 
for a while. Therefore, in this paper, we propose a 
hierarchical approach that models high-level audio 
scenes based on the results of audio events detection.  

We define a ‘semantic context’ as a complete scene 
which possesses a single meaning over a time series. 
For example, the gunplay scenes in an action movie. In 
this work, we would like to bridge the semantic gap 
between physical audio features and semantic contexts. 
Two approaches (SVM and GMM) that model 
high-level scenes based on audio event detection are 
proposed and compared.  

The rest of this paper is organized as follows: 
Section 2 describes the overall system framework. The 
method of audio event modeling and detection is stated 
in Section 3. Two approaches, including SVM and 
GMM, are described in Section 4. Section 5 shows the 
experimental results of semantic context detection, and 
Section 6 gives the concluding remarks.  

 
2. System framework 
 

The proposed system consists of two stages: audio 
event detection and semantic context detection. First, 
as shown in Figure 1(a), the input audio stream is 
divided into overlapped segments, and several features 
are extracted from each segment. For each audio event, 
an HMM is constructed to model extracted features. 
Through the Viterbi algorithm, the probability for each 
audio event is computed. The confidence score which 
describes how likely a segment belongs to an audio 
event is obtained by using a soft decision strategy. We 



say that the segments with high confidence scores from 
the gunshot model, for example, represent the 
occurrences of gunshot events.  

At the stage of semantic context detection, as shown 
in Figure 1(b), the characteristics of the confidence 
scores obtained in the first stage are extracted and 
modeled by SVMs or GMMs. Detailed descriptions 
about modeling and detection will be given in the 
following sections.  
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Figure 1. The proposed system framework contains 
(a) audio event and (b) semantic context detection 

 
3. Audio event modeling 
 

Audio events in this paper are defined as short 
audio segments which represent the sound of an object 
or an event, e.g. gunshots, explosion, laughter, etc. The 
results of audio event detection provide the clues for 
recognizing higher level semantics of an audio clip.  

For modeling two semantic contexts, i.e. gunplay 
and car-chasing, in action movies, the audio events we 
modeled are gunshots, explosions, helicopter-flying, 
engines, and car-braking. In this work, all audio clips 
are down-sampled to 16 kHz, 16 bits and 
mono-channel format. For each audio event, 30 short 
audio clips each with length 3-10 sec are selected from 
various action movies as the training data. In the 
training stage, as shown in Figure 1(a), audio features 
are extracted from the training data and are modeled by 
HMMs. In our work [7], input audio streams are first 
divided into 1-sec segments with 0.5-sec overlapping. 
Each segment is further segmented into 25-ms audio 
frames with 10-ms overlapping. The audio features 
extracted from each frame are volume, band energy 
ratio, zero-crossing rate, frequency centroid, bandwidth, 
and 8-order MFCC [6]. For each audio event, an HMM 
is constructed with 4 states (the model size is estimated 

by the adaptive sample set construction technique [5]), 
and the observation probability in each state is 
described as a 4-mixture Gaussian distribution. After 
HMM modeling, two distributions, say within and 
outside distributions, are computed for each audio 
event. They describe the score distributions of samples 
within and/or outside an audio event.  

In the test stage, audio features from test data are 
input to all HMMs, and the likelihood with respect to 
each audio event is obtained. Note that we cannot 
simply classify an audio segment to a specific event 
even if its likelihood value is larger than that of other 
events. A data segment may not belong to any audio 
event. Therefore, the Neyman-Person test is applied to 
compute confidence scores, which represent the 
probability in one class respect to others. Assume that 
the log-likelihood value is x, then )|( 1θxf X  
and )|( 0θxf X  denote the corresponding probabilities 
of the within and the outside distributions, respectively. 
According to the Neyman-Pearson theory, the 
likelihood ratio can be applied to determine the 
confidence scores as follows:  
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Through these procedures, the confidence score for 
each audio segment can be obtained.  
 
4. Semantic context modeling 
 

We aim at detecting high-level semantic context 
based on the results of audio event detection described 
in the previous section. To characterize a semantic 
context, the confidence scores for some specific audio 
events, which are highly relevant to the semantic 
concept, are collected and modeled. In our work, the 
scores from gunshot, explosion, and helicopter events 
are used to characterize ‘gunplay’ scenes. The scores 
from engine and car-braking events are used to 
characterize ‘car-chasing’ scenes.  

Note that an audio scene may not contain all 
relevant audio events at every time instant. For 
example, in Figure 2, the audio clip from t1 to t2 is a 
typical gunplay scene which contains mixed relevant 
audio events. In contrast to this case, no relevant event 
exists from t4 to t5 and t6 to t7. However, the whole 
audio segment from t3 to t8 is viewed as a single scene 
in users’ sense, as long as the duration of the 
‘irrelevant clip’ doesn’t exceed a threshold. Therefore, 
to model the characteristics of semantic contexts, we 
propose two approaches based on SVM and GMM to 
fuse the information obtained from low-level audio 
events detection.  



In the semantic context modeling, the manually 
labeled training data which are complete audio scenes 
(like the segment from t3 to t8 in Figure 2) are input to 
the audio event detection module. After that, as 
described in Section 3, the confidence scores of each 
1-sec segment are obtained. These segments are called 
analysis windows and are viewed as units of audio 
events. In order to characterize the long term nature of 
sound ‘texture’, we calculate means and variances over 
a number of analysis windows. As shown in Figure 3, 
the overlapped ‘texture windows’ with length 5 sec 
describe the characteristic of an audio clip.  
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Figure 2. Examples of audio semantic contexts 
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Figure 3. Analysis window and texture window in 

semantic context modeling 
 
4.1 SVM-based modeling 
 

We exploit SVM classifiers to distinguish the 
textures of ‘gunplay’, ‘car-chasing’, and ‘others’ 
scenes. For each texture window, the means and 
variances of confidence scores obtained from audio 
event detection are concatenated as a vector. The 
vectors of an audio clip are then collected as the data 
for SVM training. According to the performance 
analysis of multiclass SVM classifiers [8], we apply 
the ‘one-against-one’ strategy to model these three 
scenes. Three SVM models are constructed, i.e. 
‘gunplay vs. car-chasing’, ‘gunplay vs. others’, and 
‘car-chasing vs. others’. For each model, the radical 
basis function (RBF) is used to map features into a 
higher dimensional space:  

2
( , ) exp( )i jK x y x xγ= − − , 0γ > ,             (2) 

where xi and xj are the feature vectors of texture 
windows and γ  is the kernel parameter.  

In the test stage of semantic context detection, the 
Decision Directed Acyclic Graph strategy [9] is 
applied to perform multiclass classification. Figure 4 
shows the testing process. The vectors from test data 

are first input to the root SVM classifier, i.e. 
‘car-chasing vs. others’ classifier, in this case. After 
this evaluation, the process branches to left if more 
vectors are predicted as ‘others’ segments than 
‘car-chasing’ segments. The ‘gunplay vs. others’ 
classifier is then used to re-evaluate the testing vectors. 
After these two steps, the vectors which represent 5-sec 
audio segments (texture windows) are labeled as 
‘gunplay’ or ‘others’ scenes.  
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Figure 4. Test process of multiclass SVM 

 
4.2 GMM-based modeling 

 
A GMM-based approach is also applied to fuse the 

information of audio events detection [7]. As described 
in Section 3, the confidence scores for each analysis 
window are calculated. If the scores are larger than a 
pre-defined threshold, we say that this 1-sec segment 
belongs to a specific audio event, i.e. one ‘occurrence’ 
exists at this time. Unlike the features for SVM 
training, the characteristic of a texture window is 
obtained by calculating the occurrence ratio of one 
audio event. Because the overlapping factor is 0.5, a 
5-sec texture window contains nine analysis windows. 
If four of the nine segments are detected as gunshots 
audio events, the occurrence ratio of gunshots in this 
texture window is 0.444. The occurrence ratios 
collected from all texture windows are then modeled 
by a multivariate Gaussian distribution.  

In the test stage, the occurrence ratios are calculated 
by applying the same process as the training stage. For 
each texture window, if all ratio numbers of relevant 
events (e.g. engine and car-braking events for 
car-chasing scenes) are larger than the mean values of 
corresponding Gaussian mixtures, we say that the 
texture window belongs to the specific semantic 
context.  
 
5. Experiments 
 

The training and testing audio data of ‘gunplay’ and 
‘car-chasing’ scenes are manually collected from 
Hollywood action movies. The audio scenes ‘others’ 
contain segments from various video data other than 



action movies, including music videos, news broadcast, 
sports games, and soap operas. The total training data 
for each audio event is about 4 minutes long, and that 
for each semantic context is about 20 minutes. Note 
that the criteria of selecting training data for audio 
events and semantic contexts are different. For 
semantic context modeling, we collected the gunplay 
and car-chasing scenes based on the experienced users’ 
subjective judgments, no matter how many relevant 
audio events exist in the scene. On the contrary, the 
training data for audio event modeling are many short 
audio segments that are exactly the audio events. For 
each semantic context, several audio clips with total 
length 50 minutes are extracted from several movies as 
testing data.  

We compare the performance of two proposed 
approaches. Table 1 shows the performance of 
semantic context detection. In average, the SVM-based 
approach has better recall performance and similar 
precision performance with respect to the GMM-based 
approach. This result meets the requirements for video 
summarization and retrieval.  

Actually, the performance of semantic context 
detection is data-dependent. The results are affected by 
different acoustic conditions and the scene textures 
controlled by the movie directors. Table 2 shows the 
robustness of detection performance based on SVM 
and GMM approaches. The results indicate that the 
SVM-based approach is more robust than GMM. The 
reason may be that the feature values modeled by 
GMMs are too sensitive to the variations of different 
test data. Moreover, the modeling ability of a GMM 
depends on the number of mixtures it contains, but this 
number may vary in different testing data.  

 
Table 1. Performance of semantic context detection 

Semantic Context Recall Precision False 
Alarm

SVM 0.798 0.715 0.326 Gunplay 
GMM 0.658 0.670 0.386 
SVM 0.651 0.829 0.197 Car-chasi

ng GMM 0.570 0.887 0.128 
 

Table 2. Robustness of detection performance 
Semantic Context Var. of 

Recall 
Var. of 

Precision 
SVM 0.002 0.029 Gunplay 
GMM 0.033 0.031 
SVM 0.021 0.022 Car-chasing 
GMM 0.045 0.012 

 
Overall, we have better performance on ‘gunplay’ 

scene detection. It is believed that ‘gunplay’ scenes 
have stronger sound effects and steadier patterns than 

that in ‘car-chasing’ scenes. Furthermore, the audio 
events chose to model car-chasing scenes may be 
changed or added.  

 
6. Conclusion 

 
In this paper, we have presented a hierarchical 

framework for semantic context detection. Two audio 
scenes in action movies, i.e. gunplay and car-chasing, 
are considered in this work. HMMs are used to model 
five audio events, and SVM- and GMM-based fusion 
schemes are developed to characterize high-level audio 
scenes. Experimental evaluations have shown that the 
SVM-based approach is more robust than GMM and 
obtain satisfying results in recall and precision 
performance. This framework could be applied to 
various semantic contexts and is flexible to enhance 
the feasibility by taking video objects/events into 
account.  
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