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Abstract 
Semantic-level content analysis is a crucial issue to achieve 
efficient content retrieval and management. We propose a 
hierarchical approach that models the statistical 
characteristics of several audio events over a time series to 
accomplish semantic context detection. Two stages, 
including audio event and semantic context 
modeling/testing, are devised to bridge the semantic gap 
between physical audio features and semantic concepts. 
For action movies we focused in this work, hidden Markov 
models (HMMs) are used to model four representative 
audio events, i.e. gunshot, explosion, car-braking, and 
engine sounds. At the semantic context level, generative 
(ergodic hidden Markov model) and discriminative 
(support vector machine, SVM) approaches are 
investigated to fuse the characteristics and correlations 
among various audio events, which provide cues for 
detecting gunplay and car-chasing scenes. The 
experimental results demonstrate the effectiveness of the 
proposed approaches and draw a sketch for semantic 
indexing and retrieval. Moreover, the differences between 
two fusion schemes are discussed to be the reference for 
future research.  
 
 
1. Introduction 

 
Recently, large amount of multimedia content has been 

created, stored, and disseminated as rapid advance in media 
creation, storage, and compression technologies. However, 
massive multimedia data often depress users in content 
browsing and retrieving and diminish the benefits brought 
by digital media. Technologies for effective and efficient 
multimedia document indexing, therefore, are indispensable 
to ease the load of media access.  

Some research issues have been investigated to 
facilitate efficient access and usage of massive multimedia 
data. To improve the effectiveness of browsing and 

retrieval, techniques for genre classification are widely 
studied. For audio tracks, some techniques [5, 6] are 
proposed to discriminate different types of audio and music 
genre classification [7]. For video content, genres of films 
[9] and TV programs [10] are automatically classified by 
exploring various features. In these content analysis 
techniques, various features from audio, video, and text [11] 
are exploited, and many multimodal approaches are 
proposed to efficiently cope with the access and retrieval 
issues of multimedia content.  

Although the paradigms described above are efficient 
for browsing and content-based search, some problems 
exist in today’s applications. The first is the apparent gap 
between low-level audiovisual features and high-level 
semantics. The similarity in low-level features often 
mismatch with user’s perception. The second problem is 
that, from the viewpoint of end-users, it’s not intuitive for 
people to retrieve video shots with color layouts or motion 
trajectories. A tool that provides semantic-level query is 
more practical than that one just supports unlabeled shots 
or rough genre classification.  

Recently there are two research directions about 
analyzing multimedia documents from user’s point of view. 
The first one is to find the attractive parts of movies or TV 
programs by exploiting the domain knowledge and 
production rules. According to media aesthetics [12], 
which are defined as the study and analysis of media 
elements such as lighting, motion, color, and sound both by 
themselves and their roles in synthesizing effective 
productions, these researches attempt to uncover the 
semantic and semiotic information by computational 
frameworks [13]. Some preliminary results have been 
reported on film tempo analysis [13] and scare scene 
detection by using audio dynamics in horror movies [15].  

The second direction of user-centric multimedia 
analysis is to construct semantic indices for multimedia 
documents. Studies on semantic indexing can be classified 
as two categories according to the granularity they proceed: 



1) isolated audio/video event detection and 2) semantics 
identification based on fusing the detection result of 
isolated events. In [16], several audio highlight events, such 
as applause, laughter, and cheer, are modeled by HMMs 
[18]. In the test stage, audio features of each audio segment 
are extracted to be the inputs of these three highlight event 
models, and the highlight events in an audio clip are 
detected via a decision algorithm.  

The aforementioned approaches primarily detect audio 
events or video objects in audiovisual streams. However, 
detecting isolated audio/video events is still not close to 
user’s notion. For example, we would not like to find when 
gunshots happen in an action movie. We would likely find 
the scene of gunplay, which may consist of gunshots, 
explosions, sounds of jeeps, and screams from soldiers for 
a while. This kind of scene conveys a solid semantic 
meaning and is at a reasonable granularity for semantic 
retrieval. Instead of just modeling isolated events, several 
approaches based on Bayesian network [2] and Gaussian 
mixture models [3] have been proposed to fuse the 
information of isolated events. Naphade and Huang [2] 
adopt a probabilistic framework, i.e. dynamic Bayesian 
network, to model semantic concepts, such as the scenes 
with ‘outdoor’ or ‘beach’ concepts. This framework models 
the correlations between different objects/events and 
provides inference functionalities. It fuses various 
multimedia objects and to infer objects that are not easy to 
be modeled directly from low-level features. However, they 
didn’t model semantic contexts that involve several 
multimedia objects over a time series. In multimedia 
retrieval, semantic contexts that provide users with a 
complete and continuous semantic meaning often serve as 
the basic units of query. Therefore, a fusion scheme that 
models various audio events along the temporal axis should 
be devised to describe the evolution of semantic contexts in 
audiovisual streams.  

In this paper, an integrated hierarchical framework is 
proposed to detect semantic contexts in action movies, 
which often consist of apparent audio events to show 
impressive scenes. Because there are often rapid shot 
changes and dazzling visual variations in this type of 
movies, we focus our investigation on analyzing audio 
tracks and accomplish semantic indexing via aural clues. 
By using the HMM-based approaches presented in [16], 
low-level events, such as gunshot and explosion sounds, 
are modeled first. For semantic context detection, which is 
viewed as a pattern recognition problem, generative (HMM) 
and discriminative (SVM) models are applied in fusing the 
information obtained from audio event detections. We 
perform some experiments to show the effectiveness of the 
proposed framework and compare these two fusion 
schemes. The results of semantic context detection can be 
applied to multimedia indexing and retrieval to facilitate 
efficient media access.  

The remainder of this paper is organized as follows. 
Section 2 describes the definitions of audio event and 
semantic context and states the concept of hierarchical 
audio models. The audio features we used for event 
modeling are briefly introduced in Section 3. After 
extracting these features, HMMs are used to model audio 
events in Section 4. In Sections 5 and 6, issues on fusion 
schemes based on HMM and SVM are addressed, 
respectively. Performance evaluation and some discussions 
are shown in Section 7, and the concluding remarks are 
given in Section 8.  

 
2. Hierarchical audio models 
 

The semantic indexing process is performed in a 
hierarchical manner. Two stages of models, i.e. audio event 
and semantic context modelings, are constructed to 
hierarchically characterize audio clips.  
 
2.1 Audio event and semantic context 
 

Audio events are defined as short audio segments which 
represent the sound of an object or an event. They can be 
characterized as different patterns according to the statistics 
of several audio features. In this paper, we aim at indexing 
multimedia documents by detecting high-level semantic 
contexts. Therefore, the occurrences of gunshot and 
explosion events are used to characterize ‘gunplay’ scenes. 
The occurrences of engine and car-braking events are used 
to characterize ‘car-chasing’ scenes.  
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Figure 1. Examples of audio semantic contexts 

 
A semantic context is a meaningful scene that may or 

may not contain all audio events at every time instant and 
no specific evolution pattern with these events. For 
example, in a gunplay scene, we cannot expect that 
explosions always occur after gunshots. Moreover, there 
may be some silence shots that contain no relevant audio 
events, but they are viewed as parts of the same gunplay 
scene in human’s sense. Figure 1 illustrates the idea of 
semantic contexts of gunplay scenes. The audio clip from 
t1 to t2 is a typical gunplay scene, which contains mixed 
relevant audio events. In contrast to this case, no relevant 
event exists from t4 to t5 and from t6 to t7. However, the 
whole audio segment from t3 to t8 is viewed as the same 
scene in users’ sense, as long as the duration of the 



‘irrelevant clip’ doesn’t exceed users’ tolerance. Therefore, 
to model the characteristics of semantic contexts, we 
develop an approach which takes a series of events along 
the time axis into account rather than just the information at 
a time instant.  
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Figure 2. The proposed hierarchical framework 

contains (a) audio event modeling and (b) 
semantic context modeling. 

 
2.2 Hierarchical framework 
 

The proposed framework consists of two stages: audio 
event modeling and semantic context modeling. First, as 
shown in Figure 2(a), the input audio stream is divided into 
overlapped segments, and several audio features are 
extracted from each segment. The extracted features are 
then input to each HMM module. Through the Forward 
algorithm [18], the log-likelihood of an audio segment with 
respect to each audio event is computed. To determine how 
a segment is close to an audio event, a confidence metric 
based on the likelihood ratio test is defined. We say that the 
segments with high confidence scores from the gunshot 
audio event model, for example, imply high probability of 
the occurrence of gunshot sounds.  

In the stage of semantic context modeling/detection, the 
confidence values from event detection constitute the cues 
for characterizing high-level semantic contexts. For an 
audio clip, the confidence values obtained from each audio 
event model are concatenated as feature vectors, which 
represent the characteristics of the audio clip with respect 
to several audio events. We call them pseudo-semantic 
features because they represent the interrelationship of 
several audio events, which are grounds for users to realize 
what the segment presents. With these features, two 
modeling approaches are used and investigated to perform 
semantic context modeling, as shown in Figure 2(b). As the 
usage in pattern recognition and data classification, SVM 
and HMM shed lights on clustering these pseudo-semantic 
features and facilitate detection processes.  

 
3. Feature extraction 
 

One of the important factors for elaborating pattern 
recognition is feature selection for adequately 
characterizing original data. For analyzing audio sequences, 
several audio features are extracted and utilized, including 
volume, band energy ratio, zero-crossing rate, frequency 
centroid, bandwidth, and mel-frequency cepstral coefficient 
(MFCC) [11]. They are shown beneficial for audio analysis 
and are widely applied [5,6,7,16].  

When extracting audio features, all audio streams are 
down-sampled to 16 KHz, 16 bits and mono-channel 
format. A 1-sec sliding window moves through the input 
audio with 50% overlapping. The signal in each sliding 
window is further divided into overlapped frames which 
are 25-ms long with overlapping ratio 0.5 for feature 
extraction. Among them, volume and zero-crossing rate are 
calculated directly from audio signal amplitude. After 
Fourier transformation, frequency centroid and bandwidth 
are calculated to present the first- and second-order 
statistics of the spectrogram. The frequency spectrum is 
divided into four sub-bands with equal frequency intervals, 
then the band-energy ratio is computed to show the energy 
distributions in different bands. An 8-order MFCC is 
computed as the inverse Fourier transform of the 
logarithmic spectrum in a frame. Finally, a 16-dimensional 
(16-D) feature vector is constructed. Details of the audio 
feature extraction processes can be found in [11] and [3]. 
Furthermore, the temporal variations of the adopted 
features are also considered. That is, the differences of the 
features between adjacent frames are calculated and are 
combined with the original features. In our system, a 32-
dimensional (32-D) feature vector is generated for each 
audio frame.  

 
4. Audio events modeling 
 

Detecting events in audio tracks is crucial to 
multimedia analysis. This section addresses some issues of 
audio event modeling, including the determination of 
model size, model training process, and the process for 
constructing pseudo-semantic features from detection 
results.  

 
4.1 Model size estimation 
 

We use HMMs to describe the characteristics of audio 
events. The 32-D feature vectors from a type of audio event 
are segmented into several sets, with each set denoting one 
kind of timbre, and modeled later by one state of an HMM. 
Determination of model size is crucial in applying HMMs. 
The state number should be large enough to characterize 
the variations of features, while it should also be compact 
when we consider computational cost of model training 
process. In this work, adaptive sample set construction 
technique [14] is adopted to estimate a reasonable model 



size of each audio event. Through this process, the state 
number is set as two for car-braking, four for engine, and 
six for gunshot and explosion sounds. These results make 
sense because we elaborately collect various kinds of 
training sounds for each audio event, and these numbers 
represent the degree of variations of different audio events. 
For example, the sounds of rifle and hand/machine gun are 
all collected as the gunshot training data. They vary 
significantly and should be represented by larger state 
numbers than that of simple sounds, such as the sharp but 
simple car-braking sounds.  
 
4.2 Model training 
 

For each audio event, 100 short audio clips each with 
length 3-10 seconds are selected as the training data. In the 
training stage, the features described in Section 3 are first 
extracted from each audio frame. Based on these feature 
vectors, a complete specification of HMM, which includes 
two model parameters (model size and number of mixtures 
in each state) and three sets of probabilities (initial 
probability, observation probability, and transition 
probability), are determined. The model size and initial 
probability could be decided by the clustering algorithm 
described in the previous subsection, and the number of 
mixtures in each state is empirically set as four. The Baum-
Welch algorithm is then applied to estimate the transition 
probabilities between states and the observation 
probabilities in each state. Finally, four HMMs are 
constructed for the audio events we concern. Details of the 
HMM training process will be further described in Section 
5, where HMMs are also used for semantic context 
modeling.  

 
4.3 Pseudo-Semantic Features 
 

After audio event modeling, for a given audio segment 
(the time unit for calculating log-likelihood values is 1 sec, 
the length of the sliding window defined in Section 3), the 
log-likelihood values with respect to each audio event are 
calculated by the Forward algorithm. However, unlike 
audio classification, we cannot simply classify an audio 
segment as a specific event even if it has the largest log-
likelihood score. An audio segment may just present 
general environmental sound and doesn’t present any 
predefined audio event. Therefore, to evaluate how likely 
an audio segment belongs or not belongs to a specific audio 
event, an approach based on the concept of likelihood ratio 
test [1] is applied.  

For each type of audio event, two log-likelihood 
functions are constructed from the log-likelihood values. 
The first function 

1( | )if x θ  represents the distribution of the 
log-likelihood values obtained from a specific audio event 

model i with respect to the corresponding audio sounds. 
For example, from the engine model with the set of engine 
sounds as inputs, the resulting log-likelihood values are 
gathered to form the distribution. Figure 3(a) illustrates this 
construction process, and we call this distribution as the 
‘within distribution’ of the engine event. In contrast, the 
second function 

0( | )if x θ  represents the distribution of the 
log-likelihood values obtained from a specific audio event 
model with respect to other audio sounds. Like the previous 
example, the ‘outside distribution’ of the engine event is 
constructed from the log-likelihood values gathered from 
the engine model with the sets of gun, explosion, and car-
braking sounds as inputs. These two distributions show 
how log-likelihood values vary with respect to within and 
outside a specific audio event and help us for 
discriminating a specific audio event from others.  
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Figure 3. Calculation of (a) within distribution and 
(b) outside distribution for audio event i.   
 

In the process of confidence evaluation, the audio 
segments with low average volume and zero-crossing rate 
are first marked as silence and the corresponding 
confidence values with respect to all audio events are set to 
be zero. For non-silence segments, the extracted feature 
vectors are input to the four HMMs, and the corresponding 
log-likelihood values are calculated. For a given audio 
segment, assume that the log-likelihood value from an 
event model is x, its confidence score with respect to audio 
event i is defined as:  

1

0

( | )( )
( | )

i
i

i

f xsc x
f x

θ
θ

= .                                                        (1) 

By the definition in Section 2.1, a semantic context often 
lasts for at least a period of time, and not all the relevant 
audio events exist at every time instant. Therefore, the 
confidence scores of several consecutive audio segments 
are considered integrally to capture the temporal 
characteristics in a time series [7]. We define a texture 
window (c.f. Figure 4(b)) of 5-sec long, with 2.5-sec 
overlaps, to go through the confidence values of 1-sec 
audio segments (i.e. the analysis windows). The means of 
confidence values in each texture window are then 
calculated to be the input of semantic context modeling. 
For each texture window, the mean values of confidence 
scores are calculated  



,1 ,2 ,( , ,..., )i i im mean sc sc sc= i N
.                                         (2) 

where sci,j denotes the confidence score of the j-th 
analysis window with respect to event i, and N denotes the 
total number of analysis windows in a texture window. The 
pseudo-semantic feature vector pt for the t-th texture 
window is defined as 

[ ]1 2, ,...,t kp m m m= .                                                        (3) 

The total pseudo-semantic features P is 
P = p1;p2;…;pT.                                                             (4) 

T is the total number of texture windows in the audio 
clip. By the settings described above, nine analysis 
windows, with 0.5 overlapping ratio, construct a texture 
window. The number of audio events k is four in this work.  

We call the features formed by confidence scores as 
pseudo-semantic features because they represent the 
intermediate characteristics between low-level physical 
audio features and high-level semantic contexts. The audio 
segments with higher confidence scores in the audio events 
relevant to a semantic context are more likely to convey 
this semantics. For example, the audio segments with 
higher confidence scores in gunshot and explosion events 
somehow drop hints on the occurrence of gunplay scenes. 
In this work, we investigate generative and discriminative 
approaches to model the pseudo-semantic features and 
characterize two semantic contexts: the gunplay and car-
chasing scenes. HMM is selected to be the instance of 
generative approach, and SVM is treated as the instance of 
discriminative approach.  
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Figure 4. Pseudo-semantic features calculation for 

semantic contexts modeling: (a) analysis 
windows and (b) texture windows.  

 
5. HMM for semantic context 
 

For describing a sophisticated semantic context, a 
general model, e.g. Gaussian mixture model, that only 
covers the event data distributions is not affordable. It is 
preferable to explicitly model the time duration density by 

introducing the concept of state transition. The confidence 
scores of relevant events don’t remain the same at every 
time instant. There would be some segments with low 
confidence scores because the sound effect is unapparent or 
is influenced by other environmental sounds. On the other 
hand, some segments may pose higher confidence because 
the audio events raise or explosively emerge. A model with 
more descriptive capability should take the temporal 
vari

he so-called fully connected HMMs, are used in 
our work.  

.1 Model training 
 

om several Hollywood 
act

 present the structures 
of sophisticated semantic contexts.  

.2 Semantic context detection 
 

 

= 1 or 2 for gunplay or car-chasing 
sce

If σs > ε, αs,t = 1. Otherwise, αs,t = 1,                             (5) 

ations into consideration.  
HMM is widely applied in speech recognition to model 

the spectral variation of acoustic features in time. It 
captures the time variation and state transition duration 
from training data and provides different likelihood values 
by giving different test data. In speech-related applications, 
the left-right HMMs, which only allow state index 
increasing (or staying the same) as time goes by, are 
considered to be suitable. But in the case of semantic 
context modeling, there is no specific consequence which 
formally represents the time evolution. Therefore, ergodic 
HMMs, or t

 
5

The confidence scores for some specific audio events, 
which are highly relevant to a specific semantic concept, 
are collected and modeled for conducting the high-level 
semantic context detection. To perform model training, six 
gunplay and car-chasing scenes, each with length 3-5 
minutes, are manually selected fr

ion movies as the training data.  
For each semantic context, the parameters of an HMM 

can be estimated by using the Expectation-Maximization 
(EM) strategy or the so-called Baum-Welch algorithm. The 
state number N and number of distinct observation symbols 
M are set as four in this work. After the training process, 
parameters of two ergodic HMMs, which respectively 
represent the gunplay and the car-chasing scenes, are 
estimated. These models elaborately characterize the 
densities of time-variant features and

 
5

The semantic context detection process is conducted 
following the same idea as that of the audio event detection.
For every 5-sec audio segment (a texture window), the log-
likelihood calculated by the Forward algorithm represents 
how the semantic context models match the given pseudo-
semantic features. The binary indicator αs,t is defined to 
show the appearance of semantic context s at the t-th 
texture window, s 

nes. That is,  



where σs is the log-likelihood value under semantic 
context model s, and ε is a pre-defined threshold for 
filtering out those texture windows with too small values. 
The threshold can be adjusted by the user to tradeoff the 
precision and recall of semantic context detection.  

 
6. SVM for semantic context 
 

SVM has been shown to be a powerful discriminative 
technique [8]. It focuses on structural risk minimization by 
maximizing the decision margin. The goal of SVM is to 
produce a model which predicts target value of data 
instances in the testing set. In our work, by giving the 
pseudo-semantic features, we exploit SVM classifiers to 
distinguish the textures of ‘gunplay’, ‘car-chasing’, and 
‘others’ scenes. Although the features obtained from the 
same semantic context may disperse variably in the feature 
space (which is caused by the various patterns of the same 
semantic context), the SVM classifier which maps features 
into a higher dimensional space and finds a linear 
hyperplane with the maximal margin can effectively 
distinguish one semantic context from others.  

Note that SVMs were originally designed for binary 
classification. In our work, we should classify a segment 
into gunplay, car-chasing, or other scenes, thus the SVM 
classifiers should be extended for multiclass classification 
both in training and testing processes.  

 
6.1 Model Training 
 

Recently, a few researches are conducted on reducing a 
multiclass SVM into several binary SVM classifiers [17]. 
According to the performance analysis of multiclass SVM 
classifiers [4], we adopt the ‘one-against-one’ strategy to 
model these three scenes. Three SVM models are 
constructed, i.e. ‘gunplay vs. car-chasing’, ‘gunplay vs. 
others’, and ‘car-chasing vs. others’. For training each 
model, given a training set of instance-label pairs (xi,yi), 
where n

ix R∈  and { }1, 1iy ∈ − , a SVM finds the solution of 

the following optimization problem:  

, , 1

1min
2

l
T

ib i
C

ω ξ
ω ω

=

+ ∑ξ                                                          (6) 

subject to ( )( ) 1T
i i iy x bω φ ξ+ ≥ − , 0iξ ≥ .  

The training data xi are mapped to a higher dimensional 
space by the function φ  and C is the penalty parameter of 
the error term. In model training, the kernel function 

( , ) ( ) ( )T
i j i jK x x x xφ φ≡  we used is the radical basis function 

(RBF), which is suggested in many SVM-based researches. 
That is, our kernel function is  

2
( , ) exp( )i jK x y x xγ= − − , 0γ > .                                  (7) 

It is crucial to find the right parameters C and γ  in RBF. 
We apply five-fold cross validation with a grid search of 
varying ( ),C γ  on the training set to find the best 

parameters achieving the highest classification accuracy.  
For training one SVM model, the pseudo-semantic 

features obtained from four audio events are labeled in the 
unit of a texture window. Then all labeled texture windows 
are collected together to produce the training data. Three 
binary SVM classifiers will be combined later to identify 
what semantic context a texture window belongs to.  

 
6.2 Semantic Context Detection 
 

In semantic context detection, the Decision Directed 
Acyclic Graph SVM algorithm (DAGSVM) [17] is applied 
to combine the results of one-vs-one SVMs. Figure 5 
illustrates one example of the detection procedure. Initially, 
the test vector from a texture window is viewed as the 
candidates for all three semantics. In the first step of 
detection, the test vector is input to the root SVM classifier, 
i.e. ‘car-chasing vs. others’ classifier. After this evaluation, 
the process branches to left if more vectors are predicted as 
‘others’ segments, and the car-chasing semantics is 
removed from the candidate list. The ‘gunplay vs. others’ 
classifier is then used to re-evaluate the testing vector. 
After these two steps, the vector which represents the 
characteristic of a texture window is labeled as ‘gunplay’ or 
‘others’.  

The DAGSVM separates the individual classes with 
large margins. It is safe to discard the losing class at each 
one-vs-one decision because, for the hard margin case, all 
of the examples of the losing class are far away from the 
decision surface. Hence, the choice of the class order in 
detection procedure is arbitrary.  
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Figure 5. The testing procedure of DAGSVM 

 
7. Performance evaluation 
 

The training data for audio event and semantic context 
modeling are manually selected from Hollywood movies. 
Note that the criteria of selecting training data for audio 



events and semantic contexts are different. For semantic 
context modeling, we collected the gunplay and car-
chasing scenes based on the experienced users’ subjective 
judgments, no matter how many relevant audio events exist 
in the scene. On the contrary, the training data for audio 
event modeling are many short audio segments that are 
exactly the audio events. For each audio event, 100 short 
audio clips are manually extracted from movies as training 
data. The total audio data for detecting each semantic 
context are about one hour long. They are manually labeled 
and are divided into two parts each with 30 minutes for 
training and testing.  
 
7.1 Evaluation of audio event detection 
 

In audio event detection, a ‘correct detection’ is 
declared if the audio segment within an analysis window is 
evaluated as an audio event and its corresponding 
confidence score is larger than a predefined threshold. The 
overall detection performance is listed in Table 1. The 
average recall is over 70% and the average precision is 
about 85%. Although the detection accuracy is often 
sequence-dependent and is affected by confused audio 
effects, the reported performance shows the applicability of 
our approach in conducting effective semantic context 
modeling. In addition, different audio events have different 
evaluation results. Because the car-braking sounds are 
often very short in time (less than one second, which is the 
length of one basic analysis unit defined in our work) and 
are mixed with other environment sounds, the detection 
accuracy is particularly worse than others. This situation is 
different for gunshot sounds because there is often a 
continuity of gunshots (the sounds of a machine gun or 
successive handgun/rifle shoots) in a gunplay scene. 
Nevertheless, because the car-braking sound is a 
representative audio cue of car-chasing scenes, we still take 
the detection results of car-braking sounds into account in 
car-chasing context modeling. 

 
Table 1. Overall performance of audio event 

detection 
Audio Event Recall Precision 

Gun 0.938 0.95 
Explosion 0.786 0.917 

Brake 0.327 0.571 
Engine 0.890 0.951 

Average 0.735 0.847 
 
7.2 Evaluation of semantic context detection 
 

In the semantic context detection, the models based on 
HMM and SVM are evaluated respectively. As the basic 
analysis unit is one texture window, the metrics of recall, 

precision, and false alarm rate are calculated to show the 
detection performance.  

We tested six 5-min movie segments (selected from 
‘We Were Soldiers’, ‘Windtalker’, ‘The Recruit’, and 
‘Band of Brother’) for gunplay and seven 5-min movie 
segments (selected from ‘Terminator 3’, ‘Ballistic:  Ecks vs. 
Sever’, ‘The Rock’, and ‘2 Fast 2 Furious’) for car-chasing. 
The detection performance is somewhat sequence-
dependent because different movies posses different 
essential characteristics. As shown in Table 2, the HMM-
based approach generally achieves over 95% recall and 
near 80% precision in detecting both semantic contexts, 
while the SVM-based approach achieves about 75% recall 
and over 80% precision. These results show a promising 
achievement of the proposed fusion schemes.  

The accuracy of semantic context detection would 
degrade when bad audio event detection is involved. For 
example, in Table 2, the detection accuracy and false alarm 
rate in test clips 4, 12, and 13 are relatively worse than that 
of the others, in both two fusion schemes. This degradation 
is caused by mixed audio sounds or confused acoustic 
characteristics between different sounds. One example is 
the simultaneous occurrence of gunshots and explosions, 
while the bass environmental sound may be misclassified 
as an engine event because of their acoustic similarity. 
Furthermore, the performance variation in car-chasing 
detection is generally larger than that of the gunplay 
detection. This trend also verifies the influences of different 
event detection accuracies described in Section 7.1, where 
the car-braking event detection doesn’t work as well as 
others.  
 
7.3 Discussion 
 

In comparison with the HMM-based and SVM-based 
approaches, we observed that the HMM-based scheme 
produces better recall rate, while the SVM-based scheme 
provides better precision rate. This result confirms the 
essential difference between generative and discriminative 
models. Because the discriminative approach directly 
models the decision boundary, it has better capability to 
exactly separate two sets of data that have different 
distributions. In addition, the model training process finds 
the hyperplane which maximizes the decision margin, and 
thus the discriminative approach has better precision in 
identifying a test vector. However, for the same reason, the 
discriminative approach is sensitive to noise data, which 
may be caused by the intermission of events or event 
detection errors. Like the duration from t4 to t5 in Figure 1, 
if the intermission duration is larger than the length of a 
texture window, or the mean confidences don’t show the 
apparent tendency towards some semantic contexts, the 
corresponding texture window may be misclassified. In the 
contrast, the generative approach computes the posteriori 



probability of a texture window with respect to two 
semantic contexts, and the result is flexible rather than just 
saying “yes” or “no”. Hence, the HMM-based approach 
works better in recall rate.  

 
Table 2. Performance of semantic context 

detection by (a) HMM and (b) SVM. 
Semantic 
Context 

Rcl. 
(a) 

Pr. 
(a) 

FA. Rcl. 
(b) 

Pr.
(b)

FA. 

Cp1 1 0.706 0.294 0.792 0.755 0.245
Cp2 1 0.797 0.203 0.847 0.877 0.123
Cp3 1 0.873 0.127 0.823 0.859 0.141
Cp4 0.917 0.611 0.389 0.667 0.696 0.304
Cp5 1 0.932 0.068 0.794 0.857 0.143
Cp6 1 0.850 0.150 0.648 0.833 0.167

G
unplay 

Avg. 0.986 0.795 0.205 0.762 0.813 0.187
Cp7 0.952 0.919 0.081 0.795 1 0 
Cp8 0.968 0.821 0.179 0.600 0.934 0.066
Cp9 1 0.902 0.098 0.667 0.949 0.051

Cp10 1 0.815 0.185 0.545 0.686 0.314
Cp11 1 0.755 0.245 0.950 0.884 0.116
Cp12 1 0.5 0.5 0.771 0.607 0.393
Cp13 1 0.605 0.395 0.806 0.773 0.227

C
ar-chasing 

Avg. 0.989 0.760 0.240 0.734 0.833 0.167
 

8. Conclusion 
 

We presented a hierarchical approach that bridges the 
gaps between low-level features and high-level semantics 
and facilitates semantic indexing in action movies. The 
proposed framework hierarchically conducts modeling and 
detection at two levels: audio event and semantic context. 
After careful selection of audio features, HMMs are applied 
to model the characteristics of audio events. At the 
semantic context level, generative (HMM) and 
discriminative (SVM) approaches are used to fuse pseudo-
semantic features obtained from the results of event 
detection and to model semantic contexts. Experimental 
results demonstrate a remarkable performance of the fusion 
schemes and signify that the proposed framework draws a 
sketch for constructing an efficient semantic indexing 
system.  

The proposed framework can be extended to other types 
of videos. It may be necessary to consider different 
combinations of events or include visual information 
according to the production rules of targeted videos. 
Another possible improvement may include the elaborate 
feature selection from a candidate pool by developing an 
automatic feature induction mechanism.  
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