
Level-of-Detail Representation of Bidirectional Texture Functions for

Real-Time Rendering

Wan-Chun Ma1 Sung-Hsiang Chao1 Yu-Ting Tseng1

Yung-Yu Chuang1 Chun-Fa Chang2 Bing-Yu Chen1 Ming Ouhyoung1

1National Taiwan University 2National Tsing Hua University

Abstract

This paper presents a new technique for rendering bidirectional tex-
ture functions (BTFs) at different levels of detail (LODs). Our
method first decomposes each BTF image into multiple subbands
with a Laplacian pyramid. Each vector of Laplacian coefficients
of a texel at the same level is regarded as a Laplacian bidirec-
tional reflectance distribution function (BRDF). These vectors are
then further compressed by applying principal components anal-
ysis (PCA). At the rendering stage, the LOD parameter for each
pixel is calculated according to the distance from the viewpoint to
the surface. Our rendering algorithm uses this parameter to deter-
mine how many levels of BTF Laplacian pyramid are required for
rendering. Under the same sampling resolution, a BTF gradually
transits to a BRDF as the camera moves away from the surface.
Our method precomputes this transition and uses it for multiresolu-
tion BTF rendering. Our Laplacian pyramid representation allows
real-time anti-aliased rendering of BTFs using graphics hardware.
In addition to provide visually satisfactory multiresolution render-
ing for BTFs, our method has a comparable compression rate to the
available single-resolution BTF compression techniques.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Antialiasing; I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Color, shading, shadowing,
and texture

Keywords: levels of detail, bidirectional texture function, anti-
aliasing, real-time rendering

1 Introduction

Over the past few years, we have seen an impressive improvement
in the capabilities of graphics processing units (GPUs). Among
many revolutionary features, the most fascinating achievement is
the realization of GPU programmability for real-time realistic ren-
dering. Today, real-time rendering techniques have been widely uti-
lized in video games. However, even with the help of today’s graph-
ics hardware, the visual quality of most games is still not as pho-
torealistic as we might expect (although not every computer game
needs this characteristic). One of the reasons behind is that most
materials of 3D objects are still only modelled by a combination
of multiple textures, such as the combination of bump, shininess,

Figure 1: Comparisons between the BTF renderings with and with-
out LOD representation. On the left, we show a model mapped
with a BTF. On the right, the top portion shows the rendering re-
sult without LOD and the bottom shows the results with LOD. The
smaller images are the original image displayed on the screen and
the larger ones are their magnifications. Without LOD, there are the
artifacts of jaggy lines on the model. With LOD, these artifacts are
removed.

specular and diffuse maps. Such a material synthesis technique is
widely adopted by games because it is suitable for GPU implemen-
tation. For example, in Xbox’s Halo 2 [Bungie 2004], most of the
objects are bump mapped to create depth illusion. However, bump
mapping has its limitations. It only captures the shading caused by
normal variation, but not the visually important effects such as self-
shadowing, masking and complex non-diffuse reflection. To render
more realistic materials interactively, there is a need for the gen-
eral and efficient representations of complex materials suitable for
real-time rendering.

BTF is an extension to textures dependent on the lighting and view-
ing direction and is suitable for modeling complex materials for
real-time rendering. While rendering of BTF has been extensively
studied for years, to best of our knowledge, there is no multires-
olution technique for anti-aliased BTF rendering. Multiresolution
technique for texturing is important as it allows anti-aliasing and
efficient rendering. The goal of this paper is to bridge this gap by
providing a multiresolution representation for real-time rendering
of BTF at different LODs.

Window

Viewpoint

Surface A

Surface B

a

b

Figure 2: Illustration of the LOD issue in pixel shading.

Appearance of real materials has different LOD properties. Re-
flectance of homogeneous materials, which can be represented by
a single BRDF, has no LOD issue: because the BRDF is only the
ratio between incoming and outgoing flux. The ratio is always the
same despite the distance to the camera. However, complex ma-
terials represented by BTF are different: under the same sampling
resolution, the BTF ratio could be different as the distance from the
camera to the object changes. For example, if we take a look at a
weave cloth closely, the knitting patterns are visible and distinct.
On the other hand, if the cloth is located far away from us, we can
hardly see these details.

Take Figure 2 as an example. Two pixels are projected on areas a

and b, which are on surfaces A and B respectively. Without loss
of generality, the area of b is larger than a because surface B is
farther away from the viewpoint. If the sampling rates at a and
b are equal, more samples are required to precisely calculate the
color of b. The implication is that it actually takes more time to
correctly shade the area which is far from the viewpoint. This is
not reasonable and run-time inefficient, since usually we pay more
attention to the shading of the objects near the camera, not the far
background. Hardware multisampling cannot solve this issue be-
cause the number of samples is not proportional to the pixel projec-
tion area (it is based upon fixed subpixel samples). Instead of trying
to integrate the samples on-the-fly, we propose an idea called pre-
computed LOD reflectance to solve this problem: the appearance
(reflectance) of different LODs should be precomputed and stored
for later use. In this paper, we propose an LOD representation of
BTF based on Laplacian pyramid. Our specific contributions are:

1. LOD Representation for BTF Rendering: At the render-
ing stage, the number of texture access depends on which
LOD is chosen. If the surface is far away from the viewpoint,
fewer levels are required to reconstruct its BTF. Therefore, the
number of texture accesses is reduced and the performance is
enhanced. Thus, the proposed method can achieve the anti-
aliased BTF rendering in real-time.

2. Good Compression Rate of BTF: Although our initial goal
is the anti-aliased and efficient rendering of BTFs, our repre-
sentation also has a comparable compression rate to the other
available BTF compression methods. It is because our BTF
Laplacian pyramid not only provides a multiresolution repre-
sentation but also removes much of the texel-to-texel BRDF
correlation. Hence, the norms of most of the Laplacian BRDF
vectors are around zero. Therefore, the variance and entropy
are reduced and a good compression rate is achieved.

2 Related Work

Our method builds upon prior work in the fields of BTF and LOD.
This section gives a brief overview of the related work and back-
ground knowledge relevant to the problem we try to address.

2.1 BTF

Dana et al. [1999] proposed the BTF representation to represent
the appearances of real-world surfaces. A BTF is a six dimensional
reflectance field:

F(p,ωi,ωo), (1)

which connects for each texture coordinate p the outgoing direction
ωo to the incident direction ωi. The raw data of a BTF is a series
of images taken from different viewpoints under various incident
lighting conditions. Usually there are two ways to arrange the BTF
data: one is to treat it as a set of BTF images Fωi,ωo(p), which is
the image for the lighting direction ωi and the view direction ωo;
another is to take it as a set of per-texel BRDFs F p(ωi,ωo), which
is the set of colors at a pixel p under different viewing and lighting
directions.

Due to its high dimensionality, a BTF requires gigantic memory
space for storage (usually more than hundreds of mega-bytes).
Hence, similar to most image-based rendering approaches, how to
efficiently compress and manipulate the BTF becomes an impor-
tant issue. Methods such as PCA [Sattler et al. 2003; Müller et al.
2004a], chained factorization [Suykens et al. 2003], reflectance
field [McAllister 2002; Meseth et al. 2004], and vector quantiza-
tion [Leung and Malik 2001] have already been adopted to deal
with the BTF in order to get better run-time efficiency. Recently,
multilinear decomposition is also used for BTF analysis [Vasilescu
and Terzopoulos 2004]. Ma et al. [2004] proposed to split the BTF
into two bands: a lowpass (an average BRDF of the material) and
a highpass band (shading effects of surface mesostructures). The
lowpass band is fitted by the Phong shading model. This operation
compresses the lowpass band to only a few of coefficients (shading
parameters). For the highpass band, a polynomial-based compres-
sion method is applied to it. However, the highpass band still com-
prise shading signals with various frequencies. Direct compression
of the intermixed highpass band may result in a less accurate recon-
struction, in other words, the loss of visible shading variations. It
is also hard to compute the coefficients of high power terms with a
polynomial-based method because of the restrictions on numerical
precision.

How to render BTF in real-time becomes another important is-
sue. Many recent methods demonstrate the ability of rendering
a single BTF mapped object in real-time. These methods usu-
ally take advantages of the graphics hardware to achieve real-time
performance. For the readers who are interested in BTF process-
ing and rendering, we recommend the excellent survey paper by
Müller et al. [2004b].

2.2 LOD

LOD has many applications in graphics such as mesh simplification
and terrain rendering. Here, we only discuss the LOD methods
related to material shading and rendering.

Rendering in different LODs is very important in computer graph-
ics. In a dynamic scene, a complex-shaded object could be viewed
at different distances from the viewpoint. As the object moves
further away from the viewpoint, one may notice some obvious

D0

F0

D1

F
2

L1

L0

Laplacian
Transform

PCA
Compression

PCA
Weight Maps

Laplacian BTF
Principle Components

Per-Pixel
�

i,
�

o, p,
�

Rendering
Result

Shading
Fitting Shading

Parameters

Synthesis

px

p y

(

�

i,

�

o
)

D2

Laplacian
BTF

BTF

D
2

Mean Vector

e0

e1

e2

Figure 3: Illustration of the proposed algorithm. First, a Laplacian transform is applied to the BTF images. Then, the BTF subbands, which
contain information of image-based appearance, are further compressed by PCA. The mean vector of the top level Laplacian pyramid is fitted
by a parametric shading function. With the extracted eigen Laplacian BRDFs and shading parameters, we can reconstruct the BTF at the
pixel shader stage.

aliasing artifacts such as shimmering, scintillation, and the Moiré
patterns. The most popular anti-aliasing method for textures is
mipmapping [Williams 1983]. Mipmapping works by creating
lower resolution, prefiltered versions of the texture map. Dur-
ing rendering, the mipmap at the appropriate resolution is chosen.
Hence, the texture pixels (texels) are already properly filtered when
they are rendered on the screen. The intent of mipmapping is to
keep the pixel-to-texel at least 1:1 in order to catch up the Nyquist
rate, or in other words, to avoid aliasing. However, mipmapping
can only be applied on color texture. Shading parameter maps such
as shininess map cannot apply mipmapping because it is not physi-
cally correct.

For achieving LOD of arbitrary shading, Goldman [1997] created
multiple shaders manually in order to render fur at different LODs.
Meyer et al. [2000] proposed an analytical shader model based on
micro-geometry reflection for rendering a forest of pine-trees. Self-
shadowing and visibility are taken into account in the shaders with-
out having to sample them. Adabala et al. [2003] demonstrated the
ability of rendering woven clothes at any LOD. For LOD of nor-
mal maps, Fournier [1992] suggested to use a normal map pyramid,
where each level stores distributions of surface normals. These dis-
tributions are represented as sums of a small number of Phong-like
spreads of surface normals at a given resolution. Kautz et al. [2001]
presented a method that automatically synthesizes bump maps at ar-
bitrary LOD using a normal density function. Toksvig [2004] pro-
posed a mipmapping technique of normal maps which uses shorten-
ing as a measure of normal variation to eliminate specular highlight
aliasing.

Run-time efficiency is another important LOD topic, as pointed out
by Olano et al.[2003]. They proposed an automatic shader simpli-
fication algorithm. The basic idea is to manually identify blocks of
shader code that are candidates for reduction. And then, an LOD
shader is created automatically by assembling these code blocks
with appropriate conditionals. The LOD could be chosen by dif-
ferent viewing distances. They also mentioned the possibility of
using different LOD selection criterions, such as hardware resource
limits.

3 Algorithm

In this section, we describe our algorithm for generating and render-
ing the LOD representations of BTFs. Figure 3 shows an overview
of our algorithm. The method for generating the LOD represen-
tation consists of three stages: band segmentation of BTF images
with Laplacian pyramids (Section 3.1), compression of Laplacian
BRDFs with PCA (Section 3.2), and data packing (Section 3.3).
For rendering the LOD representations in real-time, we rely on the
power of modern consumer graphics hardware (Section 3.4).

3.1 Band segmentation of BTF images with Lapla-

cian pyramids

The input to our algorithm for generating LOD representations is a
BTF, F(p,ωi,ωo). We take BTFs from the BTF database provided
by University of Bonn 1. In this database, for each material, 6,561
images are taken (81 lighting and 81 viewing directions) to sample
the variations of the appearance.

To reduce the color correlation for higher compression rate, we first
convert each BTF image, Fωi,ωo(p), to the YCbCr color space. We
then perform a multiresolution analysis for each channel separately.
For each color channel, we decompose a BTF image into multi-
ple subbands using Laplacian pyramids [Burt and Adelson 1983].
The resulted Laplacian pyramid represents an image as a series of
bandpass-filtered images, each sampled at successively sparser spa-
tial densities. The scale of the Laplacian operator doubles from a
level to the above level of the pyramid, while the center frequency
of the passband is reduced by an octave. The Laplacian pyramid
is a versatile data structure with many attractive features for im-
age processing. One essential property of Laplacian pyramid is that
the first-order statistics of the bandpass filtered images are highly
peaked around zero, which means these images are largely decor-
related and can be highly compressed. Another obvious option for
band segmentation is the wavelet transform. We chose Laplacian
transform because it requires less computation and is easier to be
implemented on GPU.

1http://btf.cs.uni-bonn.de/

Figure 4: Elimination of shading discontinuity using a parametric
shading function. On the left is the BTF rendering using the nearest
lighting and viewing directions, which produces a distinct zigzag
pattern. On the right, a parametric shading model is used to rectify
the result.

We obtain a Laplacian pyramid for a BTF image by repeatedly ap-
plying the following procedure:

Fωi,ωo
k+1 (p) =↓p g(p)∗Fωi,ωo

k (p), (2)

Lωi,ωo
k (p) = Fωi,ωo

k (p)− ↑p Fωi,ωo
k+1 (p), (3)

where Fωi,ωo
0 (p) = Fωi,ωo(p) is the original BTF image and

Fωi,ωo
k (p) is the result of applying an appropriate low-pass filter

g(p) and the downsampling operation ↓p on Fωi,ωo
k+1 (p). The di-

mension of Fωi,ωo
k (p) is 1/2k of the dimension of the original BTF

image. The kth-level BTF Laplacian coefficients, Lωi,ωo
k is the

bandpass filtered image obtained by subtracting the lowpass filtered
Fωi,ωo

k+1 from Fωi,ωo
k as shown in Equation (3), where ↑p donates

the upsampling operation. We perform the above procedure λmax
times. The Laplacian coefficients Lωi,ωo

0 (p), · · · ,Lωi,ωo
λmax−1(p) and the

lowpass filtered image Fωi,ωo
λmax

(p) are kept to build a (λmax+1)-level
Laplacian pyramid. In our implementation, we chose a 3× 3 box
filter for downsampling and low-pass filtering, and used the nearest
neighbor as the upsampling operation.

3.2 Compression of Laplacian BRDFs with PCA

We stack all the Laplacian coefficients at level k obtained in the
previous section, Lωi,ωo

k (p), together to form the Laplacian BTF
at level k, Lk, where Lk(p,ωi,ωo) = Lωi,ωo

k (p). Each Laplacian
BTF Lk can be regarded as a set of per-texel Laplacian BRDFs,
Lp

k (ωi,ωo). We treat each Laplacian BRDFs Lp
k as a vector and

perform PCA on these vectors to find the n most dominating prin-
cipal components at level k, ek j , j = 1..n. We call ek j the j-th
Laplacian BRDF principal component (or eigen Laplacian BRDF)
at level k. We can then approximate each Lp

k (ωi,ωo) using a linear
combination of ek j:

Lp
k (ωi,ωo) ≈

(

n

∑
j=1

dk j(p)ek j(ωi,ωo)

)

+ µk(ωi,ωo),

where dk j(p) stores the PCA weights for a pixel p and µk is the
mean of Laplacian BRDFs. Due to the property of Laplacian trans-
form, µk is actually equal to a zero vector, so we can approximate
the whole Laplacian BTF at level k as

Lk(p,ωi,ωo) ≈
n

∑
j=1

dk j(p)ek j(ωi,ωo). (4)

Hence, for each Laplacian BTF, Lk, we only need to store the eigen
Laplacian BRDFs ek j and the corresponding weights dk j for recon-
struction.

We stop the construction of the pyramid when the number of Lapla-
cian BRDFs is close to n and PCA is not necessary any more.
For the top of the Laplacian pyramid, Fλmax

, we also approximate
it by PCA. However, Fλmax

is a lowpass filtered image instead of
Laplacian coefficients, so its mean vector is not zero and has to be
stored. As suggested by Ma et al. [2004], we fit the mean vec-
tor µλmax

(ωi,ωo) of Fλmax
by a parametric shading function. It is

because, after several passes of lowpass filtering, only the low fre-
quency appearance of a BTF, such as the diffuse components, stays
in µλmax

(ωi,ωo). Hence, it is usually sufficient to fit µλmax
(ωi,ωo)

with a parametric shading model and only to store the fitted shading
parameters. Ideally, a complex BRDF model could be used. In our
implementation, we used the Phong shading model because it is a
built-in shading model in GPU and we found it sufficient for the
materials we have experimented. Hence, we approximate Fλmax

by
µ ′

λmax
:

µ ′
λmax

(ωi,ωo) = ka + kd(N ·L)+ ks(N ·H)α , (5)

where ka is the ambient contribution, kd is the diffuse coefficient,
ks and α are the specular coefficients, N = (0,0,1) is the normal, L
depends on ωi and H is a function of ωi and ωo. To find the shad-
ing parameters ka, kd , ks and α , we used the Levenberg-Marguardt
algorithm for the resulted non-linear optimization problem.

Another benefit of using a shading model instead of storing the orig-
inal mean vector µλmax

(ωi,ωo) is that we can avoid the shading dis-
continuities without using expensive interpolation operations. Be-
cause BTF is only sampled from a set of viewing and lighting direc-
tions, to evaluate µλmax

(ωi,ωo) for an arbitrary set of ωi and ωo, one
solution is to interpolate the nearby samples [Liu et al. 2004; Sat-
tler et al. 2003] by assuming that µλmax

is a piecewise-linear func-
tion. However, the interpolation operation an expensive operation
on GPU. Also, since µλmax

is an average of per-texel BRDFs, it
should be better approximated by shading models. Figure 4 shows
the comparisons between using the nearest neighbor and the shad-
ing model.

Note that the above approximation is only valid for the Y channel.
For the Cr and Cb channels, we found that their mean vectors for
Fλmax

are nearly constant with respect to the change of lighting and
viewing. Hence, for mean vectors in Cb (and Cr) channels, we only
approximate it as a constant function whose value is the average of
all the Cb (or Cr) values, c, that is,

µ ′
λmax

(ωi,ωo) = c. (6)

3.3 Data packing

We assume that the original BTF is consisted of p×q 24-bit RGB
images of size r× r, where p and q are the number of lighting and
viewing sampling directions. To efficiently render the LOD repre-
sentation using GPU, we have to compactly pack the LOD repre-
sentation into several texture maps. For that purpose, we use eight
eigen Laplacian BRDFs for Y channel and two for Cb and Cr chan-
nels at every level. The LOD representation can then be represented
as two texture maps for efficient BTF rendering on GPUs:

1. Eigen Laplacian BRDF map. Each eigen Laplacian BRDF, as
shown in the top of Figure 5, is tabulated and indexed by a
light-view index Tpc = (Tωi ,Tωo), where Tωi and Tωo are the
sequence numbers corresponding respectively to the lighting
and viewing directions that BTF images were sampled. This

L0

Y5-8

L0

Cb1-2 ,Cr1-2

L0

Y1-4
L1

Cb1-2, Cr1-2

L1

Y5-8

L1

Y1-4L2L2

x L2

L0
Y1-4

L0
Y5-8

L0
 Cb1-2
 Cr1-2

L1
Y1-4

L1
Y5-8

L1
 Cb1-2
 Cr1-2

L2
Y1-4

L2
Y5-8

L2
 Cb1-2
 Cr1-2

L3
Y1-4

L3
Y5-8

L3
 Cb1-2
 Cr1-2

F4
Y1-4

F4
Y5-8

F4
 Cb1-2
 Cr1-2

Figure 5: On the left, eigen Laplacian BRDF map (top) and PCA
weight map (bottom) are shown. The map data is scaled and shifted,
and only RGB channels are displayed. On the right is the corre-
sponding arrangements of the maps. Eight eigenvectors are stored
for Y channel (Y1−8) and two for Cb and Cr (Cb1−2,Cr1−2).

map is stored as a 3p× (λmax + 1)q 128-bit RGBA floating
point texture, and the total size is 48pq(λmax +1) bytes.

2. PCA weight map. We pack the PCA weight maps at different
levels into a single square texture, as shown in the bottom
of Figure 5. This map is stored as a 2r × 2r 128-bit RGBA
floating point texture, and the total size is 64r2 bytes.

In our experiments, q = p = 81 and r = 64. Hence, the size of the
original BTF data is 80,621,568 bytes. We choose λmax = 4. There-
fore, the size of eigen Laplacian BRDF map and PCA weight map
is 1,574,640 and 262,144 bytes respectively.

3.4 Rendering

The whole rendering procedure is executed by GPU. For each pixel,
we use a pixel shader program to perform the following steps to
calculate its pixel color.

1. Obtain the surface texture coordinate and the light-view in-
dex. For the pixel to be rendered, we first obtain its surface
texture coordinate p as the index to access PCA weight map.
Let ωi and ωo be the lighting and viewing directions with re-
spect to the pixel to be rendered. First, we have to obtain the
corresponding sequence numbers to index the eigen Lapla-
cian BRDF map. For that purpose, we use the nearest neigh-
bor approach. That is, we find the closest lighting(viewing)
direction to ωi(ωo) at which BTF was sampled, and use its
corresponding sequence number to index the eigen Laplacian
BRDF map. To speed up the nearest neighbor search, in the
preprocessing stage, we prepare a lookup table to store the se-
quence number of the closest direction for many directions.
We can then determine the light-view index Tpc for ωi and ωo
by simply looking up this map.

2. Determine the LOD parameter. We use the range-based LOD
selection method [Akenine-Möller and Haines 2002] to obtain
a continuous LOD parameter λ between 0 and λmax. More
specifically, λ = min(λmax,max(log2(d),0)), where d is the

distance from the viewpoint to the surface point correspond-
ing to the pixel to be rendered.

3. Obtain the eigen Laplacian BRDFs and PCA weights. For
each level k, bλc≤k≤λmax, we compose two n-dimensional
vectors: (a) PCA weight vector Dk, in which Dk[j] =
dk j(p),1 ≤ j ≤ n, and (b) eigen Laplacian BRDF vector Ek,
in which Ek[j]=ek j(Tpc),1 ≤ j ≤ n. These vectors are com-
posed by directly looking up the PCA weight map and the
eigen Laplacian BRDF map using p and Tpc.

4. Calculate the pixel color. The pixel color is calculated as
(

λmax

∑
k=bλc

wkDT
k Ek

)

+ µ ′
λmax

(ωi,ωo), (7)

where wk = min(max(1−λ+k,0),1) is the weight for the con-
tribution of level k of λ and the vector µ ′

λmax
(ωi,ωo) is the

Fλmax
mean vector approximation described in Equations (5)

and (6). Finally, we convert the YCbCr pixel color back to the
RGB color space.

The maximal level, λmax affects the number of texture access in the
rendering stage. The reconstruction of a single level requires six
texture accesses.

4 Results

We used a desktop PC with an Intel Pentium 4 3.0GHz CPU, 1GB
memory and an NVIDIA GeForce 6800 GPU with 128MB video
memory to demonstrate our system. Vertex and fragment shaders
were implemented with the NVIDIA Cg shading language. The
window size of the rendering system is 1024 × 768. Under this
preset configuration, the filling rate of 30+ frames per second could
be reached. However, because the algorithm is fill-limited, the run-
time performance varied with the number of pixels on the projected
image.

4.1 LOD

Figure 7 compares the images generated with and without LOD
BTF rendering. Without LOD rendering, distinct Moiré patterns re-
veal when the object is rendered at a distance. The proposed method
provides continuous LODs using linear interpolations between lev-
els. Our LOD BTF representation successfully captures the pro-
gressive transition between BTF and BRDF. The performance of
our rendering system varies with different selected LODs: less de-
tailed BTF rendering results in a faster frame rate because fewer
texture accesses are needed. (Notice that GeForce 6 Series sup-
port dynamic branching, which allows true loops and conditionals
in shader programs. We used conditionals in the fragment shader to
determine which level we need to access.)

4.2 Compression

Using the data packing schema described in Section 3.3, the total
size of the compressed data is 1,836,784 bytes and the compres-
sion rate is 43.9x. Table 1 lists the mean square errors (MSE) of the
reconstructions for different materials. The measurement of error
is the same as suggested by Meseth et al. [2004]. Note that most of
the shading variations and reconstruction errors lie in the Y chan-
nel. Figure 6 shows the reconstruction errors in the Y channel with

Material Average Minimum Maximum
error error error

Y 0.0285 0.0161 0.0379
Wool Cb 0.0075 0.0037 0.0128

Cr 0.0089 0.0048 0.0146
Y 0.0359 0.0182 0.0925

Impalla Cb 0.0046 0.0033 0.0083
Cr 0.0040 0.0027 0.0064
Y 0.0137 0.0069 0.0373

Wallpaper Cb 0.0034 0.0025 0.0080
Cr 0.0028 0.0019 0.0079
Y 0.0302 0.0186 0.0404

Proposte Cb 0.0104 0.0063 0.0200
Cr 0.0081 0.0049 0.0133
Y 0.0254 0.0142 0.0354

Corduroy Cb 0.0068 0.0041 0.0085
Cr 0.0043 0.0028 0.0059

Table 1: BTF reconstruction errors of different materials in the Y,
Cb and Cr channels using the data packing schema described in
Section 3.3. This table justifies why we allocate more space for
the Y channel than Cb and Cr channels. Notice that eight principal
components were used for the Y channel in this table.

respect to the number of principal components used. This figure
justifies our choice of using eight eigen Laplacian BRDFs for the Y
channel.

5 Conclusions and Future Work

We have presented a method which introduces Laplacian pyramid
into the BTF rendering framework to achieve continuous LOD ren-
dering. We take an arbitrary BTF as the input, build a multires-
olution representation and use it for shading reconstruction at the
rendering stage. The advantages of the proposed LOD BTF repre-
sentation include:

1. Anti-aliasing rendering is achieved by our LOD BTF repre-
sentation. Subbands of the BTF progressively contribute to
the rendering result according to the viewing distance.

2. At the rendering stage, the real-time performance depends on
which LOD is chosen. If the BTF surface is far away from
the viewpoint, fewer BTF levels are required to reconstruct
the appearance. Therefore, the number of texture accesses is
reduced. and the frame rate could be increased.

3. The compression rate of our subband compression method for
BTFs is comparable to the best available BTF compression
methods.

BTF is an effective representation for complex materials and there
are number of ways to make it more practical to be used in game or
film industry. We would like to proceed a better analysis on BTF
subband data. We also like to study and implement the wavelet-
based BTF representation, and try to integrate it into the wavelet
lighting framework [Ng et al. 2003; Ng et al. 2004]. In addition,
how to synthesize the BTF on arbitrary surface with our represen-
tation is also an challenge. We also plan to study on other topics
such as large-scale BTF acquisition and synthesis (such as grass
field, sandy beach, forest and so on) and the importance sampling
for faster BTF acquisition.

1 2 3 4 5 6 7 8 9 10 11 12
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Number of Principal Components

M
S

E

Impalla

Proposte

Corduroy

Wool

Wallpaper

Figure 6: Plot of the reconstruction errors in the Y channel with
respect to the number of principal components. This plot indicates
that it is sufficient to use eight principal components for most ma-
terials we have tested.

Acknowledgement

Many thanks to the following people for their valuable sugges-
tions: Tomoyuki Nishita, Ja-Ling Wu, I-Chen Lin, James Davis
and Erika S. Chuang. We would also like to thank the review-
ers for their pertinent comments. This work was partially sup-
ported by the CIET-NTU(MOE) and National Science Council
of Taiwan under NSC93-2622-E-002-033, NSC93-2752-E-002-
007-PAE, NSC93-2213-E-002-083, NSC93-2213-E-002-084 and
NSC94-2213-E-002-051.

References

ADABALA, N., MAGNENAT-THALMANN, N., AND FEI, G. 2003.
Real-time rendering of woven clothes. In Proceedings of ACM
Virtual Reality Software and Technology 2003, 41–47.

AKENINE-MÖLLER, T., AND HAINES, E. 2002. Real-Time Ren-
dering, 2nd Ed. A. K. Peters.

BUNGIE, 2004. HALO 2. http://www.bungie.net/Games/Halo2/.

BURT, P. J., AND ADELSON, E. H. 1983. The Laplacian pyramid
as a compact image code. IEEE Transaction on Communications
COM-31, 4, 532–540.

DANA, K. J., VAN GINNEKEN, B., NAYAR, S. K., AND KOEN-
DERINK, J. J. 1999. Reflectance and texture of real-world sur-
faces. ACM Transactions on Graphics 18, 1, 1–34.

FOURNIER, A. 1992. Filtering normal maps and creating multiple
surfaces. TR-92-41, Department of Computer Science, Univer-
sity of British Columbia.

GOLDMAN, D. B. 1997. Fake fur rendering. In Proceedings of
ACM SIGGRAPH 1997, 127–134.

KAUTZ, J., HEIDRICH, W., AND SEIDEL, H.-P. 2001. Real-
time bump map synthesis. In Proceedings of Graphics Hardware
2001, 109–114.

original

original original

original

LOD

LOD

LOD

LOD

renderings from a closer distance renderings from a farther distance

w
o

o
l

co
rd

u
ro

y

Figure 7: Comparisons between the original BTF and LOD BTF renderings for the materials wool (top) and corduroy (bottom) at closer (left)
and farther (right) distances. For each set of images, original BTF rendering is shown on the left, LOD BTF rendering is shown in the middle,
and a closeup view for parts of these two renderings is shown on the right (the top one is the closeup for the original BTF rendering and the
bottom one is for the LOD BTF rendering.).

LEUNG, T. K., AND MALIK, J. 2001. Representing and recogniz-
ing the visual appearance of materials using 3D textons. Inter-
national Journal of Computer Vision 43, 1, 29–44.

LIU, X., HU, Y., ZHANG, J., TONG, X., GUO, B., AND SHUM,
H.-Y. 2004. Synthesis and rendering of bidirectional texture
functions on arbitrary surfaces. IEEE Transactions on Visualiza-
tion and Computer Graphics 10, 3, 278–289.

MA, W.-C., CHAO, S.-H., CHEN, B.-Y., CHANG, C.-F., OUHY-
OUNG, M., AND NISHITA, T. 2004. An efficient representation
of complex materials for real-time rendering. In Proceedings of
ACM Virtual Reality Software and Technology 2004, 150–153.

MCALLISTER, D. K. 2002. A Generalized Surface Appearance
Representation For Computer Graphics. PhD thesis, University
of North Carolina at Chapel Hill.

MESETH, J., MÜLLER, G., AND KLEIN, R. 2004. Reflectance
field based real-time, high-quality rendering of bidirectional tex-
ture functions. Computers and Graphics 28, 1, 103–112.

MEYER, A., AND NEYRET, F. 2000. Multiscale shaders for the ef-
ficient realistic rendering of pine-trees. In Proceedings of Graph-
ics Interface 2000, 137–144.

MÜLLER, G., MESETH, J., AND KLEIN, R. 2004. Fast environ-
mental lighting for local-PCA encoded BTFs. In Proceedings of
Computer Graphics International 2004, 198–205.

MÜLLER, G., MESETH, J., SATTLER, M., SARLETTE, R., AND
KLEIN, R. 2004. Acquisition, synthesis and rendering of bidi-
rectional texture functions. In Eurographics 2004 State of The
Art Report, 69–94.

NG, R., RAMAMOORTHI, R., AND HANRAHAN, P. 2003. All-
frequency shadows using non-linear wavelet lighting approxima-
tion. ACM Transactions on Graphics 22, 3, 376–381. (Proceed-
ings of ACM SIGGRAPH 2003).

NG, R., RAMAMOORTHI, R., AND HANRAHAN, P. 2004. Triple
product wavelet integrals for all-frequency relighting. ACM
Transactions on Graphics 23, 3, 477–487. (Proceedings of ACM
SIGGRAPH 2004).

OLANO, M., KUEHNE, B., AND SIMMONS, M. 2003. Automatic
shader level of detail. In Proceedings of Graphics Hardware
2003, 7–14.

SATTLER, M., SARLETTE, R., AND KLEIN, R. 2003. Efficient
and realistic visualization of cloth. In Proceedings of Eurograph-
ics Symposium on Rendering 2003, 167–177.

SUYKENS, F., VOM BERGE, K., LAGAE, A., AND DUTRÉ, P.
2003. Interactive rendering with bidirectional texture functions.
Computer Graphics Forum 22, 3, 463–472. (Proceedings of Eu-
rographics 2003).

TOKSVIG, M. 2004. NVIDIA Technical Brief .

VASILESCU, M. A. O., AND TERZOPOULOS, D. 2004. Tensor-
textures: Multilinear image-based rendering. ACM Transactions
on Graphics 23, 3, 336–342. (Proceedings of ACM SIGGRAPH
2004).

WILLIAMS, L. 1983. Pyramidal parametrics. In Proceedings of
ACM SIGGRAPH 1983, 1–11.

Figure 8: Rendering result of different materials under various lighting conditions. From top to bottom: impalla, wallpaper, proposte and
corduroy. (Models courtesy of NVIDIA Corp.)

