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Figure 1: The proposed system for food identification and quantity estimation. The identification function provides top 5 candidates to users
as a reference, and the estimation function measures the quantity of food. By combining these two functions, the nutrition facts and calories
can be calculated more precisely.

Abstract

Computer-aided food identification and quantity estimation have
caught more attention than before due to the growing concern of
health and obesity. The identification problem is usually defined
as an image categorization or classification problem and several
researches on this topic have been proposed. In this paper, we
address the issues of feature descriptors in the food identification
problem and introduce a preliminary approach for the quantity es-
timation using depth information. Sparse coding is utilized in the
SIFT and Local binary pattern feature descriptors, and these fea-
tures combined with Gabor and color features are used to represent
food items. A multi-label SVM classifier is trained for each fea-
ture, and these classifiers are combined with multi-class Adaboost
algorithm. For evaluation, 50 major categories of worldwide food
are used, and each category contains 100 photographs from differ-
ent sources, such as photos taken manually or from Internet web
albums. An overall accuracy of 68.3% is achieved, and success
at top-N candidates achieved 80.6%, 84.8%, and 90.9% accuracy
accordingly when N equals 2, 3, and 5, thus making mobile appli-
cation practical. The experimental results show that the proposed
methods greatly improve the performance of original SIFT and LBP
feature descriptors. On the other hand, for quantity estimation us-
ing depth information, a straight forward method is proposed for
certain food, while transparent food ingredients such as pure water
and cooked rice are temporarily excluded.
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1 Introduction

Automatic food recognition has been paid more attention in recent
years since the growing concern in dietary related health issues such
as obesity. There is a rise in the demand of E-Healthcare system in
recent years with the widespread of mobile devices and wireless
communication networks, such as smartphones and the third gen-
eration (3G) telecommunications. With mobile devices in hands,
people can record their lives with photos, videos, location infor-
mation, and even vital signs, and these information can be send,
stored or analyzed over cloud services. Daily diet is one key item
in the system due to its strong correlation to health and chronic dis-
eases, such as obesity, diabetes, heart disease, and cancer. Aizawa
et al. proposed the FoodLog [Kitamura et al. 2008], a web-based
system, which allows people to keep a log of their dietary intake by
taking and uploading the photographs of the food they eat. The sys-
tem tries to locate and analyze nutritional composition of the meals
from photographs, and calculates the dietary balance according to
“My Pyramid Specification”[United States Department of Agricul-
ture 2012], which categorizes food into five groups: grains, veg-
etable, meat/beans, milk, and fruit.

In this paper, we target to identify food categories and to estimate
their quantities. We observed from previous literature that the fea-
ture descriptor is the key for food identification, and the most used
include SIFT, color, and texture feature descriptors; therefore, we
exploited these feature descriptors for food identification. The ex-
perimental comparisons and results for these feature descriptor are
described carefully in this paper. We also introduce our prelimi-
nary idea for the quantity estimation based on the depth information
which has not yet been utilized in previous literatures.

The contribution of our work includes:

1. Our system can automatically identify food categories and has
been implemented as an Android application (not disclosed
due to the blind review). The overall accuracy for 50 cate-
gories of food achieves 68.3% by cooperating with SVM and
multi-class Adaboost algorithm. Success at top-3 and top-5



candidates can reach 84.8% and 90.9% accuracy.

2. A preliminary approach is introduced for the quantity and nu-
trition estimation, based on the utilization of depth informa-
tion.

3. Our collection of food database is provided as a research site
(http://www.cmlab.csie.ntu.edu.tw/project/food/), open
to researchers interested in this topic and for fair comparison,
but not for commercial usage.

2 Related Works

Several works have been proposed for food recognition and identi-
fication, and the most popular method is to treat them as an image
categorization or classification problem. The FoodLog system ex-
tract color, circle edge, and SIFT features from food images, and
utilize support vector machine (SVM) for training and prediction
[Kitamura et al. 2008; Kitamura et al. 2010]. 91.8% accuracy is
achieved in food-non-food image detection (10-fold cross valida-
tion in 9000 images), and 38.2% accuracy is achieved in food bal-
ance estimator using “My Pyramid Specification” 5 categories (10-
fold cross validation in 900 images). In [Joutou and Yanai 2009;
Hoashi et al. 2010], color, texture, gradient, and SIFT features are
extracted from food images, and a separate classifier is trained for
each feature. Finally, all the classifiers are weighted combined with
the multiple kernel learning method, and 61.3% and 62.5% accu-
racy is achieved for 50 and 85 categories of Japanese food using 9
and 17 features (5-fold cross validation in 8500 images). In [Yang
et al. 2010], food items are represented with calculating pairwise
statistics between local features computed over a soft pixel level
segmentation of the image into eight ingredient types. In [Bosch
et al. 2011; Zhu et al. 2011], local features extracted from patches
and global statistic features calculated from all pixels in an image,
are combined as a food item descriptor. Then food descriptors can
be used to locate, segment, and identify food images. 86.1 % ac-
curacy is achieved in a dataset of 179 hand-segmented images from
39 food categories, however, the dataset is too small (179 images).

3 Food Category Identification

3.1 Feature Extraction

3.1.1 SIFT with Sparse Coding

SIFT has been proven its robustness in feature detection and match-
ing since proposed in [Lowe 2004]. The bag-of-feature (BOF)
model combined with SIFT obtained a great success in image cat-
egorization. The approach constructs a set of “visual words” by
quantizing descriptors extracted from image sets, and each image
can be represented with the histogram of visual words instead of
raw feature descriptors.

Recently, sparse coding/representation has attracted much interest
and has been applied to image classification [Yang et al. 2009].
Sparse coding algorithm treats an image as a linear combination of
a few basis elements from a dictionary or visual words. The learned
dictionary has shown its performance over those learned by previ-
ous methods, such as by K-mean quantization [Yang et al. 2009].
Therefore, we apply sparse coding to SIFT features in the proposed
framework.

First, a dictionary will be learned from a set of training images by
sparse coding, and the dictionary will contain a set of SIFT basis
descriptor. Let X = [x1,x2, ...,xN ] ∈ RM×N be the SIFT de-
scriptors extracted from the image set, where M is the dimension-
ality of each SIFT descriptor andN is the number of descriptors. A

dictionary D = [d1,d2, ...,dK ] ∈ RM×K is trained using sparse
coding formulation:

min
D,U

N∑
i=1

‖xi − uiD‖2 + λ|ui|

subject to ‖dk‖ ≤ 1, ∀k = 1, 2, ...,K

(1)

where ui ∈ RK is the coefficient vector of xi when encoded by the
dictionary D. The dictionary D is an overcomplete basis set, i.e.
K � M . The parameter λ is a trade-off between reconstruction
error and sparsity. Increasing in λ leads to enlarge the sparsity of the
learned coefficient vector and vice verse. The L2-norm constrain on
dk is to avoid trivial solutions on ui.

After the training phase, the coding phase encodes the SIFT de-
scriptor set X of each image with the coefficient vector obtained by
optimizing Eq 1. Since different numbers of SIFT features are ex-
tracted from different images, a histogram or pooling operation is
required for the encoded coefficient vectors, and the most common
way is to compute histogram. In previous literature, other pooling
mechanisms, such as max pooling were proposed for representing
the image with the encoded coefficient vectors. Multi-scale max
pooling, which pools the coefficient vectors at different grid levels
of image, outperforms in most image classification and object de-
tection tasks [Yang et al. 2009]. In our experiment; however, the
best performance is achieved by computing histogram. The results
will be shown and discussed in Section 5.

3.1.2 Local Binary Patterns with Multi-resolution Sparse
Coding

As an efficient non-parametric representation of the local compo-
sition of an image, one of the proposed methods is Local Binary
Patterns (LBP). LBP is designed for texture description [Ojala et al.
2002]. In this work, we propose to apply sparse coding to improve
the LBP feature descriptor. First, we construct 3 levels of pyramid
with different image sizes, e.g. 1/1, 1/4, 1/16 for each training im-
age. We extract LBP 59-bins histograms from 16×16 patches with
step size of 8 pixels in each level of image pyramids as described
in [Ojala et al. 2002]. All the LBP histograms are used to learn a
59 × 2048 dictionary . After the training, the LBP histogram of
each image patch can be encoded to a 2048-dimension vector with
sparse coding using the dictionary. Comparisons of different set-
tings in LBP are listed in Section 5.

3.1.3 Color Histograms

Color plays an important role in food identification since the
uniqueness of each ingredient’s color. In the proposed framework,
we divide an image into 4 × 4 blocks and extract a 96-bin RGB
color histogram for each, where each channel of RGB is quantized
to 32-bin from 256-bin. Finally, a 1536-dimension color vector is
formed for each image.

3.1.4 Gabor Texture

Gabor filter is able to capture the properties of spatial localization,
orientation information, and spatial frequency information. More-
over, the frequency and orientation representations of Gabor filter
are similar to those of human visual system, so it has been widely
used in texture representation and recognition.

Each image is divided into 4 × 4 blocks, and each block is con-
volved with Gabor filter. 6 orientations and 5 scales Gabor filters
are used here, and the mean and variance of the Gabor magnitudes
are calculated for each block. Then the values are concatenated to



Figure 2: Examples from the collected food categories (from left up to right down): Gongbao Chicken, Mapo Tofu, Dumplings, Curry Rice,
Arepas, Chasiu, Steamed Sandwich, Omurice, Peking Duck, Braised Pork. Note that some images are from Google Image Search.

form the Gabor feature vector. Although LBP operation and Gabor
filter are able to capture texture appearance in images, there are still
some difference in their capabilities so that they cannot be replaced
by each other completely. We will show the experimental results in
Section 5.

3.2 Multi-class Classification

After extracting feature vectors, we separately train a SVM classi-
fier for each feature. Each classifier is a multi-class model, which
contains 50 labels corresponding to the 50 kinds of food. To fuse
the SVM classifiers, we adopt the Multi-class AdaBoost algorithm
[Zhu et al. 2009] - Stagewise Additive Modeling using a Multi-class
Exponential loss function (SAMME) for multi-class classification.

4 Quantity Estimation

After identifying the food category, we would like to measure the
food quantity, which is the most important factor for calorie esti-
mations. Previous literatures show an approach that measures the
quantity using single food image with edge detector. The results are
really rough since it’s challenging to estimate the size of a bowl and
its depth from a single image; therefore, it’s necessary to acquire
more information beyond color images for the quantity estimation.
In this paper, we propose a preliminary approach to estimate the
food quantity based on exploiting the depth information.

The depth information acquisition was an expensive task before re-
cent introduction of commodity depth cameras, such as Microsoft
Kinect. Besides depth cameras, the depth information can also be
obtained from stereo images incorporating with stereo matching
techniques [Scharstein and Szeliski 2002]. Thanks to the handheld
devices and tablet computers with stereo camera, stereo images can
be easily acquired nowadays.

(a)

(b) (c) (d)

Figure 3: (a) The color image of food “hot & sour soup” (a bowl
full) (b)-(d) The depth images from the top view with different quan-
tities: a bowl full, 1/2 bowl full, and empty.

We take the food “hot & sour soup” as an example to show our
preliminary idea. We used a depth camera to acquire the color and
depth information of the noodle soup. The foreground region was
segmented, and therefore the bowl containing the food can be iden-
tified in the depth image. Figure 3 shows depth images of one bowl

of hot & sour soup with different quantities. Two main parameters
can be obtained for the quantity estimation. The first one is the area
of the bowl, which is calculated according to the diameter of the
boundary as shown in Figure 3. The second one is the depth value
of the contained food, which can be multiplied by the area to give
the volume of a bowl. From the Figure 3 (b)-(d), we can observe
that the depth value of centric region varies while the quantity of
contained food changes. From our experiments, we estimated there
are 7.5 centimeter displacement between one bowl full and empty.
After obtaining the two parameters, we can estimate the quantities
of food and measure the calories.

Unfortunately, there are still some limitations in this method. The
depth of pure water and cooked rice could not be estimated pre-
cisely while taking the depth cameras based on infrared structured-
light as the capture device, such as Kinect. The reason is that re-
flection or refraction properties of infrared will be affected by some
materials, such as water. This problem can be avoided by using dif-
ferent depth estimation techniques, such as stereo matching from
one pair of images.

5 Experiments and Results

We implemented the proposed system as a service and can support
handheld devices, such as Android/iOS phones and pads. The sys-
tem extracts features and identifies the category of the food shown
in the images taken and uploaded by users. The service is now run-
ning on a small cluster of 4 servers which support a maximum value
of 34 threads, and it takes around 12 seconds for the total response
time.

We collected 50 categories of Chinese foods (major ones) for eval-
uation. There are 100 images (all ready-to-eat) for each category,
and Figure 2 shows some examples of the collected food images. In
our experiments, we adopted 5-fold cross validation to evaluate the
performance of the proposed framework. The dataset is randomly
partitioned into 5 sets: one set is retained as the validation data,
and 4 sets are used as the training data. For the proposed frame-
work, three of the four sets are used to train the SVM classifiers
using LIBSVM library [Chang and Lin 2001], and the single set is
used to determined the weighting for each SVM classifier with the
multi-class Adaboost algorithm.

Figure 4: Four examples of the collected photos for food – Popcorn

Table 2 shows the classification accuracy of each feature and all fea-
tures combined with SVM (all feature vectors are concatenated into
one for SVM training and testing) and multi-class Adaboost. The
proposed work achieves 68.3% average accuracy , and success at
top-N achieved 80.6%, 84.8%, and 90.9% accuracy when N equals
2, 3, and 5. Table 1 shows the best and worst 5 categories in terms
of precision and recall rate.



Table 1: Top and Bottom Categories in Precision and Recall Rate

Highest Precision
Food Precision
Popcorn 98.4%
Corn 85.5%
St.Stuffed Bun 83.3%
Hot&Sour Soup 82.2%
Shumai 80.7%

Lowest Precision
Food Precision
Buns 50.7%
Donuts 51.6%
Lobster 54.2%
Crab 56.1%
Braised Pork 56.3%

Highest Recall
Food Recall
Corn 96.7%
Pop corn 88.3%
Fried Rice 88.3%
Sashimi 88.3%
Chocolate 86.7%

Lowest Recall
Food Recall
Arepas 36.7%
Fish&Chips 41.7%
Croissants 43.3%
Lobster 45.0%
Curry Rice 46.7%

Table 2: Accuracy of Features

Features Accuracy
SIFT (SC+Histogram) 53.0%
LBP (SC+Histogram) 45.9%
Color 40.3%
Gabor 26.6%
All (SVM) 62.7%
All (Multi-class Adaboost, Top-1 accuracy) 68.3%
All (Multi-class Adaboost, Top-3 accuracy) 84.8%
All (Multi-class Adaboost, Top-5 accuracy) 90.9%

Table 3 shows the results of different settings in SIFT feature de-
scriptor. Bag-of-feature, sparse coding with multi-scale max pool-
ing, and sparse coding with the histogram are evaluated, and the
dictionary size is set to 1024 for all. The results show that sparse
coding actually improves the performance. The best performance,
53.0%, is obtained by the histogram, not the multi-scale max pool-
ing, which achieved the best performance in previous image and
object categorization problems. The reason may come from the
non-rigid properties in foods, which can be deformed dramatically
in appearance for the same food.

Table 3: Comparisons of SIFT

Features Accuracy
SIFT (bag-of-feature) 40.2%
SIFT (SC+Multi-scale Max Pooling) 43.4%
SIFT (SC+Histogram, Our) 53.0%

Table 4 shows the results of different settings in LBP feature de-
scriptor. The best performance is obtained by cooperating LBP with
sparse coding and the histogram statistics of 2048-dimension.

Table 4: Comparisons of LBP

Features Accuracy
LBP (Original) 36.2%
LBP (SC+Histogram, 1024-Dim) 39.9%
LBP (SC+Histogram, 2048-Dim, Our) 45.9%

6 Future Work

As a future work, we would like to complete our preliminary idea
for quantity estimation. Then, to improve the performance in re-
sponse time, we plan to run the service in cloud computing en-
vironment, and so the reduction of food identification time is ex-
pected. We also target to combine the food identification system
with location information. Since we can take food photographs with
our smartphones, the location information, for instance, from GPS,
can be used to predict the food category more precisely. Current
system utilizes the non-linear SVM, which requires high computa-

tional complexity while the training data grows. We will evaluate
the performance of feature descriptors in the linear SVM model.
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