Shading

Ming Ouhyoung
歐陽明 Professor
Dept. of CSIE and GINM
NTU
Illumination model

1) **Ambient light** (漫射)(or 環境反射)
 \[I = I_a \times k_a \times \text{Obj}(r, g, b) \]
 - \(I_a \): intensity of ambient light
 - \(k_a : 0.0 \sim 1.0 \), \(\text{Obj}(r, g, b) \): object color

2) **Diffuse reflection** (散射)(or 漫反射)
 \[I = I_p (r, g, b) \times K_d \times \text{Obj}(r, g, b) \times \cos(\theta) \]
 - \(I_p (r, g, b) \): light color

3) **Light source attenuation**

\[
I = I_a k_a + \text{fatt} \ I_p \ K_d (\vec{\text{N}} \cdot \vec{L}) \\
\text{fatt} = \frac{1}{d_L^2}
\]
Specular reflection (似鏡面反射)

- $I = K_s \times I_p(r, g, b) \times \cos^n(\alpha),$
 $K_s = \text{specular-reflection coef.}$

- Phong illumination model

 color of object = $\text{Obj} (R, G, B)$
 = (O_r, O_g, O_b) or (light frequency)
 where $0.0 \leq \text{Od} \leq 1.0$
Faster specular reflection calculation: Halfway vector approximation

- halfway vector

\[\vec{H} = \frac{\vec{L} + \vec{V}}{|\vec{L} + \vec{V}|} \]
Polygon shading: linear interpolation

a. Flat shading: constant surface shading.
b. Gouraud shading: color interpolation shading.
c. Phong shading: vertex normal interpolation shading.
Phong Shading

- Use a big triangle, light shot in the center, as an example!
- The function is really an approximation to Gaussian distribution

macroscopic

- The distribution of microfacets is Gaussian. [Torrance, 1967] (Beckmann distribution func.)
- Given normal direction N_a and N_b, $N_m = ?$
 - interpolation in world or screen coordinate?
 - in practice
Bi-linear interpolation

Linear interpolation:
A (x1, y1, z1) with color (r1, g1, b1); B (x2, y2, z2) with color (r2, g2, b2)

What is the color of point C (x3, y3, z3) located on the line AB.

C = color of A + t * (color of B - color of A), where t is \(| (C - A) | / |(B - A)| \)
Similarly, we can process Bi-linear interpolation
Gouraud Shading with Bilinear Interpolation

- Gouraud shading (smooth shading): color interpolation, for example,
 Triangle with three vertices \((x_1, y_1), (x_2, y_2), (x_3, y_3)\), each with red components \(R_1, R_2, R_3\)
 color is represented as \((\text{Red}, \text{Green}, \text{Blue})\)
 Assuming a plane (in 3D) with vertices \((x_1, y_1, R_1)\), \((X_2, Y_2, R_2)\), and \((X_3, y_3, R_3)\)
Henri Gouraud (at 2018 Siggraph)

English pronunciation: /gerʼraud/
French pronunciation: /ˈɡuːhuː/
Gouraud shading

- Vector equation of the plane is
 \[(x,y) = s \ (x_2-x_1, \ y_2 – y_1) + t(x_3-x_1, \ y_3-y_1) + (x_1, \ y_1) \]
solved for \((s, t)\) , then
 \[s = A_1x + B_1y +C_1, \ t = A_2x + B_2y +C_2 \]
 So, given point \((x,y)\) in this plane, what is its color?
 Answer: color of \((x,y)\) = \(R_1 + s \ (R_2-R_1) + t \ (R_3-R_1) \), or
 color = \(Ax + By +C \), where
 \[A = A_1 \ (R_2-R_1)+ A_2 \ (R_3-R_1) \]
 \[B = B_1(R_2-R_1) + B_2 \ (R_3-R_1) \]
 \[C = C_1(R_2-R_1) + C_2(R_3-R_1) + R_1 \]
How is the color calculated?

Since, \((x,y) = s (x_2-x_1, y_2 - y_1) + t(x_3-x_1, y_3-y_1)\) + \((x_1, y_1)\)

Therefore, \((x,y, R) = s (x_2-x_1, y_2 - y_1, R_2-R_1) + t(x_3-x_1, y_3-y_1, R_3-R_1) + (x_1, y_1, R_1)\)

or, color \(R = s (R_2-R_1) + t (R_3-R_1) + R_1\)
Complexity of visibility test

TEST Width: W
FOR I Height: H
NP Triangle Area: A
UT Number of Triangle: N

Complexity: One time lighting: 6 multiplication 2 addition, table look up (Cosine
Flat shading: N* one time lighting alpha): min.

Gouraud Shading:
N*(3*one time lighting + bi-linear interp.*A)

Shong Shading:
1
(bi-linear interp. + one time lighting)*N*A
A >> 3 ingeneral
Phong: under Ivan Sutherland

• Bùi Trường Phong (Vietnamese: Bùi Trường Phong, December 14, 1942–1975) was a Vietnamese-born computer graphics researcher and pioneer.

• He came to the University of Utah College of Engineering in September 1971 as a research assistant in Computer Science and he received his Ph.D. from the University of Utah in 1973.

• Phong knew that he was terminally ill with leukemia while he was a student. In 1975, after his tenure at the University of Utah, Phong joined Stanford as a professor. He died not long after finishing his dissertation.
What is the color of copper?

• Reflection of copper
 – drastic change as a function of incidence angle
 [Cook, 82"]
New method: BRDF: Bi-directional Reflectance Density Function

- Use a camera to get the reflection of materials from many angles
- Light is also from many angles
The Rendering Equation: Jim Kajiya

\[I(x, x') = g(x, x') \left[e(x, x') + \int_S \rho(x, x', x'') I(x', x'') \, dx'' \right] \]
BRDF

• BRDF: a four-dimensional function that defines how light is reflected at an opaque surface.

• The BRDF was first defined by Edward Nicodemus around 1965\cite{1}. The modern definition is:

\[F(\omega_i, \omega_o) = \frac{dL(\omega_o)}{dE(\omega_i)} = \frac{dL(\omega_o)}{L(\omega_i)} \cos \theta_i \ d\omega_i \]

– where \(L \) is the \textit{radiance}, \(E \) is the \textit{irradiance}, and \(\theta_i \) is the angle made between \(\omega_i \) and the \textit{surface normal}, \(n \).
The **Bidirectional Surface Scattering Reflectance Distribution Function (BSSRDF)**, is a further generalized 8-dimensional function \(S(X_i, \omega_i, X_o, \omega_o) \), in which light entering the surface may scatter internally and exit at another location. \(X \) describes a 2D location over an object's surface.

- **non-local scattering effects** like shadowing, masking, interreflections or subsurface scattering.
SSBRDF, BSDF (Bidirectional scattering distribution function)
Homework #1

- Input: a file of polygons (triangles)
- Test image: a teapot, a tube
- Input format:
 Triangle fr, fg, fb, br, bg, bb
 x y z nx ny nz
 x1, y1, z1, ..., ,
 ,X2, y2, z2

/* where (fr, fg, fb) contains front face colors,
 (br, bg, bb) are background colors
 (x,y,z): 3D vertex position
 (nx,ny,nz) : vertex normal */
Hw#1 requirements

• **Deadline:** to be announced
• **Output:** shaded objects with at least two lights
• **Rotation, Scaling, Translation, Shear**
• **Clipping** (front and back, left and right, top and bottom)
• **Camera:** two different views
 – Object view and camera view
• **C, C++, Java, etc.**
 – Limited WebGL library calls
Polygon file format used

• e.q.
 Triangle fr fg fb br bg bb
 x1 y1 z1 nx1 ny1 nz1
 x2 y2 z2 nx2 ny2 nz2
 x3 y3 z3 nx3 ny3 nz3
 Triangle
 – Where
 fr, fg, fb are foreground colors (Red Green Blue)
 nx, ny, nz are vertex normal
Other formats (more efficient)

- Vertices
 1, (x, y, z)
 2, (x1, y1, z1)
 3, ...
 23, ...
 890,
 1010

- Triangle 1010, 23, 890
- Triangle 1, 2, 800
HW#1: expected results
Visible-Surface Determination

• The painter's algorithm
• The Z-buffer algorithm
 – The point nearest to the eye is visible,.....
 – Very easy both for software and hardware.
 – Hardware Implementation: Parallel ---> fast display

• Scan-line algorithms
 – One scan line at a time

• Area-subdivision algorithm
 – Divide and conquer strategy

• Visible-surface ray tracing
List-priority algorithms

- Depth-sort algorithm
 sort by Z coord. (distance to the eye),
 resolve conflicts (splitting polygons), scan convert.
 ---v.s.---painter's algorithm Binary Space Partition

- Trees (BSP tree)
Determine the depth order!
1. Mountain, 2. bridge, 3. people 4. Hat
The Display Order of Binary Space Partition Trees (BSP tree)

if Viewer is in front of root, then
• Begin {display back child, root, and front child}
• BSP_displayTree(tree->backchild)
• displayPolygon(Tree->root)
• BSP_displayTree(tree->frontchild)
• end
else
• Begin
• BSP_displayTree(tree->frontchild)
• displayPolygon(Tree->root)
• BSP_displayTree(tree->backchild)
• end
Test: please give the BSP binary tree, and display order of this diagram. (Choose smaller number as the new root)
Visibility determination(2): Z-buffer algorithm

Initialize a Z-buffer to infinity (depth_very_far)
{
 Get a Triangle, calculate one point's depth from three vertices by linear interpolation

 If the one point's depth depth_P(x,y) is smaller than Z-Buffer(x,y)
 Z-Buffer (x,y) = depth_P(x,y),
 Color_at(x,y) = Color_of_P(x,y)
 else
 DO NOTHING

}
Complexity of shading

\[
\begin{align*}
\text{TEST Width: } W \\
\text{FOR I Height: } H \\
\text{N P Triangle Area: } A \\
\text{U T Number of Triangle: } N
\end{align*}
\]

Complexity: One time lighting: 6 multiplication
Flat shading: 2 addition, table look up (Cosine
N* one time lighting alpha): min.

Gouraud Shading:
N*(3*one time lighting + bi-linear interp.*A)

Shong Shading:
1
(bi-linear interp. + one time lighting)*N*A
A >> 3 in general
Homework #2 Unity 3D games

• Modify an existing game
• Change the way a canon ball is fired (weapon system), tank motion control etc.
HW#1: expected results
HW#1: formula

\[I = 0.2 \cdot I_a + 0.6 \cdot I_a \cdot I_p (N \cdot L) + 0.2 \cdot I_p \cos^2 \alpha \]

Where \(I_a \) is object color, \(I_p = \left(\frac{R}{\text{MAX}}, \frac{G}{\text{MAX}}, \frac{B}{\text{MAX}} \right) \)

- \(I_a \) is object color
- \(I_p \) is the color of light, and can have multiple lights

Note

- color overflow problem (integer color up to 255)
- \(\text{MAX} = \max(R, G, B) = 255 \) etc.

Output format

- RGBx RGBx 256*256 pixels
- better results: 32\(\leq \)R,G,B\(\leq \)230, each 1 byte binary data
Visible line determination

1. Assume that visible surface determination can be done fast (by hardware Z-buffer or software BSP tree)
 - This method is used in most high performance systems now!

2. Depth cueing is more effective in showing 3D (in vector graphics machine, e.g. PS300). see sec. 14.3.4
 - depth cueing: intensity interpolation
Visible - line determination: Appel's algorithm

- quantitative invisibility of a point=0 --> visible
- quantitative invisibility changes when it passes "contour line".
- contour line:(define)

- vertex traversing
 - EF: contour line
 - AB: whether this line segment is partially visible?
Standard Graphics Pipeline

display traversal → modeling transformation → lighting → viewing transformation

clipping → division by W, mapped to viewport → rasterization → monitor
How to transform a plane? a surface normal?

plane equation $Ax + By + Cz + D = 0$

$N^T*P=0$ since p is transformed by M,

How should we transform N?

find Q, such that $(Q*N)^T*M*P=0$ $(N')^T.(P')=0$

i.e. $N^T*Q^T*M*P=0$, i.e. $Q^T*M=I$

$\therefore Q^T=M^{-1}$ $Q=(M^{-1})^T$

similar, the surface normal is transformed by Q, not $M!!$
Aliasing effects

Sampling theory: two times sampling frequency

super-sampling: use 5x5 matrix, or 3x3 matrix

\[
\begin{array}{ccc}
1 & 3 & 1 \\
1 & 3 & 1 \\
1 & 1 & 1 \\
\end{array}
\]

pixel

area weighted
Anti-aliasing results:
sharp lines and triangles
What is Volume Rendering?

• The term *volume rendering* is used to describe techniques which allow the visualization of three-dimensional data. Volume rendering is a technique for visualizing sampled functions of three spatial dimensions by computing 2-D projections of a colored semitransparent volume.
There are many example images to be found which illustrate the capabilities of ray casting. These images were produced using IBM's Data Explorer: (left) Liver, (right) Vessels
Volume Rendering: result images
Ming’s brain vessels, MRI
How to calculate surface normal for scalar field?

- gradient vector
- $D(i, j, k)$ is the density at voxel (i, j, k) in slice k
Marching cubes (squares)

$2^8 = 256$ ways reduced to 14 patterns

$G(i, j, k) = \frac{D(i+1, j, k) - D(i-1, j, k)}{\Delta x}$

$G(i, j, k) = \frac{D(i+1, j, k) - D(i-1, j, k)}{\Delta y}$

$G(i, j, k) = \frac{D(i+1, j, k) - D(i-1, j, k)}{\Delta z}$

Linearly interpolate
Surface normal calculation for cube corners

- $G_x(i, j, k) = \frac{(D(i+1, j, k) - D(i-1, j, k))}{2}$

- $G_y(l, j, k) = \frac{(D(l, j+1, k) - D(l, j-1, k))}{2}$

- $G_z(l, j, k) = \frac{(D(l, j, k+1) - D(l, j, k-1))}{2}$
Ray casting for volume rendering

• Theory
 – Currently, most volume rendering that uses ray casting is based on the Blinn/Kajiya model. In this model we have a volume which has a density $D(x,y,z)$, penetrated by a ray R.
• Rays are cast from the eye to the voxel, and the values of $C(X)$ and (X) are "combined" into single values to provide a final pixel intensity.
Transparency formula

• For a single voxel along a ray, the standard transparency formula is:
 \[C_{out} = C_{in} (1 - \alpha(x_i)) + c(x_i) \alpha(x_i) \]

 where:
 - \(C_{out} \) is the outgoing intensity/color for voxel X along the ray
 - \(C_{in} \) is the incoming intensity for the voxel

• Splatting for transparent objects: back to front rendering
 - Eye ➔ Destination Voxel ➔ Source Voxel
 - \(C_{d'} = (1 - \alpha_s) C_d + \alpha_s C_s \)
 \(\alpha_{d'} = (1 - \alpha_s) \alpha_d + \alpha_s \)

 \(C_s \): Color of source (background object color)

 \(\alpha_s \): Opaque index (opaque = 1.0, transparency = 0.0)

 when background \(\alpha_s = 1.0 \), destination \(\alpha_d = 0.0 \), \(C_{d'} = C_s \), \(\alpha_{d'} = \alpha_s \),

 similarly, when foreground (destination) is NOT transparent, \(\alpha_d = 1.0 \),
 \(C_{d'} = C_d \) (color of itself)
3D Modeling Methods

• Creation of 3D objects
 – Revolving
 – 3D polygon
 – 3D mesh, 3D curves
 – Extrusion from 2D primitives (set elevation in Z-axis)
 – An example (new CS building construction) (step by step demo) of AutoCAD
 – Feature that are useful
 • VPOINT, LIMITS, LINE, BREAK, Elevation, SNAP, GRID, etc
 – 3D digitizers
Texture mapping

1. What is texture?
2. How to map a texture to an object surface?

<- : direction of mapping

pixel value = sum of weighted texels within the four corners mapped from a pixel

3. See pictures
Curves and surfaces

- Used in airplanes, cars, boats
- Patch (補片)
How to model a teapot?

• How to get all the triangles for a teapot?
• What kind of curved surfaces?
• How to display (scan convert) these surfaces?

• Can we show an implicit surface equation easily?
 e.g. \(f(x,y,z) = ax^2 + by^2 + cz^2 + 2dxy + 2eyz + 2fxz + 2gx + 2hy + 2jz + k = 0\)
• Given \((x,y)\), find \(z\) value
• Double roots, no real roots?

• What's the surface normal?
• Discuss ways to "define" a curved surfaces.
Curves and Surfaces

• Topics
 – Polygon meshes
 – Parametric cubic curves
 – Parametric bicubic surfaces
 – Quadric surfaces
 Parametric cubic curves
 \[x(t) = a_x t^3 + b_x t^2 + c_x t + d_x \]
 \[y(t) = a_y t^3 + b_y t^2 + c_y t + d_y \]
 \[z(t) = a_z t^3 + b_z t^2 + c_z t + d_z \]

• Continuity conditions
 – Geometric continuity \((G_0)\): join together
 – Parametric continuity \((C^1)\) (see below)
 – \(C^n\) continuity: \(d^n / dt^n[Q(t)]\) continuous
B'ezier Curve

Q'(0) = 3 (p1-p0)
Q'(1) = 3 (p3-p2)

Why choosing "3"?

Q(t) = (1-t)^3p0 + 3t(1-t)^2p1 + 3t^2(1-t)p2 + t^3p3

.............e.q.11.29
Beziers curve (2)

In matrix form $T \cdot M_B \cdot G_B$

\[
\begin{bmatrix}
3 & 2 \\
\end{bmatrix}
\begin{bmatrix}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
p_0 \\
p_1 \\
p_2 \\
p_3 \\
\end{bmatrix}
\]

Note: $Q'(0) = -3(1-t)^2 p_0 + 3(1-t)^2 p_1|_{t=0} = 3(p_1 - p_0)$

If $p_1 - p_4$ is equally spaced, the curve $Q(t)$ has constant velocity! (that's why to choose 3)
Subdividing B'ezier curves

Advantage of B'ezier curves

1. explicit control of tangent vectors
 --> interactive design

2. easy subdivision
 --> decompose into flat (line) segments
Subdividing B'ezier curves (2)

• new control points: pa, pb, pc, pe, pf,
• in addition to p1, p2, p3, p4

\[
\begin{align*}
pa &= \frac{1}{2}(p1 + p2) \\
pb &= \frac{1}{2}(p3 + p4) \\
pc &= \frac{1}{2}(p2 + p3) \\
pd &= \frac{1}{2}(pa + pc) \\
pe &= \frac{1}{2}(pb + pc) \\
pf &= \frac{1}{2}(pd + pe) \quad \text{new control points = p1, pa, pd, pf} \\
\text{right half = pd, pe, pb, p4}
\end{align*}
\]
Splitting a Cubic Bezier

p_0, p_1, p_2, p_3 determine a cubic Bezier polynomial and its convex hull.

Consider left half $l(u)$ and right half $r(u)$.
Since $l(u)$ and $r(u)$ are Bezier curves, we should be able to find two sets of control points $\{l_0, l_1, l_2, l_3\}$ and $\{r_0, r_1, r_2, r_3\}$ that determine them.

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015
Efficient Form

\[l_0 = p_0 \]
\[r_3 = p_3 \]
\[l_1 = \frac{1}{2}(p_0 + p_1) \]
\[r_1 = \frac{1}{2}(p_2 + p_3) \]
\[l_2 = \frac{1}{2}(l_1 + \frac{1}{2}(p_1 + p_2)) \]
\[r_1 = \frac{1}{2}(r_2 + \frac{1}{2}(p_1 + p_2)) \]
\[l_3 = r_0 = \frac{1}{2}(l_2 + r_1) \]

Requires only shifts and adds!
Convex Hulls

\{l_0, l_1, l_2, l_3\} and \{r_0, r_1, r_2, r_3\} each have a convex hull that is closer to \(p(u) \) than the convex hull of \(\{p_0, p_1, p_2, p_3\} \). This is known as the variation diminishing property.

The polyline from \(l_0 \) to \(l_3 (= r_0) \) to \(r_3 \) is an approximation to \(p(u) \). Repeating recursively we get better approximations.
Every Curve is a Bezier Curve

• We can render a given polynomial using the recursive method if we find control points for its representation as a Bezier curve

• Suppose that \(p(u) \) is given as an interpolating curve with control points \(q \)

\[
p(u) = u^T M_I q
\]

• There exist Bezier control points \(p \) such that

\[
p(u) = u^T M_B p
\]

• Equating and solving, we find \(p = M_B^{-1} M_I \)
Beziers

Dr. Pierre Bezier
Engineer, Inventor, Author, and Mathematician
Inventor of the Bezier Curves
Pierre Etienne B’ezier Introduction

• Pierre Etienne Bezier was born on September 1, 1910 in Paris. Son and grandson of engineers, he chose this profession too and enrolled to study mechanical engineering at the Ecole des Arts et Metiers and received his degree in 1930. In the same year he entered the Ecole Superieure d'Electricite and earnt a second degree in electrical engineering in 1931. In 1977, 46 years later, he received his DSc degree in mathematics from the University of Paris.
In 1933, aged 23, Bezier entered Renault and worked for this company for 42 years

• Bezier's academic career began in 1968 when he became Professor of Production Engineering at the Conservatoire National des Arts et Metiers. He held this position until 1979. He wrote four books, numerous papers and received several distinctions including the "Steven Anson Coons" of the Association for Computing Machinery and the "Doctor Honoris Causa" of the Technical University Berlin. He is an honorary member of the American Society of Mechanical Engineers and of the Societe Belge des Mecaniciens, ex-president of the Societe des Ingenieurs et Scientifiques de France, Societe des Ingenieurs Arts et Metiers, and he was one of the first Advisory Editors of "Computer-Aided Design".
Parametric bicubic surfaces
Parametric bicubic surfaces

- First consider parametric cubic curve \(Q(t) = T^* M^* G \)
 \[\therefore Q(s) = S^* M^* G \]

- To add the second dimension, \(G \) becomes \(G(t) \)
 \[G_i(t) = T^* M^* G_i, \text{ where } G_i = [g_{i1}, g_{i2}, g_{i3}, g_{i4}]^T \]

\[
Q(s,t) = S^* M^* G(t) = S^* M^* G_i(t) = S^* M^* \begin{pmatrix} G_1(t) \\ G_2(t) \\ G_3(t) \\ G_4(t) \end{pmatrix} = S^* M^* [G(t)]^T
\]

\[\therefore \text{Parametric bicubic surfaces} \Rightarrow S^* M^* G^* M^{T*} T^T \]

where \(S = [1, S, S^2, S^3] \)
\(T = [1, T, T^2, T^3] \)
Parametric bicubic surfaces (cont.)

- Therefore
 - $X(s, t) = S \cdot M \cdot G_x \cdot M^T \cdot T^T$
 - $Y(s, t) = S \cdot M \cdot G_y \cdot M^T \cdot T^T$
 - $Z(s, t) = S \cdot M \cdot G_z \cdot M^T \cdot T^T$

- Normals to surfaces
 How to calculate?

 \[
 \frac{\partial}{\partial s} \begin{pmatrix} Q(s, t) \\ \end{pmatrix} \times \frac{\partial}{\partial t} \begin{pmatrix} Q(s, t) \\ \end{pmatrix}
 \]

B'ezier surfaces

- $X(s, t) = S \cdot M_B \cdot G_{Bx} \cdot M_B^T \cdot T^T$
- $Y(s, t) = S \cdot M_B \cdot G_{By} \cdot M_B^T \cdot T^T$
- $Z(s, t) = S \cdot M_B \cdot G_{Bz} \cdot M_B^T \cdot T^T$
B'ezier patches display

• How to display B'ezier patches efficiently?
 – Brute force iterative evaluation is very expensive
 Why? elaborate
 – Subdivide into smaller polygons
 need flatness test to stop subdivision
 – Adaptive subdivision is more practical

• How to avoid it?
A B-spline is a generalization of the Bézier curve. Let a vector known as the knot vector be defined

\[T = \{ t_0, t_1, \ldots, t_m \} \] \hspace{1cm} (1)

where \(T \) is a nondecreasing sequence with \(t_i \in [0, 1] \) and define control points \(P_0, \ldots, P_n \). Define the degree as

\[p = m - n - 1. \] \hspace{1cm} (2)

The "knots" \(t_{p+1}, \ldots, t_{m-p-1} \) are called internal knots.
Splines

• Define the basis functions as

\[N_{i,0}(t) = \begin{cases}
1 & \text{if } t_i \leq t < t_{i+1} \text{ and } t_i \leq t_{i+1} \\
0 & \text{otherwise}
\end{cases} \]

\[N_{i,p}(t) = \frac{t-t_i}{t_{i+p}-t_i} N_{i,p-1}(t) + \frac{t_{i+p+1}-t}{t_{i+p+1}-t_{i+1}} N_{i+1,p-1}(t) \]

• Then the curve defined by

\[C(t) = \sum_{i=0}^{n} P_i N_{i,p}(t) \]

is a B-spline.
Cubic B-Spline Curve

- Cubic B-Spline Curve, \(C^2 \) continuous
- \(P(u) = u^T M_p \), where \(P \) is control points \([p_{i-2}, p_{i-1}, p_i, p_{i+1}]^T\)
- At first define it to be \(C^1 \) continuous, set up boundary conditions, and we can get

\[
 b(u) = M^T u = \left(\frac{1}{6}\right) \begin{bmatrix} 1 & 4 & 1 & 0 \\ -3 & 0 & 3 & 0 \\ 3 & -6 & 3 & 0 \\ -1 & 3 & -3 & 1 \end{bmatrix}
\]

\[
P(u) = u^T M_s p
\]

\[
P(u) = u^T M_b q
\]

Therefore \(q = M_b^{-1} M_s p \) (conversion is done)
Every Curve is a Bezier Curve

• We can render a given polynomial using the recursive method if we find control points for its representation as a Bezier curve

• Suppose that \(p(u) \) is given as an interpolating curve with control points \(q \)

\[
p(u) = u^T M_I q
\]

• There exist Bezier control points \(p \) such that

\[
p(u) = u^T M_B p
\]

• Equating and solving, we find \(p = M_B^{-1} M_I q \)
Curve DEMO

• DEMO 1: Bezier curve
 http://math.hws.edu/eck/cs424/notes2013/canvas/bezier.html (connected curve)
 http://blogs.sitepointstatic.com/examples/tech/canvas-curves/bezier-curve.html (basic curve)

DEMO 2: B-spline curve demo
 https://www.cs.utexas.edu/~teammco/research/bsplines/
 (note: manually add more control points)
Bezier Patch demo

• DEMO 3:
 Youtube video:
 https://www.youtube.com/watch?v=2tLC0olbKS0

• DEMO 4: Bezier Surfaces (patch)
 http://www.ibiblio.org/e-notes/Splines/bezier3d.html

• Fighter plane demo:
 http://www.ibiblio.org/e-notes/webgl/deflate/yf23.html
WebGL Interactive models

• http://www.ibiblio.org/e-notes/webgl/models.htm#spline

• (including animated horse, fox, eagle, shark, human elbow bones, and more static 3D models, such as bike, etc.)

DEMO 5: more control points for B-spline curve

http://nurbscalculator.in/ (need to add more control points)(Q1: make the first three control points to be at the same position, what happens?)
Ray tracing: Turner Whitted

• Key to success, from light to eye or from eye to screen?
The Rendering Equation: Jim Kajiya, 1986

\[I(x, x') = g(x, x')[e(x, x') + \int_{s} \rho(x, x', x'')I(x', x'')dx''] \]
Definitions

• where

\(I(x, x') \): light (intensity) from patch \(x' \) to patch \(x \)

\(g(x, x') \): visibility geometry, 0: invisible, 1: visible

\(e(x, x') \): the rate at which light is emitted from patch \(x' \) to \(x \), when \(x' \) is an emitter.

\(\rho(x, x', x'') \): patch’s reflectivity, light from \(x'' \) to \(x' \) and the ratio reflected to \(x \)
Another detailed definition
The rendering equation may be written in the form

\[L_0(x, \omega_o, \lambda, t) = L_e(x, \omega_o, \lambda, t) + \int_{\Omega} f_r(x, \omega_i, \omega_o, \lambda, t) L_i(x, \omega_i, \lambda, t) (\omega_i \cdot n) \, d\omega_i \]

where

- \(L_0(x, \omega_o, \lambda, t) \) is the total spectral radiance of wavelength \(\lambda \) directed outward along direction \(\omega_o \) at time \(t \), from a particular position \(x \)
- \(x \) is the location in space
- \(\omega_o \) is the direction of the outgoing light
- \(\lambda \) is a particular wavelength of light
- \(t \) is time
- \(L_e(x, \omega_o, \lambda, t) \) is emitted spectral radiance
- \(\int_{\Omega} \ldots \, d\omega_i \) is an integral over \(\Omega \)
- \(\Omega \) is the unit hemisphere centered around \(n \) containing all possible values for \(\omega_i \)
- \(f_r(x, \omega_i, \omega_o, \lambda, t) \) is the bidirectional reflectance distribution function, the proportion of light reflected from \(\omega_i \) to \(\omega_o \) at position \(x \), time \(t \), and at wavelength \(\lambda \)
- \(\omega_i \) is the negative direction of the incoming light
- \(L_i(x, \omega_i, \lambda, t) \) is spectral radiance of wavelength \(\lambda \) coming inward toward \(x \) from direction \(\omega_i \) at time \(t \)
- \(n \) is the surface normal at \(x \)
- \(\omega_i \cdot n \) is the weakening factor of outward irradiance due to incident angle, as the light flux is smeared across a surface whose area is larger than the projected area perpendicular to the ray. This is often written as \(\cos \theta_i \).
Ray tracing(1)

A

R1
N2
R2

C

T1
N3
R3

B

T2

light

eye

clear? opaque?
Simple recursive ray tracing

Li: shadow ray
Ri: reflected ray
Ni: normal
Ti: transmitted ray

whether
1. \(L_1 = R_1 + T_1 \)? or
2. \(f^1(L_1) = f(R_1) + f(T_1) \)? or
3. Color = \(f(L_1, R_1, T_1) \)
Shadow in ray tracing
Faster: ray tracing

- halfway vector
From known data to unknown
Ray Tracing Algorithm

Trace(ray)
 For each object in scene
 Intersect(ray, object)
 If no intersections
 return BackgroundColor
 For each light
 For each object in scene
 Intersect(ShadowRay, object)
 Accumulate local illumination
 Trace(ReflectionRay)
 Trace(TransmissionRay)
 Accumulate global illumination
Code example: A simple ray tracer

• Author: Turner Whitted
 – famous for his implementation of recursive ray tracer.

• Simplified version:
 – input: quadric surfaces only
 i.e. \(f(x,y,z)=ax^2 + by^2 + cz^2 + 2dxy + 2eyz + 2fxz + 2gx + 2hy + 2jz + k = 0 \)
 – Shading calculation: as simple as possible

• Surface normal
 \[
 \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}
 \]
 \[
 = [2ax+2dy+2fz+2g, 2by+2dx+2ez+2h, 2cz+2ey+2fx+2j]
 \]
Sample program

Color trace_ray(Ray original_ray)
{
 Color point_color, reflect_color, refract_color
 Object obj

 obj = get_first_intersection(original_ray)
 point_color = get_point_color(obj)

 if (object is reflective)
 reflect_color = trace_ray(get_reflected_ray(original_ray, obj))
 if (object is refractive)
 refract_color = trace_ray(get_refracted_ray(original_ray, obj))

 return (combine_colors(point_color, reflect_color, refract_color))
}
Code example: A simple ray tracer

• The simple ray tracer is complete and free to copy [need modification to be term project]
• Input surface properties
 – r, g, b, relative_index_of_refraction, reflection_coef, transmission_coef, object_type
 – number_of_objects, number_of_surfaces, number_of_properties
• How to calculate the intersection of a ray and a quadric surface?

\[
\text{line equation } \Rightarrow \overrightarrow{\text{origin} + t \cdot \text{direction}}
\]
Ray to quadric surface intersection

- intersection calculation:
 - let direction=(D_x, D_y, D_z), origin=(O_x, O_y, O_z)
 line ==> (x,y,z)=(O_x, O_y, O_z) + t*(D_x, D_y, D_z) \ (1)
 - quadric surface
 \[f(x,y,z) = a x^2 + b y^2 + c z^2 + 2 d x y + 2 e y z + 2 f x z + 2 g x + 2 h y + 2 j z + k = 0 \] \ (2)
 - replace (x,y,z) in (2) by (1),
 \[a \text{coef} t^2 + b \text{coef} t + c \text{coef} = 0, \text{ solve for } t \]
 \[t = \frac{-b \text{coef} \pm \sqrt{b \text{coef}^2 - 4 a \text{coef} c \text{coef}}}{2a \text{coef}} \]
 - for example:
 \[a \text{coef} = a D_x^2 + b D_x D_y + c D_x D_z + e D_y^2 + f D_y D_z + h D_z^2 \]
Special notice:

1. Avoid to intersect a surface twice within a tiny triangle
 - e.g. t1=100, t2=100.001
 - This may happen because of numeric precision

2. If a ray doesn't hit anything, give it a non-offensive background color, (20,92,192).
 - This is the sky color (assume it is day time, of course).
 - Otherwise, choose twilight or dark sky color.

3. How to modify this program to accept triangles? Grid methods?
 - Each grid center contains a pointer to the list of triangles which are (partly) contained in the grid.
4. Shading model

\[\mathbf{V}' = \frac{\mathbf{V}}{|\mathbf{V} \cdot \mathbf{N}|} \]
\[\mathbf{R} = \mathbf{V}' + 2 \mathbf{N} \]
\[\mathbf{P} = k_f (\mathbf{N} + \mathbf{V}') - \mathbf{N} \]

where \(k_f = (K_n |\mathbf{V}'|^2 - |\mathbf{V}' + \mathbf{N}|^2)^{-1/2} \)

and \(K_n \) = the index of refraction

5. \[I = I_a + \sum_{j=1}^{n} (\mathbf{N} \ast \mathbf{L}_j) + K_S \ast S + K_T \ast T \]
Ultimately, this yields the following pseudocode:

```
procedure TraceRay_1(u) begin
    \( \hat{C}(u) := 0; \)
    \( \alpha(u) := 0; \)
    \( x_1 := First(u); \)
    \( x_2 := Last(u); \)
    \( U_1 := \text{Image}(x_1); \)
    \( U_2 := \text{Image}(x_2); \)
    \( |\text{Loop through all samples falling within data} \ |
    \)
    \( \text{for } U := U_1 \text{ to } U_2 \text{ do begin } \)
        \( x := Object(U); \)
        \( |\text{If sample opacity } \alpha > 0,| \)
        \( |\text{then resample color and composite into ray} | \)
        \( \alpha(U) := \text{Sample}(\alpha, x); \)
        \( \text{if } \alpha(U) > 0 \text{ then begin } \)
            \( \hat{C}(U) := \text{Sample}(\hat{C}, x); \)
            \( \hat{C}(u) := \hat{C}(u) + \hat{C}(U)(1 - \alpha(u)); \)
            \( \alpha(u) := \alpha(u) + \alpha(U)(1 - \alpha(u)); \)
        \( \text{end } \)
    \( \text{end } \)
end TraceRay_1.
```

• For more info, please see my document Ray_Tracing.bw
What is still missing in ray-traced images?

- Diffuse to diffuse reflection?
Ray-object intersection acceleration

Ray Object Intersection Acceleration Methods:
1. Bounding Sphere
2. Bounding Box
3. Binary Space Partitioning Tree/Octree
Radiosity (熱輻射法)

Donald Greenberg and Tomoyuki Nishita
See my directory: Radiosity (page 89-96)
Rendering Equation: Another version

Consider light at a point \(p \) arriving from \(p' \)

\[
i(p, p') = \nu(p, p')(\epsilon(p, p') + \int \rho(p, p', p'')i(p', p'')dp'')
\]

occlusion = 0 or \(1/d^2 \)

emission from \(p' \) to \(p \)

light reflected at \(p' \) from all points \(p'' \) towards \(p \)
Radiosity

• Consider objects to be broken up into flat patches (which may correspond to the polygons in the model)
• Assume that patches are perfectly diffuse reflectors
• Radiosity = flux = energy/unit area/ unit time leaving patch
Radiosity

global illumination idea:

\[
I(x,x') = g(x,x') \left[e(x,x') + \int_s \rho(x,x',x'') I(x',x'')dx'' \right]
\]

\[
B_i A_i = E_i A_i + P_i \sum_j B_j F_{ji} A_j
\]

\[
B_i = E_i + P_i \sum_{j=1}^n B_j F_{j,i} \frac{A_j}{A_i}
\]
Definitions

• where

B_i: B are the radiosity of patches i and j

E_i: the rate at which light is emitted from patch i

P_i: patch i's reflectivity

F_{j-i}: form factor (configuration factor), which specifies the fraction of energy leaving the patch j that arrives at patch i.

A_i, A_j: areas of patch i and j.
Reciprocity in radiosity (互惠)

(2) Simplified Eq from (1)

$$ A_i F_{i,j} = A_j F_{j,i} $$

$$ B_i = E_i + P_i \sum_{j=1}^{n} B_j F_{i,j} $$
Radiosity Equation

energy balance

\[b_i a_i = e_i a_i + \rho_i \sum f_{ji} b_j a_j \]

reciprocity

\[f_{ij} a_i = f_{ji} a_j \]

radiosity equation

\[b_i = e_i + \rho_i \sum f_{ij} b_j \]
Notation

n patches numbered 1 to n

\(b_i = \) radiosity of patch \(i \)

\(a_i = \) area patch \(i \)

total intensity leaving patch \(i = b_i a_i \)

\(e_i a_i = \) emitted intensity from patch \(i \)

\(\rho_i = \) reflectivity of patch \(i \)

\(f_{ij} = \) form factor = fraction of energy leaving patch \(j \) that reaches patch \(i \)
Matrix Form

\[
b = [b_i]
\]

\[
e = [e_i]
\]

\[
R = [r_{ij}] \quad r_{ij} = \rho_i \text{ if } i \neq j \quad r_{ii} = 0
\]

\[
F = [f_{ij}]
\]
Matrix Form

\[b = e + RFb \]

formal solution

\[b = [I-RF]^{-1}e \]

Not useful since n is usually very large

Alternative: use observation that \(F \) is sparse

We will consider determination of form factors later
Solving the Radiosity Equation

For sparse matrices, iterative methods usually require only $O(n)$ operations per iteration.

Jacobi’s method

$$b^{k+1} = e + RFb^k$$

Gauss-Seidel: use immediate updates
Series Approximation

\[
\frac{1}{1-x} = 1 + x + x^2 + \ldots
\]

\[
[I-RF]^{-1} = I + RF + (RF)^2 + \ldots
\]

\[
b = [I-RF]^{-1}e = e + RFe + (RF)^2e + \ldots
\]
Patches
Gathering vs. shooting

Reconsider equation (5):

\[B_i = E_i + \rho_i \sum_{j=1}^{n} B_j F_{ij}, \text{ we can find } B_i \text{ due to } B_j = \rho_i B_j F_{ij} \]

\[\begin{bmatrix} x \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + \begin{bmatrix} \text{x...x} \end{bmatrix} \]

\[\begin{bmatrix} x \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} + \begin{bmatrix} x \end{bmatrix} \]

for all \(j \):

\[B_j = B_j + B_i (\rho_j F_{ji}) \]
Computing Form Factors

• Consider two flat patches
Form-factor:

- Surface normal
- Intensity = $i = k$
- View direction
- Ideal diffuse reflection from a surface

Energy per unit solid angle:

$$\frac{dP}{d\omega} = k \cos \phi$$
\[d\omega = \frac{\cos \phi_j \, dA_j}{r^2} \]

then, by (1), (2)

\[dP_i \, dA_i = i_i \cos \phi_i \, d\omega \, dA_i \]

\[= \frac{P_i \cos \phi_i \cos \phi_j \, dA_i \, dA_j}{\pi \, r^2} \]

\[\mathbf{F}_{dA_i - dA_j} = \frac{P_i \cos \phi_i \cos \phi_j \, dA_i \, dA_j}{\pi \, r^2} \]

\[= \frac{\cos \phi_i \cos \phi_j \, dA_j}{\pi \, r^2} \]

\[\mathbf{F}_{dA_i - A_j} = \int_{A_j} \frac{\cos \phi_i \cos \phi_j \, dA_j}{\pi \, r^2} \]

\[\mathbf{F}_{A_i - A_j} = \mathbf{F}_{ij} = \frac{1}{A_i} \int_{A_i} \int_{A_j} \frac{\cos \phi_i \cos \phi_j \, dA_i \, dA_j}{\pi \, r^2} \quad \cdots (4) \]
Hemicube
Hemi-Cube method, the Form-factor
Single plane algorithm
Progressive refinement of radiosity [M. Cohen, D. Greenberg]

Rearranging terms:

\[B_i - P_i \sum_{j=1}^{n} B_j F_{i-j} = E_i \]

A set of simultaneous equations
for each iteration, for each patch i
for each patch j:
calculate the formfactors F_{ij} using hemi-cube at patch i

$$\Delta \text{Rad} = \rho_j \Delta B_j F_{ij} A_i / A_j$$ /*update change since last time patch j shot light */

$$\Delta B_j = \Delta B_j + \Delta \text{Rad}$$ /* update total radiosity of patch j */

$$B_j = B_j + \Delta \text{Rad}$$

$$\Delta B_i = 0;$$ /* reset unshot radiosity for patch i to zero */

initialization:
for all patch i:
if patch i is a light source,
then
else

$$B_i = \Delta B_i = E_i$$

$$B_i = \Delta B_i = 0.$$

The algorithm of progressive refinement
Evolution of CG hardware

- MMX-Intel (SIMD, Single instruction, multiple data set)
- GPU
- GPGPU
Radiosity

\[I(x,x') = g(x,x') \left[e(x,x') + \int_{s} \rho(x,x',x'') I(x',x'') \, dx'' \right] \]

\[B_i A_i = E_i A_i + P_i \sum_j B_j F_{ji} A_j \]

\[B_i = E_i + P_i \sum_{j=1}^{n} B_j F_{ji} \frac{A_j}{A_i} \]
What is Volume Rendering?

- The term *volume rendering* is used to describe techniques which allow the visualization of three-dimensional data. Volume rendering is a technique for visualizing sampled functions of three spatial dimensions by computing 2-D projections of a colored semitransparent volume.
• There are many example images to be found which illustrate the capabilities of ray casting. These images were produced using IBM's Data Explorer: (left) Liver, (right) Vessels
Volume Rendering: result images
Ming’s brain vessels, MRI
How to calculate surface normal for scalar field?

- gradient vector
- $D(i, j, k)$ is the density at voxel (i, j, k) in slice k
Marching cubes (squares)

Paper: Siggraph 1987

$2^8 = 256$ ways reduced to 14 patterns

linearly interpolate
Marching Cubes
Surface normal calculation for cube corners

- \(G_x(i, j, k) = \frac{(D(i+1, j, k) - D(i-1, j, k))}{2} \)
- \(G_y(i, j, k) = \frac{(D(i, j+1, k) - D(i, j-1, k))}{2} \)
- \(G_z(i, j, k) = \frac{(D(i, j, k+1) - D(i, j, k-1))}{2} \)
Ray casting for volume rendering

• Theory
 – Currently, most volume rendering that uses ray casting is based on the Blinn/Kajiya model. In this model we have a volume which has a density $D(x,y,z)$, penetrated by a ray R.

A ray R cast into a scalar function of three spatial variables.
• Rays are cast from the eye to the voxel, and the values of \(C(X) \) and \(\alpha(X) \) are "combined" into single values to provide a final pixel intensity.

- \(\alpha \): Opaque Index
 (不透明度)

- \(C \): Color/Intensity
Splatting (潑濺, 潑墨)

This is a technique which trades quality for speed. Here, every volume element is splatted, as Lee Westover said, like a snow ball, on to the viewing surface in back to front order. These splats are rendered as disks whose properties (color and transparency) vary diametrically in normal (Gaussian) manner.

• DEMO

https://upload.wikimedia.org/wikipedia/commons/thumb/a/a0/VolRenderShearWarp.gif/474px-VolRenderShearWarp.gif
Splatting: (back to front tracing)

Westover, Lee Alan (July 1991). "SPLATTING: A Parallel, Feed-Forward Volume Rendering Algorithm".

Figure 12.26: Volume ray casting. (a) Three-dimensional view. (b) Top view.
Transparency formula

• For a single voxel along a ray, the standard transparency formula is: $C_{out} = C_{in} (1 - \alpha(x_i)) + c(x_i) \alpha(x_i)$

where:

– C_{out} is the outgoing intensity/color for voxel X along the ray
– C_{in} is the incoming intensity for the voxel

• Splatting for transparent objects: back to front rendering

– Eye \rightarrow Destination Voxel \rightarrow Source Voxel

– $C_{d'} = (1-\alpha_s) C_d + \alpha_s C_s$
– $\alpha_{d'} = (1-\alpha_s) \alpha_d + \alpha_s$

C_s: Color of source (background object color)

α_s: Opaque index (opaque = 1.0, transparency = 0.0)

when background $\alpha_s = 1.0$, destination $\alpha_d = 0.0$, $C_{d'} = C_s$, $\alpha_{d'} = \alpha_s$,

similarly, when foreground (destination) is NOT transparent, $\alpha_d = 1.0$, $C_{d'} = C_d$ (color of itself)
Hardware Systems
Old Hardware Systems in 1991

- **VRAM**
 - consider 1280 * 1024 screen with 32 bit/pixel, refresh at 60 HZ, the memory access time=1/(1280*1024*60)=12.7 nanoseconds, ordinary DRAM is at 100 ~ 200 nanoseconds
 - parallel-in / serial-out data register as a second data port

- **TMS 34020 (2D Graphics)**
 - pixel-block transfer 18 million 8 bit pixels/second
 - block-write(4 memory locations/once) -> fill an area at 160 million 8 bit pixels/second
Hardware Systems – old systems (II)

• i860 (3D graphics)
 – 13 MFLOPS 33 VAX MIPS, 500K vector transformation/sec
 – packed 64 bit data; for 8-bit pixels, 8 operations occur simultaneously. 50K Gouraud-shaded 100-pixel triangles/second

• bottlenecks
 – floating-point geometry processing
 – Integer pixel processing
 – Frame-buffer memory bandwidth
True Color display—Old Systems

- Hercules card (380 or 486 machine)
 - It contains a TMS34010 and VRAMS
 - we can program it with MicroSoft C (easy)
 - 16 bits/pixel, 5 bit red, 5 bit green, 5 bit blue,
 - 640*480*16 or double buffer 640*480*8 (for fast animation)
 - a program that can take \((r, g, b, x)\) formats (24 bit format) and display, for example, the teapot
 - a set of demo programs, including a flight simulator
Hardware system for graphics

- General purpose system (MIMD: iWarp etc) H.T.Kung
- Specific system, eg: Silicon Graphics' IRIS, 4D/240GTX (MIMD)
 - 100,000 Gouraud-shaded, Z-buffered quadrilaterals
 - CPU subsystem: 4 shaded-memory multiprocessors
 - Geometry subsystem: 5 floating-point processors, each 20 MFLOPS (Weifek 3332)
 - Scan-conversion subsystem: a long pipeline
 - Raster subsystem: 20 image engines, each for 1/20 screen, (4*5 pixel interleaved)
 - Display subsystem: fine graphics processor, each assigned 1/5 columns in the display
Graphics Game Machine Hardware
PlayStation 2 architecture
PlayStation 3 spec.

CPU: Cell Broadband Engine™
GPU: RSX

MEMORY:
- 256MB XDR Main RAM
- 256MB GDDR3 VRAM

HDD: 2.5" Serial ATA (60GB)

I/O:
- USB 2.0 x 4
- Memory Stick/SD/CompactFlash Slots

COMMUNICATION:
- Ethernet (10BASE-T, 100BASE-TX, 1000BASE-T)
- IEEE 802.11 b/g Wi-Fi™
- Bluetooth 2.0 (EDR)
- Wireless Controller Bluetooth (up to 7)

AV OUTPUT:
- Screen size: 480i, 480p, 720p, 1080i, 1080p
- HDMI**: HDMI out - (x1 / HDMI)
- Analog: AV MULTI OUT x 1
- Digital audio: DIGITAL OUT (OPTICAL) x 1
- Blu-ray/DVD/CD DRIVE "read only"

DIMENSIONS: Approximately
- 325mm (W) x 98mm (H) x 274mm (D)

WEIGHT: Approximately 5 kg
PlayStation 3 architecture
NVIDIA RSX

- 550MHz Core
- 300 Million Transistors
- 136 Shader Operations per Cycle
- Independent Pixel/Vertex Shaders
- 256MB GDDR3 RAM at 22.4GB/sec
- External Link to CPU at 35GB/sec (20GB/sec write + 15GB/sec read)
- 1920x1080 Maximum Resolution
ATI Radeon X800/X850

- (540MHz / 1180MHz)
- 16 Pixel Pipelines (2 Vector + 2 Scalar + 1 Texture ALUs)
- 6 Vertex Pipelines (1 Vector + 1 Scalar ALUs)
- 92 Shader Operations per Cycle
- 256MB GDDR3 RAM at 37.76GB/sec
- External Link to CPU at 8GB/sec
GPGPU: general purpose GPU

• CUDA programming
• Course by Professor Wei-Chao Chen (陳維超)
ICG TERM PROJECT LISTING

1. Animation of articulated figures (linked)
2. Rigid body animation, domino blocks (Newton’s laws)
3. A viewing/editor system for curved surfaces with textures (curves and patches)
4. Photon Mapping, Radiosity Method
5. Recursive Ray tracing animation with software/GPU acceleration
Term project 2

6. Volume rendering for a set of tomography slides(台大醫院資料 etc.)
7. Face modeling, lip sync, face de-aging/aging
8. Sketch system for animation (Teddy system)
9. Oil painting and water color effects for images
10. 3D morphing and animation with skeleton mapping, mesh animation
Term project 3

11. Motion retargeting (motion of cats likes that of a human)
12. Hardware Cg acceleration research and applications
13. Beautifying Images (Color harmonization, face beautification, photo beautification, photo ranking)
15. 3D video, stereo video, DSLR_Bokeh_blur simulation (from depth images/video), image deblur