Router Architectures

(a)

First generation router

(c)

Second generation router

Third generation router

Switching via Memory / via Bus

First generation router

Second generation router

Crossbar Switch Fabric

$\mathrm{N} \times \mathrm{N}$ switching elements allows N simultaneous packets switched (in the best case when all packets going to different outputs)

Goal: Reduce \# Switching Elements

- System bus (in $1^{\text {st }}$ and $2^{\text {nd }}$ generation arch's) allows only one packet switched at a time
- Crossbar allows up to N packets switched at a time
- Something in the middle? (+cheaper!)

Banyan Switch Fabric

8×8 Banyan has only 12 switching elements (while 8×8 crossbar requires 64)
But, much greater likelihood of collisions...

Reducing Collisions

- (Show slide with a collision example)
- Collisions can be reduced if packets are ordered on input ports by their output port number
- The router cannot choose the ordering of arriving packets, but we can insert a sorting hardware between the input network ports and the switching fabric ...

Batcher Network

Comparator
\(\substack{Input

numbers}\) | Output |
| ---: |
| numbers |

(c)

Input
list

Batcher-Banyan Network

Why Batcher-Banyan Network

This figure is meant to illustrate why a concentrator is needed, because otherwise the gap in the input sequence will cause collision in the Banyan, but the example does not work for a 4×4 network - - need an 8×8 network example!!!!

