Master Thesis Defense

A Two-Level Enhancement for Spread Spectrum Based Hidden Aerial Acoustic Communications and Its Applications

LIN, Chih-Hung (林志宏)

Advisor: Wu, Ja-Ling, Ph.D. (吳家麟 博士)
Outline

- Introduction
- Related Works

- Channel Investigation
- Modulation Level Enhancement
- Data Level Enhancement

- Experimental Results
- Conclusions and Future Work
INTRODUCTION

- Hidden Aerial Acoustic Comm.
- Application Scenarios
- System Requirements
Under the original music, the hidden aerial acoustic channel is transmitting information at the same time.

Ideal situation
- People
 - Only notice original music
- Mobile
 - Only get signal from the hidden channel

Messages
Hidden Channel
Application Scenario I

Stores

Consumers

Hidden Message

dress 10% off
dog biscuit 20% off
Application Scenario II

Zhongshan Highway Taoyuan congestion
System Requirements

- Transmission stability
 - Robustness (low error rate) and Distance
 - Embedding Strength, Transmission Stability

- Throughput rate
 - Bits per second / Words per minute
 - #Embedded Symbols, Throughput Rate

 but ... Transmission Stability

- Fidelity
 - Interference / Audio quality
 - Embedding Strength, Fidelity

 but ... Transmission Stability, Throughput Rate
Hidden Acoustic Communication Systems

- System Overview
- SS-based System
- Acoustic OFDM System
System Overview
SS-based System (1/2)

- **Audio preprocess**
 - DCT domain

- **Data preprocess**
 - Reed–Solomon
 - Diagonal Interleaver
 - Escaping symbol for frame header

SS-based System (2/2)

Embedding
- Codebook
 - Get the code corresponding to the symbol from codebook
- Audio Part
 - Frequency Domain Signal
 - Embed into original signal
 - Output

Data Part
- Frame Symbols
- Masking Threshold

Audio Part
- Control embedding strength according to masking threshold

Extraction
- Audio Part
 - Frequency Domain Signal
 - Correlation calculation to every codewords in the codebook
 - symbol has maximal correlation
- Codebook
Audio preprocess
- DFT domain

Data preprocess
- Convolutional Codes
- Random Interleaver
- Symbols of 1st time slot and 31st (last) time slot are the same

State-of-the-art

- Spread spectrum based (SS-based) method [1]
 - Audio watermarking
- Acoustic OFDM [2]
 - Communication

Channel Determination

- Channel Overview
- Channel Response
Factors:
- Sound Card
 - Digital → Analog
 - Analog → Digital
- Loudspeaker
 - Analog → Sound wave
- Microphone
 - Sound wave → Analog
- Aerial Acoustic Channel
Channel Response (Config I)

- **Loudspeaker**: KINYO PS-205 2.0 Multimedia Speaker
- **Microphone**: Philips SHM1000/97
- **DA/AD**: in Lenovo ThinkPad X61

<table>
<thead>
<tr>
<th>Configuration I</th>
<th>Acoustic OFDM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loudspeaker</td>
<td>Fujitsu-Ten Eclipse TD508</td>
</tr>
<tr>
<td>Microphone</td>
<td>Sony ECM-360</td>
</tr>
<tr>
<td>DA/AD</td>
<td>in Dell Inspiron 5150</td>
</tr>
</tbody>
</table>
Sound Card Response

IBM X61 built-in

Asus Xonar U1
Channel Response (Config II)

<table>
<thead>
<tr>
<th></th>
<th>Configuration II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loudspeaker</td>
<td>Fujitsu-Ten Eclipse TD508 II</td>
</tr>
<tr>
<td>Microphone</td>
<td>Sony ECM-360</td>
</tr>
<tr>
<td>DA/AD</td>
<td>ASUS Xonar U1</td>
</tr>
</tbody>
</table>

Frequency: 14000 Hz
Possibility of SS–based method Enhancement

- SS–based method [1] is still workable, when the configuration I is used.

<table>
<thead>
<tr>
<th>Band1</th>
<th>Band2</th>
<th>Band3</th>
<th>Band4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0–127)</td>
<td>(128–255)</td>
<td>(256–383)</td>
<td>(384–511)</td>
</tr>
<tr>
<td>[0] to</td>
<td>[5512.5] to</td>
<td>[11025] to</td>
<td>[16537.5] to</td>
</tr>
<tr>
<td>[5512.5]</td>
<td>[11025]</td>
<td>[16537.5]</td>
<td>[22050]</td>
</tr>
</tbody>
</table>

Used in [1]:
- Preserve for Audio quality
- Reliable
- Only Reliable in Config. II
- Not Reliable

7200 Hz 14000 Hz

Modulation-Level Enhancement

- Increasing Codebook Size
- Frequency Division
- Adaptive Frequency Division
Increasing Codebook Size

- 4 bits per window (SS-based method [1])
 - 0010 1111 0010

- bits per window codebook size
 - 2X → Size = 256
 - 3X → Size = 4096
 - 4X → Size = 65536

Spread Spectrum Extracting

Original Audio ➔ Output Audio
Frequency Division

The original usage of bands

- Band1: (0-127) [0] to [5512.5]
- Band2: (128-255) [5512.5] to [11025]
- Band3: (256-383) [11025] to [16537.5]
- Band4: (384-511) [16537.5] to [22050]

Not Reliable

The frequency division approach
Embedding and Correlation Calculation

Embedding

Symbols to be embedded in current window

Extraction

Codebooks

Correlation Calculation

Correlation Calculation

Correlation Calculation

Symbols
Fading
Selective Fading
Influence of Selective Fading

Sent data

Save $1.00 on any Windex Multi-Surface test 1–1
Save $1.00 on any Windex Multi-Surface test 1–2
Save $1.00 on any Windex Multi-Surface test 2–1
Save $1.00 on any Windex Multi-Surface test 2–2
Save $1.00 on any Windex Multi-Surface test 3–1
Save $1.00 on any Windex Multi-Surface test 3–2

Received Data

Save $1.00 on any Windex Multi-Surface test 1–1
Save $1.00 on any Windex Multi-Surface test 1–2
Save $1.00 on any Windex Multi-Surface test 2–1
Save $1.00 on any Windex Multi-Surface test 2–2
Save $1.00 on any Windex Multi-Surface test 3–1
Save $1.00 on any Windex Multi-Surface test 3–2
Adaptive Frequency Division

Band1 (0-127) [0] to [5512.5]

Band2 (128-255) [5512.5] to [11025]

Band3 (256-383) [11025] to [16537.5]

Band4 (384-511) [16537.5] to [22050]

Not Reliable

Band1 (0-127) [0] to [5512.5]

123123123123123123123123123

Band4 (384-511) [16537.5] to [22050]
Comparison
Data-Level Enhancement

- Variable length coding
- Error propagation
- Controlling mechanism
Variable Length Coding (VLC)

- Most applications of the proposed system are in text-based data transmission
 - lossless compression
 - the source symbols are finite
- VLC is suitable for enhancing transmission efficiency
 - Adopt Huffman codes in our system
Error Propagation

- Huffman coding
 - Symbol length is not constant
- If an error occurs, prefix removing may affect the next symbol
- In this situation, errors are propagated to subsequent symbols
Basic Idea for Error Propagation Controlling

Starting point

- HEADER Type I - DATA SECTION
- HEADER Type II - DATA SECTION
- HEADER Type I - DATA SECTION
- HEADER Type II - DATA SECTION

Starting points of segments
Frame Structure in [1]

Diagonal Interleaver

Original symbol order

Out-of-boundary

Diagonal data interleaved ordering
Interleaver in proposed system
Proposed Segment Structure

Segment I

Segment II

The proposed segment structures
Huffman encoding with padding

DATA
Save $1.00 on ONE 64oz. or 96oz. Welch's 100% Juice

Huffman Coding

Embed in next segment

Segment Boundary

padding

1 1
Experimental Results

- Subjective Quality Test
- Transmission Performance
Different audio condition
- The original
- Acoustic OFDM embedded
- SS-based Method embedded with different bandwidth
 - 4134.3 Hz, 5512.5 Hz, 6890.6 Hz, 8268.75 Hz
Subjective Quality Test (1/2)

- Types of music
 - Classic music
 - Pop music
 - Heavy Metal Music
 - Jazz Music

- The results are scored by 20 people
 - 0 ~ 10

- Figure next page
 - Mean
 - 95% Confidence Interval
Subjective Quality Test Result

Classic Music

Pop Music

Heavy Metal Music

Jazz Music
Transmission Performance

- **Factors**
 - **Transmission rate**
 - Number of divisions:
 - 1 (77 bps), 2 (153 bps), 3 (230 bps), 4 (306)
 - **Volume**
 - SL1 Acoustic OFDM = 2 m
 - SL2 Acoustic OFDM = 3 m
 - **Embedding bandwidths**
 - 4134.3 Hz, 5512.5 Hz, 6890.6 Hz, 8268.75 Hz
 - **Error Rate**
 - Precision > 90%
 - **Transmission distance**
 - Measurement, stepping by 0.1 m
Results of Transmission Performance Test (SL1 volume level, Acoustic OFDM 2m)
Results of Transmission Performance Test (SL2 volume level, Acoustic OFDM 3m)
Conclusions

- In this work, we investigate the aerial acoustic channel

- A two-level enhancement of transmission capability over the hidden aerial acoustic channel is proposed
 - Modulation level: Adaptive frequency division
 - Data level: VLC integration
Future Work (1/2)

- Improvement of SS-based embedding is achieved, but the way for improving OFDM still under investigation
Future Work (2/2)

- Applying the system in real applications
 - Finding tradeoff between confliction conditions
 - Ex:
 - Long distance, low error rate,
 - how to achieve the highest transmission rate?
 - Ex:
 - Short distance, low playing volume,
 - how to enhance the robustness of the system?
Questions?
Thanks for your attention