Blind MPEG-2 Video Watermarking Robust Against Geometric Attacks: A Set of Approaches in DCT Domain

Yulin Wang and Alan Pearmain, Member, IEEE
Yulin Wang received the B.Eng. degree in wireless communications from Xidian University, Xi’an, China, in 1987, the M.Phil. degree in electrical and electronic engineering from the Huazhong University of Science and Technology (HUST), Wuhan, China, in 1990, and the Ph.D. degree from the University of London, London, U.K., in 2005.

He has been with research institutes and universities for more than 15 years. He has participated in many important research projects and developed high-tech products, and he has published over 50 technical journal and conference papers. He was an Associate Professor in 1999, and then promoted to a Full Professor in 2005, at the Wuhan University of Technology. In 2006, he joined the International School of Software, Wuhan University, as a Full Professor. His research interests include multimedia coding standards, digital watermarking, and digital signal processing.

Alan Pearmain (M’83) received the B.Sc. (Eng.) and Ph.D. degrees from Southampton University, Southampton, U.K., in 1967 and 1971, respectively. He was with Heriot Watt University, Edinburgh, U.K.; University College, Dublin, Ireland; and Brookhaven National Laboratory, Upton, NY, as an Associate Engineer, before joining the University of London, London, U.K. He has been a member of the faculty of the Electronic Engineering Department, Queen Mary, University of London, since 1979. His early research was in high-voltage engineering, and he subsequently worked on research projects in integrated circuit design and telecommunications before turning his attention to multimedia in 1994. Since then, he has worked on a number of European and U.K. projects, such as MAVT, MoMuSys, CustomTV, PROMETHEUS, SABLE, and SAVANT. His current research interests are in the convergence of the Internet and digital broadcasting, video processing, and extracting semantic information from video. He is currently the Academic Dean of the Faculty of Engineering and Mathematical Sciences, Queen Mary, University of London.
Introduction

- Focus on typical geometric processing for bit-rate reduction, **row cropping**, arbitrary-ratio downscaling, and frame dropping.

- Both the embedding and the extraction of watermarks are done in the **compressed domain**, so the computational cost is low.

- These are commonly suggested methods:
 - (1) Synchronization
 - (2) Autocorrelation
 - (3) Invariant watermarks

- In one word, **none of above techniques mentioned is suitable and practical for watermarking compressed video.**
Outline

- Watermarking robust against cropping
- Watermarking robust against downscaling
- Watermarking robust against Frame dropping
- Experimental results
- Conclusion
Outline

- Watermarking robust against cropping
- Watermarking robust against downscaling
- Watermarking robust against Frame dropping
- Experimental results
- Conclusion
Watermarking robust against cropping

- Cropping?
- Only **removes part of the rows** in each frame of the video, assuming hereinafter the cropping is only done horizontally.
- Main idea:

 Embed the same watermark bit in every row within a column with width = 8.
Compressed video → Partially decode

Partition each 8x8 block in 2-D DCT domain into eight 1x8 blocks 1-D DCT

Embed AC₁ by even/odd rule

Quantize by Q_step

C₁', C₂',……….,C₇'

C₁, C₂,……….,C₇

One watermark embedding unit

Eight 1-D block DCT

2-D block DCT coefficients of Y of I frame.

Watermarking robust against cropping
Watermarking robust against cropping

- **even/odd rule:**
 - If the hidden bit is “1”, AC1 is set to be an odd number by -1 or doing nothing.
 - If the hidden bit is “0”, AC1 is set to be an even number by $+1$ or doing nothing.
- Why we choose reverse algorithm to change the parity (even/odd) of AC1 is because we want to avoid too great a change of bit rate.
Watermarking robust against cropping

- Q_step?
 - The bigger the Q_step, the higher the **flipping threshold**, and the lower the watermark **extraction error**, but, in return, the greater the **distortion** caused by the embedded watermark, and vice versa.

- Total embedded bits?
 - **N/8 bits** (N is the frame width).

![Diagram showing watermark embedding process](image)
Outline

- Watermarking robust against cropping
- Watermarking robust against downscaling
- Watermarking robust against Frame dropping
- Experimental results
- Conclusion
Watermarking robust against downscaling

- Downscaling?
- Downscaling will totally change the bit stream of MPEG-2 video.
- Main idea:
 - As we know, the spatial downscaling of one frame has roughly equivalent effect to the truncation of high-frequency band in its **full DCT domain**.
 - Embed watermarks in its low-frequency band.
Watermarking robust against downscaling

Compressed video

Partially decode

Set $AC_i \geq AC_i' + \Delta$ to embed bit "1"
Set $AC_i \leq AC_i' - \Delta$ to embed bit "0"
Watermarking robust against downscaling

- How to choose N_w?
 - The more bits embedded in each group, certainly the less the imperceptibility.

- How to choose Δ?
 - decision threshold.
 - tradeoff between watermark imperceptibility and robustness.

- In our experiments, Δ is chosen as $10\% \times |AC_i|$.
Outline

- Watermarking robust against cropping
- Watermarking robust against downscaling
- Watermarking robust against Frame dropping
- Experimental results
- Conclusion
Watermarking robust against Frame dropping

- Main idea:
 - Cropping and Frame dropping.
 - Downscaling and Frame dropping.

how to partition the MPEG-2 video into scenes?
- P frame: intrablocks / interblocks.
- B frame: forward predicted blocks / backward predicted blocks.
Outline

- Watermarking robust against cropping
- Watermarking robust against downscaling
- Watermarking robust against Frame dropping
- Experimental results
- Conclusion
Experimental results

- Cropping
 - Host video “Susie on the phone” (CIF size 288*352) : 375 frame, Totally (352/8)*375 = 16500 bits are hidden.
- Attack: cropping processing is accompanied by a pair of lossy decoding–encoding.
Experimental results

- **Downscaling**
 - Host video: *tempete, flower, calendar, football, susie, and tennis*. (encode the watermark bits by using turbo code with code rate 1/3, iterations = 5).
 - 10 bits ($N_w = 10$) are hidden in each of selected frames of video.
Experimental results

Besides, the technique also demonstrates extreme robustness against *small-angle rotation*, *uniform numerical processing*.

<table>
<thead>
<tr>
<th>Types</th>
<th>Description</th>
<th>Average error rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotation</td>
<td>anticlockwise angle = 0.22°</td>
<td>0.04</td>
</tr>
<tr>
<td>Rotation</td>
<td>anticlockwise angle = 1.23°</td>
<td>2.01</td>
</tr>
<tr>
<td>Rotation</td>
<td>clockwise angle = 1.54°</td>
<td>2.13</td>
</tr>
<tr>
<td>Further bit rate reduction</td>
<td>From 6Mbps to 4Mbps</td>
<td>0.00</td>
</tr>
<tr>
<td>Format conversion</td>
<td>From MPEG2 to AVI, and reverse</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Conclusion

- Focus typical unintentional geometric processing widely used to decrease the bit rate of MPEG-2 video.
- Blind watermarking techniques.
- Watermark embedding and extraction are done directly in the compressed domain.
- The proposed techniques can be adopted to watermark other DCT-based homogeneous compressed videos.