Digital Watermarking

Multimedia Security
What is the Watermark?

- **Paper Watermark**
 - the technique of impressing into the paper a form, image, or text
 - to make forgery more difficult
 - to record the manufacturer’s trademark
Digital Watermark

• A digital watermark
 – a digital signal or pattern imposed on a digital document (text, graphics, multimedia presentations)

• visible watermark
 – the more obvious means of discouraging unauthorized use by reducing the commercial value of a document

• invisible watermark
 – the watermark is imperceptible to the human eye
 – when the ownership of data is in question, the watermark will then be extracted to characterize the ownership
Visible Watermarking

Invisible Watermark

• Motivation
 – The distribution of digital media is becoming faster, easier and requiring less effort to make exact copies
 • How to protect the intellectual property?

• Conventional approaches
 – In analog world
 • signature, steel seal, embossed portrait, copyright label...
 – In digital world: cryptology

\[E \rightarrow \text{encryption key} \rightarrow D \rightarrow \text{decryption key} \]
Cryptology vs. Watermarking

- **Cryptology**
 - Once the data is decrypted, subsequent retransmission or dissemination is **not** encrypted

- **Watermarking**
 - Copyright information is hidden into digital data itself
 - Not restrict to access the data
 - Its objective is to **permanently** and **unalterably** reside in the data
Watermarking Requirements

- Imperceptible
- Undeletable
- Statistically undetectable
- Robustness
 - resistant to lossy data compression
 - resistant to signal manipulation and processing operation
- Unambiguous
Watermarked Image

Transmission

Lossy Compression Geometric Distortions Signal Processing D/A - A/D Conversion

Typical Distortions or Intentional Tampering

Transmission

Corrupted Watermarked Image
Watermark Embedding

• Making the watermark robustness is not trivial
 – with complete knowledge
 • any watermark can theoretically be removed
 – with partial knowledge
 • the removal may interfere with the viewing of the data
 • the effort of removal is greater than the value of the data

• Challenges from data compression
 – Whatever hole one may find to fill with watermark is likely to be eliminated by data compression

- Line-Shift Coding
- Word-Shift Coding

```
Now is the time for all men/women to ...
Now is the time for all men/women to ...
```

- Feature Coding

```
:S AND 1 Incremental Mod
:S AND 1 Incremental Mod
```
Watermarking for Images & Videos

- Watermarking in
 - spatial domain
 - transform domain
- Watermarking in
 - raw data
 - compressed data
- Watermarking with
 - random number
 - visually recognizable pattern
- Detection/extraction
 - with the original data
 - without
LSB Flipping Method

- Generate the random walk sequence for each watermark (e.g., 0011_2)
- Force the LSB to match the watermark bit

This works will not survive any modification
• Spread spectrum coding of a watermark
 – frequency domain of the image ➔ communication channel
 – watermark ➔ the signal transmitted through the channel

the watermark \(W = w_1, \ldots, w_n \)
 each \(w_i \) is chosen according to zero-mean Gaussian Distribution
the image \(X \) is transform by full-frame DCT
 \(n \) highest magnitude coefficients (except DC) are chosen: \(y_1, \ldots, y_n \)

Embedding: \(y'_i = y_i + \alpha w_i \)
Extracting: \(w_i = (y^*_i - y_i) / \alpha \)
 similarity = correlation \((W, W^\ast)\)
Spread Spectrum Method (cont.)

Original Image → FFT/DCT → Determine Perceptually Significant Regions → Inverse FFT/DCT → Watermarked Image

Original Image → FFT/DCT → Received Image

Original Watermark → Extracted Watermark

Similar
• **Watermark detector**

Watermark detector response to 1000 randomly generated watermarks
Perceptually Masking Method

Detection

\[H_0 : X = F^* - F = N \]
\[H_1 : X = F^* - F = W^* + N \]

the hypothesis decision is obtained by

similarity = correlation \((X,W)\)

Original Image \rightarrow DCT \rightarrow F \rightarrow + \rightarrow F \rightarrow IDCT \rightarrow W \rightarrow Spatial Masking

m-sequence \rightarrow DCT

Watermarked Image
Perceptually Masking Method (cont.)

- Frame from “pingpong”

- The watermark

Similarity value
Digimarc Watermarking

- A commercial watermarking software
 - http://www.digimarc.com
Watermarking for Audio

• Phase Coding
 – Inserting the watermark by modifying the phase of each frequency component

• Spread Spectrum Method
 – The watermark code is spread over the available frequency band, and then attenuated and added as additive random noise

• Perceptual Method
 – The watermark is generated by filtering a PN-sequence with a filter that approximates the frequency masking characteristics of HAS
 – Weighting the watermark in the time domain to account for temporal masking
Watermarking for Audio (cont.)

- Watermark generator

Watermarking for Audio (cont.)

- Watermark detection
Watermarking for Polygonal Models

- 3D models watermarking
 - vertex coordinates
 - vertex topology (connectivity)

Embedded pattern

Simplified polygonal
Limitations of Watermarking

- **Basic watermarking steps**

 ![Diagram showing watermarking process]

 - Image I
 - Watermark W
 - E
 - Image I'
 - Test image J
 - Watermark W'
 - D
 - W'
 - C
 - y/n?
Limitations of Watermarking (cont.)

• Counterfeit

Watermarked image I' \[\xrightarrow{D_{inv}}\] Counterfeit image I^*

\[\begin{align*}
I' & \xrightarrow{D} W \xrightarrow{C} y/n \\
I & \xrightarrow{\text{Watermark } W}
\end{align*}\]

\[\begin{align*}
I' & \xrightarrow{D} W^* \xrightarrow{C} y/n \\
I^* & \xrightarrow{\text{Watermark } W^*}
\end{align*}\]
Digital watermark

Visible watermark

Invisible watermark

Random sequence watermark

Visually recognizable watermark

Watermark:
- ID number (random number)
- Visually recognizable pattern

Verification:
- Quantitative measurement of the detection
- Extracted pattern & Quantitative measurement