Information Theory and Coding Techniques

Lecture 1.2:
Introduction and Course Outlines
Information Theory and Coding Techniques

Prof. Ja-Ling Wu

Department of Computer Science and Information Engineering
National Taiwan University
Digital Communication System

- **Source**
 - Source Encoder
 - Source Coding
 - Source codeword
 - Channel Encoder
 - Channel Coding
 - Channel codeword
 - Modulator
 - Modulation
 - Channel
 - Noise

- **Channel Decoder**
 - Estimated Source codeword
 - Received codeword
 - Demodulator

- **Destination**
Source Coding

Based on characteristics/features of a source, Source Encoder-Decoder pair is designate to reduce the source output to a **Minimal Representation**.

[Shannon 1948]

How to model a signal source? ← Random process
How to measure the content of a source? Entropy
How to represent a source? Code-design
How to model the behavior of a channel? Stochastic mapping
channel capacity
Source Coding (cont.)

Redundancy Reduction → Data Compression
Data Compaction

Modalities of Sources:
- Text
- Image
- Speech/Audio
- Video
- Graphics
- Hybrid
Channel coding

Introduction redundancy into the channel encoder and using this redundancy at the decoder to reconstitute the input sequences as accurately as possible, i.e., channel coding is designate to minimize the effect of the channel noise.
Modulation

Physical channels can require electrical signals, radio signals, or optical signals. The modulator takes the channel encoder/source encoder outputs into account and transfers the output waveforms that suit the physical nature of the channel, and are also chosen to yield either system simplicity or optimal detection performance.
What is information?

What is meant by the “information” contained in an event?

If we are formally to define a quantitative measure of information contained in an event, this measure should have some intuitive properties such as:

1. Information contained in events ought to be defined in terms of some measure of the uncertainty of the events.
2. Less certain events ought to contain more information than more certain events.
3. The information of unrelated/independent events taken as a single event should equal the sum of the information of the unrelated events.

Information Theory
A nature measure of the uncertainty of an event α is the probability of α denoted $P(\alpha)$.

Once we agree to define the information of an event α in terms of $P(\alpha)$, the properties (2) and (3) will be satisfied if the information in α is defined as

$$I(\alpha) = -\log P(\alpha)$$

Self-information

※ The base of the logarithm depends on the unit of information to be used.
Information Unit:

\[\log_2 : \text{bit} \]
\[\log_e : \text{nat} \]
\[\log_{10} : \text{Hartley} \]

base conversions:

\[\log_{10} 2 = 0.30103, \quad \log_2 10 = 3.3219 \]
\[\log_{10} e = 0.43429, \quad \log_e 10 = 2.30259 \]
\[\log_e 2 = 0.69315, \quad \log_2 e = 1.44270 \]

\[
\log_a X = \frac{\log_b X}{\log_b a} = (\log_a b) \log_b X
\]
Information (Source)

\[S_1 \quad S_2 \quad \cdots \quad S_q : \text{Source alphabet} \]
\[P_1 \quad P_2 \quad \cdots \quad P_q : \text{Probability} \]

Facts:

1) The information content (surprise) is somewhat inversely related to the probability of occurrence.

2) The information content from two different independent symbols is the sum of the information content from each separately. Since the probability of two independent choices are multiplied together to get the probability of the compound event, it is natural to define the amount of information as

\[
I(S_i) = \log \frac{1}{P_i} \quad \text{or} \quad -\log P_i
\]

As a result, we have

\[
I(S_1) + I(S_2) = \log \frac{1}{P_1 P_2} = I(S_1, S_2)
\]
Entropy: Average information content over the whole alphabet of symbols

\[H_r(S) = \sum_{i=1}^{q} P_i \log_r \left(\frac{1}{P_i} \right) \]

\[= -\sum_{i=1}^{q} P_i \log_r P_i \]

\[H_r(S) = H_2(S)(\log_r 2) \]

* Consider the entropy of the Source can have no meaning unless a model of the Source is included. For a sequence of numbers and if we cannot recognize that they are pseudo-random numbers, then we would probably compute the entropy based on the frequency of occurrence of the individual numbers.
The entropy function involves only the distribution of the probabilities — it is a function of a probability Distribution P_i and does not involve the S_i

Ex: Weather of Taipei
$X = \{\text{Rain, fine, cloudy, snow}\} = \{R, f, c, s\}$
$P(R) = \frac{1}{4}, P(F) = \frac{1}{2}, P(C) = \frac{1}{4}, P(S) = 0$
$H_2(X) = 1.5 \text{ bits/symbol}$

If $\frac{1}{4}$ for each $P(i) \Rightarrow H_2(X) = 2 \text{ bits/symbol. (>1.5)}$
(equal probability event)

$H(X) = 0 \quad \text{for a certain event}$
$P(ai)=0 \quad \text{or} \quad P(ai)=1$
The logarithmic measure is more convenient for various reasons:

1. It is practically more useful. Parameters of engineering importance such as time, bandwidth, number of relays, etc., tend to vary linearly with the logarithm of the number of possibilities. For example, adding one relay to a group doubles the number of possible states of the relays. It adds 1 to the base 2 logarithm of this number.
2. It is nearer to the feeling of a human body
 Intensity — eve
 volume — ear

3. It is mathematically more suitable
 \(\log_2\) — bits
 \(\log_{10}\) — decimal digits
 \(\log_e\) — natural unit

Change from the base \(a\) to base \(b\) merely requires multiplication by \(\log_b a\)
Course contents

- **Basic Information Theory:**
 - Entropy, Relative Entropy and Mutual Information

- **Data Compression / Compaction:**
 - Kraft Inequality, the prefix condition and Instantaneous decodable codes.

- **Variable Length Codes**
 - Huffman code, Arithmetic code and L-Z code.

- **Coding Techniques**
 - DPCM (predictive coding)
 - Transform coding (Discrete Cosine Transform)
 - JPEG (JPEG2000)
 - Motion Estimation and Compensation
 - MPEG-1, 2, 4
 - H.26P, H.264, HEVC
 - Distributed Video Coding

- **Steganography and Information Hiding**
 - Digital Watermarking
References:

1. Elements of Information Theory, Thomas M. Cover & Joy A. Thomas, Wiley 2nd Edit. 2006
2. Introduction to Data Compression, Khalid Sayood, 1996.
3. JPEG/ MPEG-1 coding standard
- IEEE Trans. on IT, CSVT, SP, IP, MM, IFS, Comm, Comput
Requirements:

- 1. Home works
- 2. Midterm
- 3. Programming Assignments
 Variable Length Codes
 JPEG Compressor

Grade: from C+ to B+ (Midterm dependent)
4. Final Project

Real time MPEG-1 decoder --- (A- to A)

Real time MPEG-2 / H.264 decoder --- (A to A+)

Near real time MPEG-1 Encoder --- (A to A+)

H.264 encoder/ H.265 Codecs --- (A+)
Bonuses: for grade A+

1. Application of Information Theory in Specific Research Field
2. Compression Algorithms for 3D Videos
3. Encryption Domain Compression Algorithms
4. Parallelized (Cloud) Video Codecs
5. Scalable Video Codecs
6. Distributed Video Codecs
7. Others --- propose and confirmed