
1

ITCT Lecture 8.3: Lempel-Ziv Coding

— Adaptive Dictionary Compression Algorithm

1. LZ77：Sliding Window Lempel-Ziv Algorithm [gzip, pkzip]

Encode a string by finding the longest match anywhere

within a window of past symbols and represents the string by

a pointer to location of the match within the window and the

length of the match.

J. A. Storer and T. G. Szymanski, “Data Compression Via

Textual Substitution,” J. ACM, 29(4), pp.928-951, 1982

2

Assume we have a string to be compressed from a

finite alphabet. A parsing S of a string is a division

of the string into phrases, separated by commas.

Let W be the length of the window.

Then the algorithm can be described as follows：

Assume that we have compressed the string until time

To find the next phrase, find the largest k such that for some j,

the string of length k starting at j is equal

to the string (of length k) starting at (i.e., for all

nxxx ,,21 
,,, 21 xx

,11  ijWi

.1i

ix lilj xx  

).0 kl 

3

The next phrase is then of length k (i.e., and

is represented by the pair (P, L), where P is the location of

the beginning of the match and L is the length of the match.

If a match is not found in the window, the next character is

sent uncompressed.

To distinguish between these two cases, a flag bit is needed,

and hence the phrases are of two types：(F, P, L) of (F, C),

where C represents an uncompressed character.

),,, 11  kiii xxx 

4

Note that the target of a (pointer, length) paint could extend

beyond the window, so that it overlaps with the new phrase.

In theory, this match could be arbitrarily long; in practice,

though, the maximum phrase length is restricted to be less

than some parameter.

5

For example, if and the string is

ABBABBABBBAABABA and the initial window is empty,

the string will be parsed as follows：

A, B, B, ABBABB, BA, A, BA, BA,

which is represented by the sequence of “pointers”：

(0,A), (0,B), (1,1,1), (1,3,6), (1,4,2), (1,1,1), (1,3,2), (1,2,2),

where the flag bit is 0 if there is no match and 1 if there is a

match, and the location of the match is measured backward

from the end of the window.

4W

6

4 3 2 1

(0,A);(0,B) (1,1,1) B A B A ···

A B B A B B

B ···

(1,3,6)

(1,3,2) ·· · B A A B A B A

(1,1,1) A B A B A

(1,3,2) B A B A

(1,2,2) B A

A B

A B B

B A B B

B B B A

B B A A

A A B A

longest match

7

2. LZ-78 Tree-structured Lempel-Ziv Algorithms [GIF;

compress on Unix]

This algorithm parsed a string into phrases, where each

phrase is the shortest phrase not seen so far.

This algorithm can be viewed as building a dictionary in

the form of a tree, where the nodes correspond to phrases

seen so far.

This algorithm is simple to implement and has become

popular as one of the early standard algorithms for file

compression on computers because of its speed and

efficiency. It is also used for data compression in high-

speed modems.

8

For the string：ABBABBABBBAABABAA ···,

we parse it as

A, B, BA, BB, AB, BBA, ABA, BAA,···

After every comma, we look along the input sequence until

we come to the shortest string that has not been marked off

before.

Since this is the shortest string, all its prefixes must have

occurred earlier. (Thus, we can build up a tree of these

phrases.)

9

In particular, the string consisting of all but the last bit of this

string must have occurred earlier. We code this phrase by

giving the location of the prefix and the value of the last

symbol.

Thus, the string above would be represented as：

(0,A), (0,B), (2,A), (2,B), (1,B), (4,A), (5,A), (3,A), ···

10

1 A 0A

2 B 0B

3 BA 2A

4 BB 2B

5 AB 1B

6 BBA 4A

7 ABA 5A

8 BAA 3A

0

8 67

5 43

21

A

A

AAA

B

B B

11

Sending an uncompressed character in each phrase results in

a loss of efficiency. It is possible to get around this by

considering the extension character (the last character of the

current phrase) as part of the next phrase.

T. A. Welch, A technique for high-performance data

compression, computer, 17(1)：pp.8-19, 1984.  LZW-

algorithm.

12

Dictionary current

input look-ahead

buffer

(1) Find the longest match between the strings stored in the

dictionary and the string, started at in the look-ahead

buffer.

Assume the starting address of the matched string in the

dictionary is J and the longest match length is K (i.e.,

0c

,ia

1iajc 1c 1Mc 1jc
ia  2ia 1Nia

}),,,{ 11  KiiiI aaaA 

13

(2) Send to the decoder

update the dictionary by pushing (the longest matched

string) into the Dictionary.

(3) fill the look-ahead buffer, starting at from the

following input string.

(4) repeat step 1 until the end of the input.

),,(kiaKJ 

IA

kia 

,kia 

