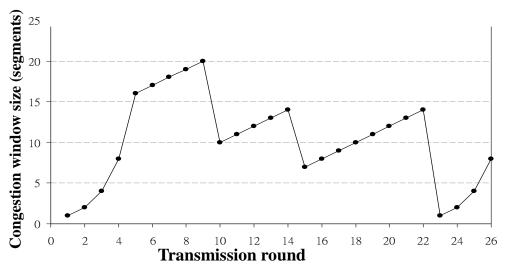
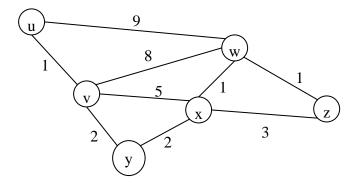
Computer Network 2008 Final Exam


- 1. (10%) 802.11
 - (a) Explain the hidden terminal problem
 - (b) What does RTS/CTS stand for? Explain how it works in 802.11
- 2. (10%) Please explain the pure ALOHA protocol and show that the maximum efficiency of Pure Aloha efficiency is 1/(2e)
- 3. (10%) Please explain
- (a) which approaches (excluding error detection) we usually use for providing reliable delivery service in **both** transport-layer and link-layer.
- (b) with reliability service providing by transport layer, why we still need link-level reliability
- 4. (10%) Please explain link-state and distance-vector routing algorithms and compare them
- 5. (5%) What is HOL blocking? Does it occur in input ports or output ports?
- 6. (10%) Please explain (a) what two multicast distribution scenarios are recognized in PIM (Protocol-Independent Multicast) routing protocol and (b) why.
- 7. (5%) What is the rate adaptation in 802.11?
- 8. (10%) Please explain what Direct Routing and Indirect Routing (to a Mobile Node) are and compare them.
- 9. (10%) Recall the idealized model for the steady-state dynamics of TCP. In the period of time from when the connection's rate varies from $W/(2 \cdot RTT)$ to W/RTT, only one packets is lost (at the very end of the period).
 - (a) Show that the loss rate (fraction of packets lost) is equal to

$$L = loss rate = \frac{1}{\frac{3}{8}W^2 + \frac{3}{4}W}$$

(b) Use the result above to show that if a connections has loss rate L, then its average rate is approximately given by


$$\approx \frac{1.22 \bullet MSS}{RTT\sqrt{L}}$$

10. (10%) Consider the following plot of TCP window size as a function of time.

Assuming TCP Reno is the protocol experiencing the behavior shown above, answer the following questions. In all cases, you should provide a short discussion justifying your answer.

- (a) Identify the intervals of time when TCP slow start is operating.
- (b) Identify the intervals of time when TCP congestion avoidance is operating.
- (c) After 9th, 14th, and 22nd transmission rounds, is segment loss detected by the triple duplicate ACK or by the timeout? (**Justify your answer.**)
- (d) What is the value of **Threshold** at the 24th transmission round?
- (e) Assuming a packet loss is detected after the 26th round by the receipt of a triple duplicate ACK, what will be the values of the congestion window size of **Threshold**?
- 11. (10%) Consider the network shown in the following figure. Using Dijkstra's algorithm, and showing your work using a table similar to the following table, compute the shortest path from *z* to all network nodes.

step	N'	D(u),p(u)	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)
0	z	∞	∞	1 <i>,z</i>	3,z	∞

- 12. (20%) Consider the topology and subnet address assignment shown in Figure 1.
 - (a) Assume that no datagram has router interfaces as ultimate destinations. The forwarding table of the routers:

Longest Prefix Match	Outgoing Interface				
Router 1					
11010110 01100001 11111111	Subnet A				
11010110 01100001 11111110 0	Subnet D				
11010110 01100001 11111110 1	Subnet F				
Router 2					
11010110 01100001 11111111	Subnet E				
11010110 01100001 11111110 0	Subnet F				
11010110 01100001 11111110 1	Subnet C				
Router 3					
11010110 01100001 11111111	Subnet E				
11010110 01100001 11111110 0	Subnet B				
11010110 01100001 11111110 1	Subnet D				

What is the problem resulted from such forwarding tables? How could you solve the problem by modifying the forwarding table of **ONE** router? (The shortest path is unnecessary)

(b) Take an example (or application) that the datagram has router interfaces as ultimate destinations.

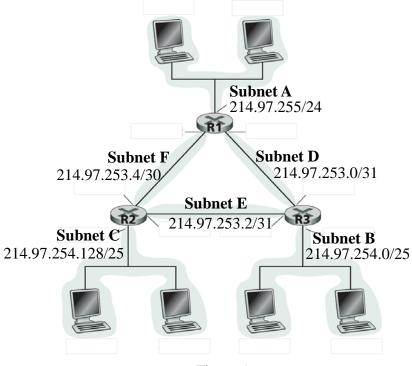


Figure 1