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Why Is CG Difficult?Why Is CG Difficult?

•• Floating Point RequirementsFloating Point Requirements

–– Approximately 400Approximately 400 MFlopsMFlops for 1M trianglesfor 1M triangles

–– For example: Infinite Reality: Eight geometry For example: Infinite Reality: Eight geometry 
engines at 480engines at 480 MFlopsMFlops each for 10 million each for 10 million 
triangles per second peaktriangles per second peak

•• Memory BandwidthMemory Bandwidth

–– Approximately 250 million Approximately 250 million 

frame buffer accesses toframe buffer accesses to

rasterizerasterize 1 million 1001 million 100--

pixel trianglespixel triangles
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RasterizationRasterization

•• Memory size increase 3Memory size increase 3--4 orders of magnitude4 orders of magnitude

•• Speeds have not kept up!Speeds have not kept up!

•• Number of pins remained relatively constant.Number of pins remained relatively constant.

•• Distributed frame buffers were proposed to Distributed frame buffers were proposed to 
address the problem [Fuchs77][Parke80].address the problem [Fuchs77][Parke80].
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PixelPixel--PlanesPlanes

•• Henry Fuchs’ Idea: build processing into Henry Fuchs’ Idea: build processing into 
the frame buffer, a the frame buffer, a processor per pixel.processor per pixel.

––UNC designs are called UNC designs are called enhanced enhanced 
memoriesmemories, , 

–– not not SIMD processorsSIMD processors

•• Enabler was linear expression tree…Enabler was linear expression tree…
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Linear ExpressionsLinear Expressions

+
_

Ax + By + C
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Linear ExpressionsLinear Expressions

+
_

Ax + By + C
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Linear ExpressionsLinear Expressions

+
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Depth and Color InterpolationDepth and Color Interpolation

z = F(x, y) 

and color = 

F(x, y)

for each of 

red,

green, and 

blue
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PixelPixel--Planes 1, 2, 3Planes 1, 2, 3

• Pixel-Planes 1 - 4 processors

• Pixel-Planes 2 - 4 by 64

• Pixel-Planes 3 - 64 by 64

•• PixelPixel--Planes 1 Planes 1 -- 4 processors4 processors

•• PixelPixel--Planes 2 Planes 2 -- 4 by 644 by 64

•• PixelPixel--Planes 3 Planes 3 -- 64 by 6464 by 64



6

Slide 11Lastra, Oct. 2001

PixelPixel--Planes 4 (1986)Planes 4 (1986)

•• FullFull--size (512 by 512 pixel) prototypesize (512 by 512 pixel) prototype

•• 2048 enhanced memory ICs2048 enhanced memory ICs

•• One GeometryOne Geometry

ProcessorProcessor

•• 72 bits memory72 bits memory

per pixelper pixel

Slide 12Lastra, Oct. 2001

Pxpl4 Block DiagramPxpl4 Block Diagram

HostHost GeometryGeometry

EMCsEMCs

ScanoutScanout

•• 512 x 512 frame buffer512 x 512 frame buffer
•• 128 processors/chip128 processors/chip
•• 2048 EMC chips2048 EMC chips
•• 32 boards32 boards
•• Clock speed: ~ 10MHzClock speed: ~ 10MHz
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PerformancePerformance

•• 35K triangles per second35K triangles per second

•• Spheres as a primitiveSpheres as a primitive

• CSG

• Shadows

VideoVideo
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ReferencesReferences

•• The first reference describes the algorithms, while the The first reference describes the algorithms, while the 
second describes the machine assecond describes the machine as--built.built.

•• Fuchs, H.,Fuchs, H., GoldfeatherGoldfeather, J.,, J., HultquistHultquist, J.,, J., SpachSpach, S., , S., 
Austin, J., Brooks, F., Eyles, J., and Poulton, J., "Austin, J., Brooks, F., Eyles, J., and Poulton, J., "Fast Fast 
Spheres, Shadows, Textures, Transparencies, and Spheres, Shadows, Textures, Transparencies, and 
Image Enhancements in PixelImage Enhancements in Pixel--PlanesPlanes," SIGGRAPH '85 ," SIGGRAPH '85 
Conference Proceedings, Vol. 19, No. 3, July, 1985, pp Conference Proceedings, Vol. 19, No. 3, July, 1985, pp 
111111--120.120.

•• John Eyles, John Austin, Henry Fuchs, Trey Greer and John Eyles, John Austin, Henry Fuchs, Trey Greer and 
John Poulton, “PixelJohn Poulton, “Pixel--Planes 4: A Summary”, Planes 4: A Summary”, 
Eurographics Workshop on Graphics Hardware, 183Eurographics Workshop on Graphics Hardware, 183--
207, 1987.207, 1987.

•• Web pages at Web pages at http://www.cs.unc.edu/~http://www.cs.unc.edu/~pxplpxpl



8

Slide 15Lastra, Oct. 2001

Lessons Learned from Pxpl4Lessons Learned from Pxpl4

•• Programmability useful!Programmability useful!

•• More pixel memory requiredMore pixel memory required

•• TrisTris small, small, 

–– many processors unusedmany processors unused

•• Must extend parallelism to geometry Must extend parallelism to geometry 
processing processing →→ fully parallel pipelinefully parallel pipeline
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Graphics PipelineGraphics Pipeline

GeometryGeometry

ProcessingProcessing
RasterizationRasterization

ScreenScreen

CoordinatesCoordinates

(integer)(integer)

UserUser--SpecifiedSpecified

CoordinatesCoordinates

(floating pt.)(floating pt.)

(3.5, 0.4) (4.1, 0.5)

(3.7, 0.9)

Pixels with Pixels with 

correct correct 

colorcolor

(240, 390) (298, 396)

(273, 407)
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Sorting ClassificationSorting Classification

video

Geometry 

Processors

Pixel-level 

Processors

• • •

• • •

sort first

video

• • •

• • •

sort middle

• • •

• • •

video

sort last

Pixel-Planes 5 PixelFlowWarpEngine
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Sort MiddleSort Middle

• Straightforward and well 
known.

• Network limits 
scalability.

• Somewhat scalable in 
display size. 

•• Straightforward and well Straightforward and well 
known.known.

•• Network limits Network limits 
scalability.scalability.

•• Somewhat scalable in Somewhat scalable in 
display size. display size. 

• • •

• • •

sort middle
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Sort Middle (PixelSort Middle (Pixel--Planes 5)Planes 5)

Frame

Buffer

R

R

R

R

G

G

G

G

Application

◆ Perform geometry processing 

in parallel by primitive. Sort 

each transformed primitive to 

determine where on screen it 

belongs.

◆ Route transformed 

primitive to renderer 

responsible for appropriate 

screen regions.
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ScreenScreen--Space SubdivisionSpace Subdivision

Pixel processors (128 x 128) Pixel processors (128 x 128) 

remapped to screen tilesremapped to screen tiles

Problem: Polygons must be sorted!Problem: Polygons must be sorted!
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Virtual Frame BufferVirtual Frame Buffer

• Must sort all primitives before scan 
conversion

• Pipelined two frames, 

–one in geometry stage, 

–another in scan conversion

• Penalty: memory & increase in latency

•• Must Must sort all primitivessort all primitives before scan before scan 
conversionconversion

•• Pipelined two frames, Pipelined two frames, 

––one in geometry stage, one in geometry stage, 

––another in scan conversionanother in scan conversion

•• Penalty: memory & increase in latencyPenalty: memory & increase in latency
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Load Balancing on pxpl5Load Balancing on pxpl5

• Greedy algorithm

• Master collects info on # of prims / region

• Starts token, which flows GP to GP

• Last GP sends token back to master

•• Greedy algorithmGreedy algorithm

•• Master collects info on # of Master collects info on # of prims prims / region/ region

•• Starts token, which flows GP to GPStarts token, which flows GP to GP

•• Last GP sends token back to masterLast GP sends token back to master

11 22 33 33 22 11 2233

Size of box indicates # of primitivesSize of box indicates # of primitives

RasterizationRasterization
orderorder

When does this fail?When does this fail?
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ImplementationImplementation

GraphicsGraphics
ProcessorProcessor

GraphicsGraphics
ProcessorProcessor

GraphicsGraphics
ProcessorProcessor

GraphicsGraphics
ProcessorProcessor

GraphicsGraphics
ProcessorProcessor

HostHost

RendererRenderer
128 x 128128 x 128

RendererRenderer
128 x 128128 x 128

RendererRenderer
128 x 128128 x 128

RendererRenderer
128 x 128128 x 128

160 MW/s ring network160 MW/s ring network
FrameFrame
BufferBuffer

(2(2--40)40)

(1(1--20)20)

SunSun
WorkstationWorkstation multiple framemultiple frame

buffers: hires,buffers: hires,
dual NTSC,dual NTSC,
color color sequensequen..
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TechnologyTechnology

• 1-bit ALU

• Quadratic evaluator

Ax2+By2+Cx+Dy+Exy+F

• 208 bits/pixel

• 4K backing store/pixel

• 40 MHz clock speeds

•• 11--bit ALUbit ALU

•• Quadratic evaluatorQuadratic evaluator

AxAx22+By+By22++CxCx++DyDy++ExyExy+F+F

•• 208 bits/pixel208 bits/pixel

•• 4K backing store/pixel4K backing store/pixel

•• 40 MHz clock speeds40 MHz clock speeds
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ShadingShading

• Finally enough bits to do cool shading!

• Language was assembler with macros 
(sqrt, norm, etc). Word length variable.

•• Finally enough bits to do cool shading!Finally enough bits to do cool shading!

•• Language was assembler with macros Language was assembler with macros 
((sqrtsqrt, norm, etc). Word length variable., norm, etc). Word length variable.

Problem: too hard to write code!Problem: too hard to write code!
Image courtesy Division Image courtesy Division –– from Pixelfrom Pixel--Planes 6Planes 6

VideoVideo
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PerformancePerformance

• Triangles small, but

the size doesn’t matter as long as overlap 
factor does not increase much!

•• Triangles small, butTriangles small, but

the size doesn’t matter as long as overlap the size doesn’t matter as long as overlap 
factor does not increase much!factor does not increase much!

Dataset courtesy Herman Towles and Sun MicrosystemsDataset courtesy Herman Towles and Sun Microsystems

Sierra NevadaSierra Nevada
ElevationElevation

DatasetDataset

2M Triangles/Sec2M Triangles/Sec
Record Performance on GPC “head”Record Performance on GPC “head”

Dataset.Dataset.

Model courtesy GPC committee (now SPEC)Model courtesy GPC committee (now SPEC)
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ReferencesReferences
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pp. 95pp. 95----100. 100. 
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Limits to ScalabilityLimits to Scalability

Geometry

Processor

Geometry

Processor

Geometry

Processor

Geometry

Processor

Rasterizer

Rasterizer

Rasterizer

Rasterizer

Crossbar bandwidth must increase with number of primitivesCrossbar bandwidth must increase with number of primitives

CrossbarCrossbar
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Image CompositionImage Composition

• Each node renders subset 

of primitives.

• Depth determines which 

sample proceeds.

• Each node renders subset 

of primitives.

• Depth determines which 

sample proceeds.

• 256 wires @ 200 MHz, bi-directional (> 100 Gb/s) board to board• 256 wires @ 200 MHz, bi-directional (> 100 Gb/s) board to board

RendererRenderer

Z

Image

Compositors

Image

Compositors

A. Lastra  2/11/98

RendererRenderer

Z
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Sort Last (Image Composition)Sort Last (Image Composition)

•• Scalable in # of primitivesScalable in # of primitives

•• Requires highRequires high--bandwidth bandwidth 
network (next slide)network (next slide)

•• AntiAnti--aliasing expensivealiasing expensive

•• Transparency difficult.Transparency difficult.

•• Not scalable in display size.Not scalable in display size. video

• • •

• • •

sort last
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Composition Bandwidth

•• Need enough bandwidth for:Need enough bandwidth for:

display size display size ×× frame rate frame rate ×× subsamplessubsamples

•• For 1280 For 1280 × × 1024 at 72 Hz, with 5 sample 1024 at 72 Hz, with 5 sample 
antialising, antialising, 

––need 10 Gigabits/sec of bandwidthneed 10 Gigabits/sec of bandwidth
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PixelFlow GoalsPixelFlow Goals

• Investigate image composition

• Add high-level shading language

–Turned into programmability 
everywhere in pipeline

• Immediate mode from a parallel machine

•• Investigate image compositionInvestigate image composition

•• Add highAdd high--level shading languagelevel shading language

––Turned into programmability Turned into programmability 
everywhere in pipelineeverywhere in pipeline

•• Immediate mode from a parallel machineImmediate mode from a parallel machine

VideoVideo
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Texture

Memory

64 MB

Texture

Memory

64 MB

PixelFlow NodePixelFlow Node

I/O Card (opt.)

PA-8000PA-8000 PA-8000PA-8000

Memory

Interface

Geometry 

Network 

Interface

128 MB

Memory

Geometry

Pixel 

Processors

(128 x 64)

Composition

Network

Optional

Video

Adapter

Video
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Shading FunctionsShading Functions

•• PinsPins

–– Crown, label, scuffs, dirt,Crown, label, scuffs, dirt, PhongPhong

•• AlleyAlley

–– Wood, reflection mapWood, reflection map

•• BallBall

–– PhongPhong

•• LightLight

–– Shadow mapShadow map

Image by Yulan Wang , UNC.
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Bump MapsBump Maps

Images by Brad Ritter, Hewlett-Packard.
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Enabling Programmable ShadingEnabling Programmable Shading

•• Shading LanguageShading Language

––pfmanpfman

––Similar to RenderMan with extensions Similar to RenderMan with extensions 
mainly for speed on PixelFlowmainly for speed on PixelFlow

•• Extensions to OpenGL to allow access Extensions to OpenGL to allow access 
from geometry code.from geometry code.

VideosVideos
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#define BRICK_WIDTH 0.25#define BRICK_WIDTH 0.25

#define BRICK_HEIGHT 0.08#define BRICK_HEIGHT 0.08

#define MORTAR 0.01#define MORTAR 0.01

surface brick(surface brick(

output unsigned varying fixed<8,8>output unsigned varying fixed<8,8> glgl__rcrc_co[3],_co[3],

unsigned texture varying fixed<16,16>unsigned texture varying fixed<16,16>

glgl_material__material_texcoordtexcoord[2]) {[2]) {

floatfloat ssss,, tttt;;

fixed<8,0> row;fixed<8,0> row;

tttt == glgl_material__material_texcoordtexcoord[1] % (BRICK_HEIGHT + MORTAR);[1] % (BRICK_HEIGHT + MORTAR);

row =row = glgl_material__material_texcoordtexcoord[1] / (BRICK_HEIGHT + MORTAR);[1] / (BRICK_HEIGHT + MORTAR);

glgl__rcrc_co[0] = 0.5;      _co[0] = 0.5;      // both brick & mortar same red// both brick & mortar same red

if(if(tttt > brick_height) { > brick_height) { // Is it a row of brick or mortar?// Is it a row of brick or mortar?

glgl__rcrc_co[1] = 0.5;_co[1] = 0.5; // within mortar row// within mortar row

glgl__rcrc_co[2] = 0.5;_co[2] = 0.5;

}}

else {else { // within brick row// within brick row

......
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Deferred ShadingDeferred Shading

Geometry

Processor

Rasterizer

z

Geometry

Processor

Rasterizer

z

Geometry

Processor

Rasterizer

Appearance Parameters Appearance Parameters 

(parameters necessary to (parameters necessary to 

shade the image, such asshade the image, such as

normalsnormals, etc.), etc.)

Color to Frame BufferColor to Frame Buffer

(another PixelFlow node)(another PixelFlow node)

Shading Shading 

of visible of visible 

pixelspixels

Shading NodeShading NodeRasterizationRasterization NodesNodes

•• User selects the User selects the 

number of number of rasterization rasterization 

and shading nodes to and shading nodes to 

suit the workload.suit the workload.
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Advantages and DisadvantagesAdvantages and Disadvantages

• You only shade pixels that are visible

• Increased coherence

but...

• Must save and transmit many 
parameters → high bandwidth demand

•• You only shade pixels that are visibleYou only shade pixels that are visible

•• Increased coherenceIncreased coherence

but...but...

•• Must save and transmit many Must save and transmit many 
parameters parameters →→ high bandwidth demandhigh bandwidth demand

VideoVideo
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TransparencyTransparency

• A problem with image composition

• We implemented

–Screen door when antialising

–Mammen’s algorithm with transparent 
polygons on shading nodes

• Still, sort-last is not good when many 
polygons are transparent

•• A problem with image compositionA problem with image composition

•• We implementedWe implemented

––Screen door when antialisingScreen door when antialising

––Mammen’s Mammen’s algorithm with transparent algorithm with transparent 
polygons on shading nodespolygons on shading nodes

•• Still, sortStill, sort--last is not good when many last is not good when many 
polygons are transparentpolygons are transparent
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Immediate vs. Retained ModeImmediate vs. Retained Mode
(direct vs. indirect rendering)(direct vs. indirect rendering)

•• ImmediateImmediate--mode limited by host mode limited by host 
to graphics bandwidth.to graphics bandwidth.

•• Display lists stored on nodesDisplay lists stored on nodes

•• Our intent was to attach Our intent was to attach 
PixelFlow to a parallel machinePixelFlow to a parallel machine

Host

Workstation

PixelFlow

node

240 MB/s240 MB/s

peakpeak

Parallel Machine

PxFl node PxFl node PxFl node

GeometryGeometry
NetworkNetwork

CompositionComposition
NetworkNetwork
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PerformancePerformance

• PixelFlow was built with industrial 
partners, first Division, then HP

• Demonstrated running at about 43 million 
triangles per second on 36 nodes

•• PixelFlow was built with industrial PixelFlow was built with industrial 
partners, first Division, then HPpartners, first Division, then HP

•• Demonstrated running at about 43 million Demonstrated running at about 43 million 
triangles per second on 36 nodestriangles per second on 36 nodes

VideoVideo
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•• John Eyles, Steven Molnar, John Poulton, Trey Greer, John Eyles, Steven Molnar, John Poulton, Trey Greer, 
Anselmo Lastra, Nick England and Lee WestoverAnselmo Lastra, Nick England and Lee Westover, , 
"PixelFlow: The Realization","PixelFlow: The Realization", SiggraphSiggraph/Eurographics /Eurographics 
Workshop on Graphics Hardware, Los Angeles, CA, Workshop on Graphics Hardware, Los Angeles, CA, 
August 3August 3--4, 1997, 574, 1997, 57--68.68.

•• Marc Olano and Anselmo Lastra, Marc Olano and Anselmo Lastra, "A Shading "A Shading 
Language on Graphics Hardware: The PixelFlow Language on Graphics Hardware: The PixelFlow 
Shading System",Shading System", Proceedings of SIGGRAPH 98, pp. Proceedings of SIGGRAPH 98, pp. 
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Graphics PerformanceGraphics Performance

Peak 
Performance 
(∆'s/sec)

Year

HP CRX

SGI Iris

SGI GT

HP VRX

Stellar GS1000

SGI VGX

HP TVRX

SGI SkyWriter

SGI 

E&S
F300

One-pixel polygons (~10M polygons @ 30Hz) 

SGI

RE2

RE1

Megatek

86 88 90 92 94 96 98 00

104

105

106

107

108

109

UNC Pxpl4

UNC Pxpl5

UNC/HP PixelFlow

Flat 

shading 

Gouraud

shading  

Antialiasing

Slope ~2.4x/year 
(Moore's Law ~ 1.7x/year)

SGI 
IR

E&S
Harmony

SGI 
R-Monster

Division VPX

E&S Freedom

Accel/VSIS
Voodoo

Glint

Division

Pxpl6

PC Graphics

Textures

SGI

Cobalt

Nvidia TNT
3DLabs

Graph courtesy of Professor John Poulton 

GeForce 3

& Radeon
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Why Use Polygons At All?Why Use Polygons At All?

• Pros

–Convenient for modeling (by hand)

–Good representation when large on 
screen

–Useful for man made objects

• Cons

–Huge number to model natural scenes

–Fairly complex to render

•• ProsPros

––Convenient for modeling (by hand)Convenient for modeling (by hand)

––Good representation when large on Good representation when large on 
screenscreen

––Useful for man made objectsUseful for man made objects

•• ConsCons

––Huge number to model natural scenesHuge number to model natural scenes

––Fairly complex to renderFairly complex to render
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WarpEngineWarpEngine

• Hardware architecture for rendering from 
depth images

• Voicu Popescu

–Also John Eyles, 

–Josh Steinhurst

•• Hardware architecture for rendering from Hardware architecture for rendering from 
depth imagesdepth images

•• Voicu PopescuVoicu Popescu

––Also John Eyles, Also John Eyles, 

––Josh Josh SteinhurstSteinhurst

KamovKamov VideoVideo
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Rendering AlgorithmRendering Algorithm

• WarpEngine algorithm

–Interpolate between reference image samples

–Warp (transform) them forward to image space

–Z-composite into sub-pixel (2x2) warp buffer

• No interpolation

across “skins”

•• WarpEngine algorithmWarpEngine algorithm

––Interpolate between Interpolate between referencereference image samplesimage samples

––Warp (transform) them forward to image spaceWarp (transform) them forward to image space

––ZZ--composite into subcomposite into sub--pixel (2x2) pixel (2x2) warp bufferwarp buffer

•• No interpolationNo interpolation

across “skins”across “skins”
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Forward vs. Backward MapForward vs. Backward Map

• Conventional scan conversion

–For each pixel, compute color

–Basically backward map

• WarpEngine

–Warp sample forward

•• Conventional scan conversionConventional scan conversion

––For each pixel, compute colorFor each pixel, compute color

––Basically backward mapBasically backward map

•• WarpEngineWarpEngine

––Warp sample forwardWarp sample forward
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Offsets Make it WorkOffsets Make it Work

• 2-bit offset

• More precise 
sample 
location

• 2-pixel wide 
filter kernel

• Similar to 
sparse buffer

•• 22--bit offsetbit offset

•• More precise More precise 
sample sample 
locationlocation

•• 22--pixel wide pixel wide 
filter kernelfilter kernel

•• Similar to Similar to 
sparse buffersparse buffer

Blue – pixel, Green – warp buffer, Black - offset
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Inexpensive AntialiasingInexpensive Antialiasing

2 x 2 Offset2 x 2 Offset No OffsetNo Offset

ZoomedZoomed
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Why Forward Map?Why Forward Map?

• Low setup cost!

–No edge-expression computation

• Exploits coherence

–IBR tile (16x16 image) tends to need 
same interpolation factor

–Can use efficient SIMD warper

•• Low setup cost!Low setup cost!

––No edgeNo edge--expression computationexpression computation

•• Exploits coherenceExploits coherence

––IBR tile (16x16 image) tends to need IBR tile (16x16 image) tends to need 
same interpolation factorsame interpolation factor

––Can use efficient SIMD Can use efficient SIMD warperwarper
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ArchitectureArchitecture

 

R egion Accumulator

R econstruction Buffer

Frame Buffer

Tile
Cache

from host

Network Interface

Tile
Cache

Warp  Array
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WarpArrayWarpArray

• Nearest 
neighbor 
connectivity

• In/Out/Warp 
pipelined

• Similar to 
PixelFlow 
design

•• Nearest Nearest 
neighbor neighbor 
connectivityconnectivity

•• In/Out/Warp In/Out/Warp 
pipelinedpipelined

•• Similar to Similar to 
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Region AccumulatorRegion Accumulator

• Pixel interleaved

• 128 x 128

• Soft z?

• Reconstruction 
pipelined with 
next region 
rendering

•• Pixel interleavedPixel interleaved

•• 128 x 128128 x 128

•• Soft z?Soft z?
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pipelined with pipelined with 
next region next region 
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Sort First for ParallelismSort First for Parallelism

• How to distribute work across chips?

• Sort by screen space regions

–128x128 pixel region

• Sort First [Mueller] refers to sorting 
primitives as soon as possible

• Tile coherence lowers overlap factor

•• How to distribute work across chips?How to distribute work across chips?

•• Sort by screen space regionsSort by screen space regions

––128x128 pixel region128x128 pixel region

•• Sort First [Mueller] refers to sorting Sort First [Mueller] refers to sorting 
primitives as soon as possibleprimitives as soon as possible

•• Tile coherence lowers overlap factorTile coherence lowers overlap factor
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Sort FirstSort First

• At first glance, like sort middle.

• Advantage: only primitives that 
move to other screen regions 
need to be transferred

• May scale better in display size

• Difficulties in memory access and 
editing

•• At first glance, like sort middle.At first glance, like sort middle.

•• Advantage: only primitives that Advantage: only primitives that 
move to other screen regions move to other screen regions 
need to be transferredneed to be transferred

•• May scale better in display sizeMay scale better in display size

•• Difficulties in memory access and Difficulties in memory access and 
editingediting

• • •

• • •

sort first

video
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Expected Chip SpecsExpected Chip Specs

• ASIC 12x16 mm

0.18 micron

• ≥ 300 MHz

• 4-node VGA

• 32-node HDTV

• Each chip 

–100M Samples/sec

–4.8G Bytes/sec bandwidth

•• ASIC 12x16 mmASIC 12x16 mm

0.18 micron0.18 micron

•• ≥≥ 300 MHz300 MHz

•• 44--node VGAnode VGA

•• 3232--node HDTVnode HDTV

•• Each chip Each chip 

––100M Samples/sec100M Samples/sec

––4.8G Bytes/sec bandwidth4.8G Bytes/sec bandwidth

Simulation on videoSimulation on video
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FutureFuture

• Programmable shading (finally happening!)

– More memory

– Floating point

– Regular architecture?

• Take advantage of small primitives

• Support for image-based primitives?

• Big displays with lots of pixels!

•• Programmable shading (finally happening!)Programmable shading (finally happening!)

–– More memoryMore memory

–– Floating pointFloating point

–– Regular architecture?Regular architecture?

•• Take advantage of small primitivesTake advantage of small primitives

•• Support for imageSupport for image--based primitives?based primitives?

•• Big displays with lots of pixels!Big displays with lots of pixels!
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