
*Cages: A multi-level, multi-cage based system for mesh
deformation
Francisco González Garcı́a, Teresa Paradinas, Narcı́s Coll and Gustavo Patow
University of Girona

Cage-based deformation has been one of the main approaches for mesh
deformation in recent years, with a lot of interesting and active research.
The main advantages of cage-based deformation techniques are their
simplicity, relative flexibility and speed. However, to date there has been no
widely accepted solution that provides both user control at different levels
of detail and high quality deformations. We present *Cages (star-cages), a
significant step forward with respect to traditional single-cage coordinate
systems, and which allows the usage of multiple cages enclosing the model
for easier manipulation while still preserving the smoothness of the mesh
in the transitions between them. The proposed deformation scheme is
extremely flexible and versatile, allowing the usage of heterogeneous sets
of coordinates and different levels of deformation, ranging from a whole-
model deformation to a very localized one. That locality allows faster
evaluation and a reduced memory footprint, and as a result outperforms
single-cage approaches in flexibility, speed and memory requirements for
complex editing operations.

Categories and Subject Descriptors: I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Animation; I.3.5 [Computer Graph-
ics]: Computational Geometry and Object Modeling—Modeling packages

Additional Key Words and Phrases: Cage-based deformation, mesh defor-
mation, coordinate systems

1. INTRODUCTION

Shape deformation in both in two and three dimensions plays a
central role in computer graphics. Space deformation techniques
especially cage-based methods as a practical means to manipulate
3D models [Floater et al. 2005] [Ju et al. 2005] [Joshi et al. 2007]
[Lipman et al. 2008] [Weber et al. 2009], have received a lot
of attention. A cage is a low polygon-count polyhedron, which
typically has a similar shape to the enclosed object. The object
points inside the cage are represented by affine sums of the cage

Authors’ addresses: gonzalezgarciafran@gmail.com, {teresap, coll, da-
gush}@ima.udg.edu
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, to redistribute to lists, or to use
any component of this work in other works requires prior specific permis-
sion and/or a fee. Permissions may be requested from Publications Dept.,
ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax
+1 (212) 869-0481, or permissions@acm.org.
c© YYYY ACM 0730-0301/YYYY/13-ARTXXX $10.00

DOI 10.1145/XXXXXXX.YYYYYYY
http://doi.acm.org/10.1145/XXXXXXX.YYYYYYY

elements (vertices or faces) multiplied by special precalculated
weight functions called coordinates. The main advantages of
these space deformation techniques are their simplicity, relative
flexibility and speed on applying the deformation. Also, as each
point is transformed independently, these techniques are indifferent
to the surface representation and in general free of discretization
errors.

However,to date there has been no widely accepted solution that
provides both user control and high-quality deformations. It is com-
monly accepted that an ideal deformation system should allow user
intervention when required, but automatically infer all the missing
data. For instance, given a user-chosen set of constraints, the system
should find the best deformed shape that satisfies those constraints.
Several possible alternatives do exist, such as Mean Value Coor-
dinates (MVC) [Floater et al. 2005], Harmonic Coordinates (HC)
[Joshi et al. 2007] or Green Coordinates (GC) [Lipman et al. 2008].
All of them are characterized by the use of a single cage to compute
the final deformation. This particularity presents some problems:

—Locality. Most current cage-based deformation approaches can
be classified as global deformation methods because they are de-
fined in terms of a single cage which affects all mesh vertices
and which means they cannot produce local deformations.

—Time and memory consumption. In general, the global behav-
ior of single cage-based techniques results in each point storing
weights for all cage vertices, increasing both the consumption of
memory and the number of evaluations.

—Smoothness. As we will later explain, all single cage-based
methods have continuity problems on the cage boundaries, rang-
ing from the lack of smoothness to the presence of discontinu-
ities. This is one of the main reasons as to their use is currently
limited to monolithic single cages.

—Coordinate combination. Each of the single cage-based meth-
ods uses different types of coordinates and as a result the defor-
mations also differ (e.g. MVC and GC). The user has to decide to
use one coordinate type or another for the whole model, depend-
ing on the desired results, and without the option of combining
their strengths.

In order to avoid such problems, one way would be to use many
cages instead of just one. As a consequence, they would be easier
to create and manipulate. Each of these cages should use different
coordinate types, which would increase the potential of different
results over the final deformations. All these cages should be used
at different levels of granularity to allow a more localized control
over the final deformation, consuming only the resources needed
for each cage in isolation.

In this paper we present *Cages (pronounced star-cages), a
cage-based deformation method that involves a hierarchical set
of cages where the leaf cages bound the object in a piecewise
manner. Cage-coordinates can be individually defined for each leaf

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

2 • González Garcı́a, F. et al.

cage, and blended among neighboring cages to produce a smooth
(class C1) deformation, thus offering localized deformation
control with swift computation. The hierarchy further allows
deformation control to take place at multiple levels. In this sense,
we can say that *Cages complements the existing techniques
rather than competing with them. Hence, the rationale behind
of its name: *Cages can accommodate any coordinate system
inside a cage, and smoothly combine any number of cages to ob-
tain a flexible and general deformation system at any level of detail.

The main contributions of the proposed technique are:

—An unlimited number of cages to smoothly deform a base mesh.
—This set of cages produces more localized deformations and as a

consequence consumes less time and memory.
—This is the first system that allows the usage of heterogeneous

sets of coordinates, and is able to define different coordinates for
different cages and use them together in combination.

—The ability to produce multi-level deformations, where different
cages are used to control different levels of detail in the defor-
mation of a model.

All this together gives rise to an extremely versatile deformation
approach, which is much more intuitive and user-friendly.

2. PREVIOUS WORK

Cage-based deformation methods, which drive the deformation via
a control cage enclosing the model to be deformed, are considered
to be one of the most important space deformation techniques.
The first method based on three dimensional regular lattices was
introduced by Sederberg and Parry [1986]. Later, this method
was extended to handle general lattices [Coquillart 1990] and
LOD management [Seo and Thalmann 2000]. In recent years,
new deformation methods have been proposed based on the use
of coordinates computed with respect to the vertices of a single
enclosing cage. Floater and co-workers [Floater 2003] [Floater
et al. 2005] [Ju et al. 2005] introduced Mean Value Coordinates
(MVC) as a method for constructing an interpolant for closed
triangular meshes, with a closed-form formulation which is able to
reproduce linear functions. MVC are well defined both inside and
outside the control mesh (C∞ continuous) but they are only C0

continuous across the cage faces. Later, Joshi et al. [2007] proposed
Harmonic Coordinates (HC) for character articulation, which are
positive and C∞ continuous inside the cage, C0 continuous on the
boundary and have no definition outside the cage. Lipman et al.
[2007] presented an alternative non-negative coordinate definition
to MVC (PMVC). The coordinates are computed numerically
by using a GPU-friendly approach. Later, Lipman et al. [2008]
proposed a new shape-preserving space deformation approach
called Green Coordinates (GC). The work, motivated by Green’s
third integral identity, produces conformal mappings, and extends
naturally to quasi-conformal mappings in 3D by using both the
vertex positions and face orientations of the cage. GC are C∞
continuous inside and outside the cage but discontinuous at the
boundary, although some restrictive extension mechanism can be
applied. However, *Cages is a technique that provides smoothness
to any of these coordinates across multiple cages, allowing their
usage in combination.

Jacobson et. al [2011] proposed bounded biharmonic weights,
a linear blending scheme that is able to produce smooth, intuitive
and flexible deformations for 2D and 3D shapes using handles of

different topology (points, bones and cages). Contrary to single
cage-based approaches, they can naturally use partial cages to
locally deform a mesh without any special restriction or consider-
ation. However, this technique does not guarantee linear precision
and needs transformations associated to each handle, which
in this sense makes them more similar to skeletal deformation
than to barycentric coordinates. In any case, this technique is
fully compatible with *Cages allowing its fusion with classic
cage-based techniques.

A similar hierarchical approach to the one we propose with our
method was introduced in [Zheng et al. 2011]. There, the authors
allowed the user to group a set of controllers to obtain a hierarchy
to deform a mesh. Their approach is only applicable to man-made
models and uses a small set of representative controllers. As
the authors mention, they discarded cages as handlers given the
difficulties at cage boundaries, and which is exactly what *Cages
addresses.

Langer et al. [2008] developed a criteria for the construction of
smooth maps, called Bézier maps, that are a piecewise homoge-
neous polynomial in generalized barycentric coordinates. To avoid
discontinuities, they had to increase the number of control points
and the order of the polynomials, thus increasing computational
costs. In the work by Ben-Chen et al. [2009], the challenge was
to find a harmonic map from a domain in such a way that it
satisfies constraints specified by the user, and is detail-preserving
and intuitive to control. Huang et al. [2009] presented a mesh
deformation technique using modified barycentric coordinates with
a tetrahedron control mesh that avoids first order discontinuities
across the cage boundaries. Unlike them, we are more flexible in
the nature of the cages we can use and require fewer resources.
Finally, even though it does not use cages, Botsch et al. [2005]
proposed a real-time freeform shape editing technique that allows
user-defined modeling constraints to be posed directly on the
surface.

Another GC-based technique to locally deform a mesh contained
by an automatically generated umbrella-shaped cell was presented
by Li et al. [2010]. Although their cage is local, they need to
bind coordinates for all mesh vertices, thus increasing memory
consumption. Ju et al. [2008] introduced skinning templates as a
solution to share and reuse skinning behaviors for similar joints
and similar characters. The skinning templates were implemented
using cage-based deformations, and thus they can benefit from all
the features of our approach. A hybrid approach that combines
surface-based and cage-based deformations were presented by
Borosan et al. [2010], but, as they note, it is not smooth at
the boundary of the cage and meshes that are too coarse limit
its effectiveness making their approach suitable only for local
deformations. *Cages, instead, is able to provide smoothness
to an arbitrary combination of different coordinates at different
deformation levels.

Recently, Landreneau and Schaefer [Landreneau and Schaefer
2010] introduced a Poisson-based method to reduce the storage
needs of the coordinates for animated meshes, aiming at making
a coordinate system local while still using a global cage. This
method has the advantage of allowing a reduced number of
coordinate evaluation for each mesh vertex at the price of requiring
the user to provide a set of initial mesh poses and only providing
smoothness for deformations similar to the initial set. *Cages can
naturally work in combination with this method and also benefits

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

*Cages: A multi-level, multi-cage based system for mesh deformation • 3

from the reduction it can achieve.

Cage-based deformations have been also applied to planar
domains. One related work was introduced by Meng et al. [2009]
who designed a method to keep the shape of images during the
deformation of a region of interest, but continuity depends on
the cage coordinates used (MVC, HC or GC). Later, Weber et al.
[2009], generalized the concept of barycentric coordinates from
real numbers to complex numbers, but this is only applicable to
two dimensional shape deformations. Should be noted that our
method can be applied to planar domains as well as 3D domains.

3. *CAGES

As has been previously explained, current cage-based deformation
approaches use a single cage to deform a mesh. Some of these
methods, such as MVC, PMVC and HC, express a point p inside a
cage c as an affine combination of the cage vertices v by:

p =
∑
v∈c

wc(v, p)v (1)

where wc(v, p) are the coordinate basis functions. Let us note that,
while the use of the cage subindex c may seem redundant, its use-
fulness will become apparent in the following explanations. The
natural way to define a deformation inside cage c of a point p is
given by:

Tc(p) =
∑
v∈c

wc(v, p)v
′ (2)

where v′ are the deformed control cage vertices.

Instead, *Cages encloses a mesh in a connected set of control-
ling cages {c0, c1, . . . , cn}. These cages do not intersect and they
use their own independent set of coordinates (See the left image in
Figure 1 for an example). Let C be the union of them. For each of
these cages, we can define a transformation Tci(p). In general, the
piecewise transformation defined on C by transformations Tci(p)
is at most C0, e.g., it can generate first-order discontinuities across
boundaries between adjacent cages. See Figures 2(b) and 2(d)
where classic MVC/PMVC/HC and GC were used, respectively. In
the case of GC, Tci(p) would use both vertices and face normals
of the cages in its definition, but the corresponding piecewise
transformation would be discontinuous at the cage boundaries. The
insets in the figures show a detail of these discontinuities.

Therefore, if we want to use a set of cages as the base of our
deformation tool, instead of a single cage, it seems clear that we
need to address this continuity problem. For that purpose we are
going to define a smooth transformation S that will replace the
classic Tc(p) to deform the points. S will be piecewise defined on
each cage ci by transformations Sci(p), so it is of class C1 in the
interior of C. Our proposal consists of defining the transformation
Sci(p) by blending the traditional transformation Tci(p) defined
in each cage ci with a new transformation Jci(p), called join
transformation. Jci(p) will be responsible for guaranteeing
smooth transitions between neighboring cages and will behave
similar to standard cage-based transformations.

More formally, we define the transformation Sci(p) by:

Sci(p) = bci(p)Tci(p) + (1− bci(p))Jci(p) (3)

Fig. 1. Left: c0 = v0v1v4v3, c1 = v3v4v6v5, c2 = v1v2v7v6v4,
Bc0 = Bc0c1 ∪Bc0c2 , Bc1 = Bc0c1 ∪Bc1c2 , Bc2 = Bc0c2 ∪Bc1c2 .
Middle: Join cage generated by v3. Right: Join cage generated by v4.

where bci(p) is the boundary weight function (See Section 3.2),
which is a class C1 function in ci that is equal to zero at any point
p lying on the border between ci and any adjacent cage and differ-
ent to zero at the interior of ci. In this manner, Jci(p) or Tci(p) will
be fully applied on a mesh point p depending on its position in re-
spect to any border of ci. The fact that transformation Tci(p) is the
one used by previous single-cage approaches will allow the user to
choose a different coordinate system for each individual cage in a
way that suits his/her needs. Thus, in the following subsections we
will explain the two elements needed to define the smooth trans-
formation Sci(p): the join transformation Jci(p) and the boundary
weight function bci(p).

3.1 Join transformation Jci(p)

First, let us introduce some definitions illustrated by the scheme
shown in Figure 1. As mentioned before, *Cages uses a set of
controlling cages. Given two cages ci and cj , we consider them
adjacent if they share a set of faces. Then, given cage ci let us
denote its adjacent cages by Adj(ci) (e.g. Adj(c0) = {c1, c2}
in Figure 1). For a cage cj ∈ Adj(ci) let Bcicj = ci ∩ cj be
the border between ci and cj (e.g. Bc0c1 = c0 ∩ c1) and let the
boundary of ci, noted Bci , be the union of all borders Bcicj (e.g.
Bc0 = Bc0c1 ∪Bc0c2).

Our goal is to define a transformation Jci(p) that can smoothly
cross boundaries between adjacent cages while verifying two
important constraints: First, as Jci(p) will be responsible for glue
cage-based deformations it must behave similar to standard cage-
based methods to produce fair deformations. Second, to provide a
high degree of locality, Jci(p) has to take into account only the
local information concerning the boundaries between cages. As we
will explain during this section, transformation Jci(p) verifies both
restrictions: First, Jci(p) is built by using standard coordinates
(MVC/GC), which allows not only a way to control the behavior
of the blending region, but also a way to ensure the fairness of the
deformations. Second, Jci(p) keeps transformations as local as
possible to the boundaries between cages, by relying only on their
local information, which is their vertices.

So, given a boundary Bcicj between cages ci and cj , we
define as boundary vertices the set of vertices that belong to that
boundary Bcicj . As can bee seen in Figure 1, any number of
cages can meet at a boundary vertex. Thus, let us define the join
cage of a boundary vertex v, denoted by jc(v), as the union of
all the cages incident at v. Figure 1 shows a set of control cages

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

4 • González Garcı́a, F. et al.

Fig. 2. A comparison between piecewise deformations. (a) The original model enclosed in two cages and its influence map. (b) MVC/PMVC/HC deformation.
(c) *Cages with MVC deformation, both for Jci (p) and Tci (p). (d) GC deformation. (e) *Cages with GC deformation, both for Jci (p) and Tci (p). The
second row shows close-up views of the deformed model. Notice that only (c) and (e) are C1.

(left), the join cage of the vertex v3 (middle), and the join cage
of the vertex v4 (right). As can bee seen, a boundary vertex may
or may not belong to its associated join cage. For the former we
will call them non-interior vertices, while for the later we will
call them interior vertices. Relying on the concept of join cage,
we will define, vertex-wise for each boundary vertex v, a smooth
and local transformation Lv(p). Then, for a cage ci, the final join
transformation will be defined as a blending of all the smooth
transformations Lv(p) related to the vertices of its boundary Bci .

Thus, in our scheme, the transformation Jci(p) in ci is defined
by:

Jci(p) =
∑
v∈Bci

W (v, p)Lv(p) (4)

where weights W (v, p) are normalized to 1. As an exam-
ple, in Figure 1, note that Jc2(p) = W (v1, p)Lv1(p) +
W (v4, p)Lv4(p) + W (v6, p)Lv6(p) and Jc0(p) =
W (v1, p)Lv1(p) +W (v3, p)Lv3(p) +W (v4, p)Lv4(p).

The weight function W (v, p) will be responsible for telling us
how much of the transformation Lv(p) from each boundary vertex
v is blended. If we are at v itself, then transformation Lv(p) will
be fully applied and its contribution will smoothly decrease as we
move away. W (v, p) will completely vanish at the other boundary
vertices of Bci . Let us define the weight function W (v, p) by:

W (v, p) = Ω(v, p)I(v, p) (5)

where Ω(v, p) and I(v, p) are two smooth functions. The first,
called vertex influence function, will provide us with a way to ex-
press the influence of vertex v in its join cage, while the second,
called interior vertices influence function, will take into account
the influence of interior vertices, if any, on the rest of boundary
vertices (interior or non-interior). Both are explained below.

Vertex influence function Ω(v, p). This function is a bell-
shaped function defined over the join cage jc(v) of vertex v, which

allows us to specify a smooth region of incidence of vertex v on
its join cage jc(v). This function has to satisfy the following prop-
erties: be non-negative, be smooth, be equal to one at v and equal
to zero on any face of jc(v) not incident to v. As an example, in
Figure 1, Ω(v3, p) should be equal to one at v3 and equal to zero
on all the faces of jc(v3) except the two containing v3. One way to
define Ω(v, p) could be based on Gaussian functions. However, the
need to keep the transformations local has led us to define it by the
use of a weight measure with respect to the faces of the join cage
(a sort of distance). So, let t be a face of F (jc(v), v), which is the
set of faces of jc(v) not incident to v. Thus, we define Ω(v, p) as
a product of normalized and smoothed distances to that set of faces
as follows:

Ω(v, p) =
∏

t∈F (jc(v),v)

f1

(
djc(v)(t, p)

djc(v)(t, v)

)
(6)

where fh is a smoothing function parameterized with parameter
h ∈ (0, 1], satisfying fh(0) = f ′h(0) = f ′h(1) = 0, fh(x) = 1
for x ≥ h, and f ′h(x) ≥ 0. h is used to contract or expand f in
the range (0, 1]. Here, for Ω, we set h = 1, but its full meaning
will become apparent in Section 3.2. In our implementation
we have tested several functions that fulfill those properties:
fh(x) = 1

2
sin(π(x

h
− 1

2
)) + 1

2
, fh(x) = −2(x

h
)3 + 3(x

h
)2 and

fh(x) = −8(x
h

)5 + 20(x
h

)4 − 18(x
h

)3 + 7(x
h

)2, all defined for
x ∈ [0, h], and fh(x) = 1 for x ∈ [h, 1]. The results obtained
were similar in all cases without observing noticeable differences.
The images in the paper have been generated with the first function.

The distance function dc(t, p) specified in cage c is defined by:

dc(t, p) = 1−
∑

u∈V (t)

wc(u, p) (7)

where V (t) are the vertices of face t and wc(u, p) are the
coordinate basis functions (MVC/HC) used in cage c. In the
case that c is not convex, weights wc(u, p) have to be com-
puted by HC to prevent negative coordinate values. Otherwise

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

*Cages: A multi-level, multi-cage based system for mesh deformation • 5

MVC can be used. Observe that function dc(t, p) is of class
C∞ inside cage c and C0 in the boundary of c. It is also equal
to one on the faces of c non adjacent to t, and it is equal to zero on t.

Properties for Ω(v, p):

Notice that function Ω(v, p) possesses the required condi-
tions and also satisfies:

—∂pΩ(v, v) = 0, where ∂p is the directional derivative re-
spect to p

—∂pΩ(v, p) = 0, for any point p lying on any face of jc(v)
not incident to v

—Ω(v, p) < 1, for any point p 6= v

Interior vertices influence function I(v, p). Given a
boundary vertex v (interior or non-interior), function I(v, p) is re-
sponsible for introducing the influence of the rest of boundary ver-
tices classified as interior vertices over v (e.g. v4 over v3 in Figure
1). As we have explained, given the fact that function Ω(v, p) gives
a way to determine the influence of a vertex v, we rely on it to
define I(v, p) as:

I(v, p) =
∏

u∈Int(jc(v))−{v}

fhci

(
1−Ω(u, p)

1−Ω(u, v)

)
(8)

being Int(jc(v)) the set of interior vertices of jc(v). Note that if
the set of vertices Int(jc(v)) − {v} is void, this means that there
are no interior vertices, so I(v, p) is equal to one and thus W (v, p)
will be influenced only by the smooth function Ω(v, p). This
means two things: first, the influence of vertex v is not affected by
other interior vertices and second, the vertex v is only influenced
by the rest of boundary vertices (non-interior) of jc(v) which are
taken into account in the first smoothing function Ω(v, p).

As an example, in Figure 3 we illustrate the weight function
W (v, p) on several different borders between two neighboring
cages. In Figures 3(a) and 3(b), the border has only non-interior
vertices, while on the rest of images a couple of interior vertices
appear. In Figure 3(a) we show the weight W (v1, p) for vertex v1
and in Figure 3(b) the weight W (v4, p) for the vertex v4. Observe
the smoothness of the weights and, in the later case, the lack of
negative coordinates as we use HC. In Figure 3(c) we show the
weight W (v6, p) of the interior vertex v6 and in Figure 3(d) we
show the weight of vertex v1 but now with the influence of the
interior vertex v6. Observe the difference with the same weight of
Figure 3(a). Finally, in Figures 3(e) and 3(f) we show the mutual
influence of two interior-vertices.

Properties for W (v, p):

The weight W (v, p) is a non-negative function of class C1

in jc(v) satisfying the following properties:

—W (v, v) = 1 and ∂pW (v, v) = 0

—W (v, p) = 0 and ∂pW (v, p) = 0, for any point p lying
on any face of jc(v) not incident to v

—W (v, u) = 0 and ∂pW (v, u) = 0, for any vertex u ∈
Int(jc(v))− {v}

Fig. 3. Variation of weight W (v, p) on different borders between two
cages.

Now that we have set the weight W (v, p), we still lack the def-
inition of the transformation Lv(p) to have the join transforma-
tion Jci(p) completely specified. Thus, let us define transforma-
tion Lv(p) differently depending on whether v is boundary vertex
classified as an interior or a non-interior vertex of jc(v):

—v is a non-interior vertex of jc(v). Transformation Lv(p) is
defined by a smooth arbitrary transformation Tjc(v)(p) (defined
with MVC/HC/GC) in jc(v) determined by the deformed ver-
tices of jc(v) by:

Lv(p) = Tjc(v)(p) (9)

—v is an interior vertex of jc(v). TransformationLv(p) is defined
by a smooth arbitrary transformation Tjc(v)(p) (MVC/HC/GC)
in jc(v), plus a smooth gradation of the transformation that
moves Tjc(v)(v) to v′, which is the deformed cage vertex v. That
is:

Lv(p) = Tjc(v)(p) +W (v, p)(v′ − Tjc(v)(v)) (10)

Note that as we get closer to the interior vertex v, the second
term of the sum will increase, and thus the transformation Lv(p)
will be altered by adding the influence of vertex v. Otherwise,
as we get far away from the interior vertex v, the transformation
of point p in jc(v), that is Tjc(v)(p), will be fully applied with
no influence of v.

Properties for Lv(p):

Observe that transformation Lv(p) verifies the following
properties:

—Lv(v) = v′ being v′ the deformed cage vertex.
—Lv(u) = u′ for u ∈ V (jc(v)), where u′ is the deformed

cage vertex u and V (jc(v)) are the vertices of cage jc(v).
—If Tjc(v)(p) and v′ are given by a linear function then v′ =
Tjc(v)(v) and Lv(p) also is given by a linear function.

Now that we have explained in detail the join transformation
Jci(p) through its two components, the weight W (v, p) and the

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

6 • González Garcı́a, F. et al.

Fig. 5. Influence map variation on the scheme shown in Figure 1.

local transformations related to the boundary vertices Lv(p), we
can guarantee the following property with respect to its smooth-
ness:

Properties for Jci(p):

Observe that for a point p on a boundary Bcicj between
cages ci and cj we have:

Jci(p) =
∑

v∈Bcicj

W (v, p)Lv(p)

which guarantees:

—Jci(p) = Jcj (p), ∂pJci(p) = ∂pJcj (p), and conse-
quently smooth transitions between cages are obtained.

Note that Jci(p) is not defined on the faces that do not have any
boundary vertex (e.g face consisting of vertex v2 and vertex v7 of
cage c2 in Figure 1). As we will show in the following subsection,
this is not problematic because transformation Jci(p) will never be
applied there, as the boundary weight function bci(p) will be equal
to one and thus, Jci(p) will not be applied.

3.2 Boundary weight function bci(p)

In this subsection we specify the weight function bci(p) involved
in the smooth transformation Sci(p). This function is responsible
for determining where a point p is located respect to the boundaries
of a given cage ci, so more formally we can say bci(p) needs to
be equal to 0 when p ∈ Bci (fully apply the join transformation
Jci(p)) and needs to be equal to 1 on the faces of cage ci that
are not incident to any vertex of Bci (fully apply the own cage
transformation Tci(p), e.g face created by vertices v2 and v7 in
Figure 1).

Thus, let us define in a cage ci the weight function bci(p) as a
product of weights with respect to any border Bcicj as follows:

bci(p) = fhci

 ∏
cj∈Adj(ci)

(1−
∑

v∈Bcicj

wci(v, p))

 (11)

where fhci
is the smoothing function defined in Section 3.1. If

Bci = ∅, i.e., when ci does not have any neighboring cage, bci(p)
is set to be 1. As an example, in Figure 1 the distance bc2(p) of

cage c2 will be 0 when p belongs to the boundary of the cage
(Bc2 = Bc0c2 ∩Bc1c2) and to 1 on the face generated by vertices
v2 and v7.

Properties for bci(p):

The weight function bci(p) verifies these properties:

—∂pbci(p) = 0, for any point p satisfying bci(p) = 1,
—∂pbci(p) = 0, for any point p satisfying bci(p) = 0, that

is, lying on any face of Bci .

As can be seen in Formula (3), the weight bci(p) is a measure
of the influence of the transformation Tci(p) in Sci(p), and can
be adjusted by changing the parameter hci . To visualize the effect
when altering hci we use an influence map, where the model is
painted in blue-red gradation according to the distance bci(p). As
an example, in Figure 5 we visualize three different influence maps
for the scheme shown in Figure 1. Also, in Figure 4 we show the
chinchilla model enclosed in 9 cages. We have used GC for the ears
and MVC for the rest of the cages, as well as the join transforma-
tions. At the right, results obtained from three different values of
hci corresponding to the left ear cage, are shown.

3.3 Smooth Transformation Sci(p)

Up to now, we have specified all the components that are part of the
piecewise smooth transformation Sci(p) defined in Formula (3).
In Figures 2(c) and 2(e) we illustrate the effects of the proposed
smooth transformation. In Figure 2(c) a deformation has been
performed using MVC to compute both, the cage transformations
Tci(p) and the join transformation Jci(p), while in Figure 2(e)
GC are used for both transformations.

Properties for Sci(p):

The transformation Sci(p) defined in a cage ci satisfies the
required continuity conditions for any point p on Bcicj :

—Sci(p) = Jci(p) = Jcj (p) = Scj (p)

—∂pSci(p) = ∂pJci(p) = ∂pJcj (p) = ∂pScj (p)

Now we want to show that the transformation S of the whole
system of cages C preserves all the good properties of the standard
cage-based techniques while satisfying the required continuity con-
ditions. One important aspect is that transformation S inherits prop-
erties of transformations Tci(p) and Lv(p) (used to create Jci(p))
such as linear reproduction. The only requirement for the coordi-
nate system used to compute these transformations is that it must
be defined inside the respective cage as MVC/HC and GC. So, if A
is an arbitrary linear function, we need to show that Sci(p) = A(p)
in case that Tci(p) = A(p) and Lv(p) = A(p) for all join cages.
This can be easily demonstrated from the partition of unity property
of the weight functions:

Sci(p) = bci(p)Tci(p) + (1− bci(p))
∑
v∈Bci

W (v, p)Lv(p) =

= bci(p)A(p) + (1− bci(p))
∑
v∈Bci

W (v, p)A(p) =

= bci(p)A(p) + (1− bci(p))A(p) = A(p) .

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

*Cages: A multi-level, multi-cage based system for mesh deformation • 7

Fig. 4. Influence map variation on the chinchilla model. Left: Original model and initial cages. Right: Results obtained by using different hci values for the
left ear cage. Red and blue regions mean transformations Tci (p) and Jci (p) respectively are fully applied.

Fig. 6. Multi-level deformation for coordinates not defined outside the
cage. (a) Initial cages. (b) Direct cage vertex movement. (c) Parent trans-
formation.

Moreover, if transformations Tci(p) perform boundary interpola-
tion, transformation S performs boundary interpolation on faces
not adjacent to any boundary between cages. For a point on this
kind of faces all weights with respect to vertices of Bci are equal
to 0. Consequently, the distance bci(p) with respect to Bci is equal
to 1 and, then, Sci(p) = Tci(p), which means that the smooth
transformation in ci is equal to the transformation (MVC/GC/HC)
defined for cage ci.

3.4 Multi-level deformations

We can use *Cages to build a multi-level system which gives flex-
ibility, versatility, interactivity and control over the deformations to
be applied to a part of the model. In our scheme, upper-level cages
can own an arbitrary set of vertices of lower-level cages, the only
restriction being that cages must have a hierarchical relationship
(e.g. a Directed Acyclic Graph or a tree) and that a given cage
vertex cannot be controlled by more than one parent cage. In
general, two kinds of cages can be distinguished: leaf-cages that
directly control the mesh and satisfy the conditions enumerated
in Section 3, and the internal-cages that control cage vertices of
lower-level cages and do not directly affect the mesh, so they
can intersect and smoothness does not need to be enforced for them.

Our multi-level system relies on a simple yet effective observa-
tion: When a cage in the multi-level system changes, the effects
of this change should only be propagated downwards but not
upwards in the hierarchy. This means that, when a vertex v of a
cage is changed, the positions of all the vertices in the containing
and neighboring cages should be updated as usual, but the parent
cage c containing v would not be affected. However, if the parent
cage c changes later on, v should be updated accordingly. Here,

we cannot directly transform v, as it has a different position than
the one used when computing its coordinates (binding time) with
respect to c, so the coordinates for v must be recalculated, and then
the process continues as usual.

If coordinates that are defined everywhere are used, such as
MVC, then the above implementation works as described. How-
ever, in the case of coordinates not being defined outside (e.g.
HC), special measures should be taken. We propose an easy but
effective solution without the need of any cage recomputation. We
can express any new position for v as v′ = Tc(v) + U(v) with
U(v) being the user-generated displacement, and Tc(v) the trans-
formation of v with respect to the parent cage c. We can express
U(v) = λ · ∆U(v), where λ is an adequate multiplicative fac-
tor and ∆U(v) is a displacement small enough to satisfy that point
∆v = Tc(v)+∆U(v) is within cage c at its current position. Now,
if cage c undergoes another transformation T ′c that converts Tc(v)
into T ′c(v) and ∆v into T ′c(∆v), we will update the current position
of v by v” = T ′c(v) + λ(T ′c(∆v)− T ′c(v)) (see Figure 6).

4. RESULTS AND DISCUSSION

Throughout the paper, we have used the following coloring code:
Blue cages use MVC, red ones use HC and the green ones use GC.
We have also drawn the boundaries between cages in pink. The
implementation of *Cages has been carried out using the Ogre3D
engine on a Quad Core Duo (2.83GHz) with 4GB of RAM. In
the interests of fairness, we have implemented MVC/HC and GC
in our unoptimized CPU-based system, carefully following the
pseudocodes provided in those papers.

To show that the deformations produced by *Cages result in
deformations with a level of quality on par with common single
cage-based approaches, in Figure 7 we present some comparisons.
The prism model (206312 triangles) is enclosed using four cages
(20 vertices) by *Cages and the union of cages by the single
cage-based methods. The deformation is obtained by twisting the
prism (each cage is rotated by π/2 with respect to the previous
one). Note the large similarity between the results obtained by
MVC and GC (Figures 7(a) and 7(d)) and *Cages (Figures 7(b)
and 7(e)), even at the boundaries between cages where the new
Join Transformation is fully applied. In the figure, both cage
(Tci(p)) and join transformations (Jci(p)) have been computed
with the same coordinate systems (MVC/GC). The corresponding
difference maps are shown in Figures 7(c) and Figure 7(f). The
maximum and RMS difference values shown are computed with

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

8 • González Garcı́a, F. et al.

Fig. 7. Twisting a prism using MVC (left) and GC (right). See the similarity between a single cage (a,d) and *Cages (b,e). In (c,f) we can see the corre-
sponding similarity maps. Red means lower similarity and blue means higher similarity.

respect to the bounding box of the model.

One important feature that *Cages has, in contrast to previous
single cage-based methods, is the degree of locality obtained in the
deformations. As a way of illustrating that important contribution,
in Figure 8 we compare the locality of the deformations achieved
by *Cages and single cage-based methods. For the former we have
enclosed the train model (60052 triangles) in 4 cages (28 vertices),
while for the latter we have used their union as a global cage for
MVC and GC. As can be seen in the figure, single cage approaches
cannot perform very localized deformations as all mesh vertices
are deformed with respect to all cage vertices. For instance, if the
cage vertices of the top of the central wagon are moved, the single
cage version of MVC or GC deforms the head and tail wagons too,
while *Cages only affects the center wagon, as one would expect.
Also, notice the unsatisfactory deformations produced by MVC in
Figure 8(a) at the sides of the wagon roofs due to the presence of
negative coordinates produced by non-convex cages (the joining
part between wagons). Let us note that, even though some coordi-
nates like HC and GC present some kind of local control over the
deformation, they have some issues we should discuss:

—HC uses Interior Cages to reduce the coordinate influence at the
expense of building an extra interior cage, which leads to more
memory and time consumption during the deformation. More-
over, one needs to be careful when creating such cages, because
if the mesh goes through them, discontinuities will appear.

—In the case of GC, we could use the so called Partial Cages as
a tool to provide local control. As discontinuities would arise at
cage boundaries, the authors propose smoothing the deformation
by extending the local deformation performed inside a partial
cage to the rest of the mesh through some selected faces. This
operation is not always possible and results in more computation
time.

It is well known that not only each of the existing coordinates
produces different deformation results, but also that they have dif-
ferent properties and computational resource needs (e.g. GC pro-
duces more time consuming deformations as they take into account
the faces of the cages, and HC needs much more time to compute
coordinates for each vertex than MVC). Thus, the combination of
different coordinate types in a unique framework is a useful fea-

ture that allows users to freely choose between coordinates and, as
a result, they are able to produce different deformations with the
same cage configuration. Furthermore, coordinate selection allows
us to benefit from their good properties and concrete computational
resources needs depending on the situation:

—As can be seen in Figure 9, *Cages is able to smoothly combine
different coordinate types between different cages. Here, the but-
terfly model (61366 triangles) has been enclosed in 6 cages (114
vertices): two for each wing, one for the lower body, and another
one for the head. At the top right, we can observe the combina-
tion of GC for the top wings and MVC for the bottom ones. Full
MVC and GC deformation using *Cages can be seen at the bot-
tom row. Observe the difference between the deformations even
when they use the same cage configuration, and how *Cages
smoothly glues them.

—*Cages also allows us to benefit from the good properties of
each coordinate type depending on the situation. In Figure 10
we show an example in which we can see the deformations pro-
duced by a single-cage with MVC on the hand model. As it is
well-known, MVC has problems with concave cages because
they result in negative coordinates (second column in the figure).
By default, *Cages reduces this problem (third column) to re-
gions near the boundaries when MVC is used to compute the join
transformations. Here, the negativity still does not completely
disappear because even when each single cage is convex, the re-
sulting join cages are still concave. That is, cage transformations
Tci(p) do not have negative coordinates but join transformations
Jci(p) continue to be affected by the MVC negative behavior.
However, the fact that *Cages is able to combine different coor-
dinates, allows us to completely solve the problem (4th column)
by using HC to compute only the join transformations when con-
cave join cages are detected. Although this situation is not solved
in a direct way by our approach, the combination of coordinates
localize the usage of HC to only the places where it is needed,
and so consuming less preprocessing time and memory to pro-
duce a deformation free of negative coordinates.

In situations where a combination of coordinates is used, an
important aspect is how fair the resulting deformation is, especially
in regions near the boundaries, which show a transition between
different coordinate types. Given the nature of the propose blend-

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

*Cages: A multi-level, multi-cage based system for mesh deformation • 9

Fig. 8. Locality: Comparison of single cage approaches and *Cages. At
top, the cages and the influence map on the train model. (a) single cage
MVC, (b) *Cages whith MVC, (c) single cage GC, (d) *Cages with GC.

ing scheme, we can guarantee that the resulting deformations will
produce correct results, as we smoothly shift from one deformation
type to another. As an example, in Figure 11 we show results of
the fairness of the deformations produced by our approach when

Fig. 9. Combined deformations on the butterfly model. The top row shows
the cages and a *Cages-combined GC/MVC deformation. The bottom row
shows two different deformations using MVC and GC with *Cages.

different coordinates are combined. In the top row, we can see the
bumpy surface and its influence map at binding time. Three cages
have been used: left and middle cages use MVC, while the right
cage has GC. The join transformations applied between cages are
of type MVC. In the bottom row we show a deformation using
single cage approaches with MVC (left) and GC(middle), as well
as the result of applying *Cages. See how the bumps in the model
follow the faces of the cage when GC are used (see Figure 11,
middle). On the other hand, if we perform the same deformation
using MVC, the bumpy details get stretched (see Figure 11, left).
This behavior can also be observed in the deformation produced
by *Cages as well as the fairness in the deformation over the
transition between cages of different coordinate types (see the
insets in the bottom row in Figure 11). Observe how the GC
deformation shifts to the MVC one.

*Cages is able to handle any number of cages meeting at a
boundary cage vertex. Figure 12 shows a deformation obtained
from a flower model (21903 triangles) enclosed in 13 cages (88
vertices) using different coordinate types. Here it is important
to observe the correct behavior of the method even when cage
vertices with more than two incident cages exist.

Two different multi-level deformations (see Section 3.4) can
be seen in Figures 13 and 14. On one hand, in Figure 13, the
squirrel head model (19552 triangles) has been enclosed by four
leaf-cages (66 vertices): teeth, face, left and right ear. There are
also two internal-cages (16 vertices), which are colored in grey:
The global ears cage, which encloses some vertices of the left and
right ear cages, and the head cage, which encloses all unbinded
vertices of the previous cages (see Figure 13(a)). The sequence of
deformations in the figure is as follows: First the teeth have been
deformed in Figure 13(b), second the ears in 13(c), then the entire
head in 13(d) and finally the face in 13(e). On the other hand,
we have also applied our multi-level approach over the whole
squirrel model (37588 triangles), as can be seen on the right of

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

10 • González Garcı́a, F. et al.

Fig. 10. Deformations on the hand model. Columns from left to right: Defined cages (72 vertices), deformation using MVC (observe the effect of negative
coordinates of non-convex cages), and *Cages using MVC (third column) and HC (fourth column) as join transformations, respectively.

Fig. 11. Fairness of the resulting MVC (left), GC (middle) and MVC/GC
with *Cages (right) deformations. The top row shows the influence map
and the cages at binding time.

Figure 14. The model has been enclosed in 12 leaf-cages (132
vertices) and 3 internal-cages (24 vertices), shown at the top-left
side of the image. Also, observe the usage of different coordinates
for different cages in addition to the deformations produced at
different levels of detail. As can be seen, we are able to perform
deformations at different levels of detail without recomputing any
coordinate for the mesh vertices, which is something that none of
the existing single-cage-based approaches allows. As an example,
imagine we have a partial cage with HC for the ear of the squirrel
model in Figure 13 and a single cage containing the whole model.

One could compute coordinates for each cage, then deform them
using the partial cage and then the single cage. What happens here
is that, when deforming using the later, the coordinates won’t be
valid as the vertices affected by the partial cage have seen modified
their binding positions. So, we must recompute coordinates each
time we go from the usage of partial (local) to single (global)
cages and vice versa. In contrast, *Cages can change the level of
detail over the deformation without the need for any coordinate
recomputation for mesh vertices, as they are controlled by the
leaf-cages.

As has been explained in Section 3, *Cages naturally supports
the presence of interior cage vertices. In Figure 15 (left) we show a
”Easter Egg” model enclosed in a grid of twelve cages. This set of
cages generates two interior vertices, one at the top and the other
at the bottom of the ”surprise” mesh. As a way to demonstrate
the good behavior of deformations when these kinds of vertices
are involved, we have generated two different deformations: the
first deformation has been obtained by moving up the top interior
vertex and leaving the rest of cage vertices stationary (Figure
15(a)), while the second deformation has been achieved by moving
the top row of cage vertices up and leaving the rest in their original
positions (Figure 15(b)).

Given the multi-cage nature of *Cages it allows the user to
naturally reduce the number of weights stored for each mesh
vertex and, as a consequence, to obtain faster evaluations. The
computational and memory costs become optimal when the
number of cages used is high and they have a small adjacency
degree, that is, when one cage is connected to a reduced number
of neighboring cages, as in Figure 16. The small adjacency degree
gives as a result a small number of join transformations involved
in the final smooth transformation of every single cage, and
consequently faster and lower memory-consuming deformations.
Despite this, it is important to mention that the user can control
the influence of join transformations inside a cage by adjusting
the influence map parameter hci . In Table I we show the memory
and time requirements depending on the influence of the parameter
hci in the boundary weight function bci(p) (see Section 3.2). We

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

*Cages: A multi-level, multi-cage based system for mesh deformation • 11

Fig. 13. Multi-level deformation of the squirrel model. (a) Multi-level cages. (b) Leaf deformation: teeth cage. (c) Internal deformation: ears’ cage. (d)
Internal deformation: head cage. (e) Leaf deformation: face cage.

Fig. 12. Multiple cages meeting at a cage vertex. Left: Original model
with 13 cages using different coordinates. Middle: close view. Right: De-
formation with *Cages.

compare the results obtained for three different hci values for the
set of 9 cages used (134 vertices) in the chinchilla model (140126
triangles), both for MVC and GC. In these cases, cage and join
transformations have been computed with the same coordinate
types. Observe that the memory usage and the computational cost
are nearly proportional to hci . This is because, as the hci values
decrease, transformations Tci(p) are fully applied on more mesh
vertices, and for these the join transformations Jci(p) do not need
to be stored and computed. As can bee seen, the parameter hci has
a drastic impact on *Cages requirements, but using an insufficient
value for hci could introduce visible non-smooth transitions in
extreme deformation conditions. Also, it should be noted that the
value for hci can be set in an easy and independent manner for
each border, for each cage or for the whole model. In Figure 4 we
have used the second approach, while for all the tables we have
used a single hci value for the entire model to make comparisons
fairer. In our system, the user is provided with a simple slider to
control this parameter independently for each selected cage.

In Figure 16 we show three different deformations applied over
the Sintel model (66845 triangles), which has been used in real film
production. Note that the model has 15 leaf-cages (193 vertices), as
can be seen on the left part of the image. Different coordinates have
been used for the different cages to obtain the deformations shown.
Note the good results obtained by our approach even when several

Fig. 14. Deformation of the squirrel model using *Cages. Left: The
model and its multi-level cages at binding time. Right: Composition of a
pose.

types of coordinates are used in such complex deformations.

In Table II we compare *Cages with MVC and GC on the
Sintel model of Figure 16 and on the squirrel model (12 leaf-cages
with 132 vertices and 3 internal-cages with 24 vertices) of Figure
14. Observe that *Cages consumes less than half the memory
for the squirrel model and 4 times less than the memory for the

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

12 • González Garcı́a, F. et al.

Fig. 16. Deformations of the Sintel model (66845 triangles) using *Cages. Left: Cages at binding time with different coordinates (Blue - MVC, Green - GC,
Red - HC, and pink cage boundaries). Right: Composition of different poses.

Fig. 15. Deformation involving interior points of the ”Easter Egg” model
using *Cages. Left: The model and the grid of cages at binding time. High-
lighted vertices are interior points. Right: Composition of two different de-
formations.

Sintel model (column 2). The total time required for the preprocess
is shown in column 3, specifying the amount of time dedicated
to compute the coordinates with respect to the parent cages.
Also, *Cages takes much less time to compute cage coordinates
because each of the cages used are simpler and smaller than a
whole single cage. The rest of the time is needed to compute join
cages and the coordinates with respect to them. In the case of
using GC, *Cages requires even less preprocessing time because
of the nature of their computations [Lipman et al. 2008]. The
deformation times (column 4) are the averages of the times needed
for the deformation of a cage vertex. Observe that our approach is
significantly faster for both models, where we achieve between 3
and 5 times the speed of MVC, and between 7 and 18 times that of
GC.

We would like to emphasize that, even our code is unopti-
mized and CPU-based, *Cages allows for a more GPU-friendly
implementation than single cage-based approaches do, as it has
a much lower number of weights to store for each mesh vertex.
Moreover, unlike the technique presented by Landreneau and
Schaefer [2010], we don’t need to be constrained by having to
create new deformations that must be similar to an initial range

of predetermined poses to be able to reduce memory and time
consumption. Instead, we give the user the freedom to perform
any type of deformation while also keeping the memory and
time requirements small, as well. Let us note that *Cages is
fully compatible with the work by Landreneau and Schaefer
[2010], and our computational requirements could be reduced
even more if used together: Their compression could be used
for both cage and join transformations. The latter case would
benefit *Cages the most, as join transformations are more compu-
tationally demanding to evaluate than regular cage transformations.

*Cages is not related with the modeling of cages themselves.
As the examples throughout the paper have shown we use a set of
individual cages, the union of which result in a single cage for the
entire model. This has been done as a way to make comparisons
to previous single cage-based approaches fairer. With *Cages we
don’t need to create the whole set of cages that are equivalent to a
single cage. For instance, if we want to deform only the head of
the Sintel model shown in Figure 16, we are not required to build
all the cages shown there, we only need to model the ones needed
to make this task simpler. Moreover, the modeling of cages used to
deform a small region is usually easier and faster and so, the use
of many cages to deform a mesh can result in a more user-friendly
element for the cage-modeling phase.

As a space deformation approach, *Cages can be used in the
same domains as previous methods. For instance, the lowest-level
cages of our hierarchy could be deformed by a simple skeleton, as
Ju at al. [2008] did. Thanks to the local behavior of our approach,
we could provide a finer degree of control over the skeleton and,
as a result, a smoother final animation. *Cages also can be used
to perform deformations in 2D, as long as the cages satisfy the
requirements described in Section 3. *Cages is a cage-based
method that can be also integrated with other deformation tech-
niques that uses other types of handles, as the one proposed by
Jacobson et al. [2011]. For instance, our approach can be used in
a certain region of the model to perform local and hierarchical
deformations with MVC/HC or GC. Then, on the rest of the model,
the bounded biharmonic weights could be used with point and

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

*Cages: A multi-level, multi-cage based system for mesh deformation • 13

Table I. Memory and time requirements for the chinchilla model
using different hci values for *Cages with MVC and GC.

Chinchilla Memory Preprocess Deform
(MB) Cage Coord. Total (sec)

MVC *Cages
hci = 1.0 45.45 3.8045 29.4625 0.3308
hci = 0.6 29.75 3.7958 17.3009 0.1409
hci = 0.2 14.05 3.8034 9.5280 0.0662
GC *Cages
hci = 1.0 131.27 10.1461 134.8266 1.0725
hci = 0.6 84.35 10.3721 73.5973 0.4460
hci = 0.2 37.43 10.2712 49.1273 0.1888

Table II. Memory and time requirements: comparison between
*Cages (h = 0.5) and single cage-based methods.

Model Memory Preprocess (sec) Deform
(MB) Cage Coord. Total (sec)

Squirrel
MVC 25.55 7.4815 7.4815 0.0904
MVC *Cages 11.26 3.4861 6.6197 0.0372
GC 63.30 39.7976 39.7976 0.7095
GC *Cages 30.39 8.3214 28.9178 0.0969
Sintel
MVC 52.52 20.1988 20.1988 0.2105
MVC *Cages 13.54 8.3469 13.7599 0.0427
GC 155.41 107.4353 107.4353 1.8824
GC *Cages 34.94 16.3395 47.9066 0.1074

bone handlers. *Cages would be responsible for smoothly gluing
the deformations provided by cage-based methods (MVC/HC/GC)
with those produced with the technique of Jacobson et al. [2011],
thus avoiding the discontinuities that would appear through cage
boundaries.

Acknowledgements

We would like to thank the anonymous reviewers for their insight-
ful comments and suggestions. This work was partially funded with
grant TIN2010-20590-C02-02 from the Ministerio de Ciencia e In-
novacin.

REFERENCES

BEN-CHEN, M., WEBER, O., AND GOTSMAN, C. 2009. Variational har-
monic maps for space deformation. In SIGGRAPH ’09: ACM SIG-
GRAPH 2009 papers. ACM, New York, NY, USA, 1–11.

BOROSAN, P., HOWARD, R., ZHANG, S., AND NEALEN, A. 2010. Hybrid
mesh editing. In Proc. of Eurographics 2010 (short papers).

BOTSCH, M. AND KOBBELT, L. 2005. Real-time shape editing using radial
basis functions. In Computer Graphics Forum. 611–621.

COQUILLART, S. 1990. Extended free-form deformation: a sculpturing tool
for 3d geometric modeling. SIGGRAPH Comput. Graph. 24, 187–196.

FLOATER, M. S. 2003. Mean value coordinates. Comput. Aided Geom.
Des. 20, 1, 19–27.

FLOATER, M. S., KÓS, G., AND REIMERS, M. 2005. Mean value coordi-
nates in 3d. Computer Aided Geometric Design 22, 7, 623–631.

HUANG, J., CHEN, L., LIU, X., AND BAO, H. 2009. Efficient mesh defor-
mation using tetrahedron control mesh. Comput. Aided Geom. Des. 26, 6,
617–626.

JACOBSON, A., BARAN, I., POPOVIĆ, J., AND SORKINE, O. 2011.
Bounded biharmonic weights for real-time deformation. ACM Transac-
tions on Graphics (proceedings of ACM SIGGRAPH) 30, 4, 78:1–78:8.

JOSHI, P., MEYER, M., DEROSE, T., GREEN, B., AND SANOCKI, T.
2007. Harmonic coordinates for character articulation. ACM Trans.
Graph. 26, 3, 71.

JU, T., SCHAEFER, S., AND WARREN, J. D. 2005. Mean value coordinates
for closed triangular meshes. ACM Trans. Graph. 24, 3, 561–566.

JU, T., ZHOU, Q.-Y., VAN DE PANNE, M., COHEN-OR, D., AND NEU-
MANN, U. 2008. Reusable skinning templates using cage-based defor-
mations. ACM Trans. Graph. 27, 5 (Dec.), 122:1–122:10.

LANDRENEAU, E. AND SCHAEFER, S. 2010. Poisson-based weight reduc-
tion of animated meshes. Comput. Graph. Forum 29, 6, 1945–1954.

LANGER, T., BELYAEV, A., AND SEIDEL, H.-P. 2008. Mean value bézier
maps. In GMP’08: Proceedings of the 5th international conference on
Advances in geometric modeling and processing. Springer-Verlag, Berlin,
Heidelberg, 231–243.

LI, Z., LEVIN, D., DENG, Z., LIU, D., AND LUO, X. 2010. Cage-free
local deformations using green coordinates. Vis. Comput. 26, 6-8, 1027–
1036.

LIPMAN, Y., KOPF, J., COHEN-OR, D., AND LEVIN, D. 2007. Gpu-
assisted positive mean value coordinates for mesh deformations. In SGP
’07: Proceedings of the fifth Eurographics symposium on Geometry pro-
cessing. Eurographics Association, Aire-la-Ville, Switzerland, Switzer-
land, 117–123.

LIPMAN, Y., LEVIN, D., AND COHEN-OR, D. 2008. Green coordinates.
ACM Trans. Graph. 27, 3 (Aug.), 78:1–78:10.

MENG, W., SHENG, B., WANG, S., SUN, H., AND WU, E. 2009. In-
teractive image deformation using cage coordinates on gpu. In VRCAI
’09: Proceedings of the 8th International Conference on Virtual Reality
Continuum and its Applications in Industry. ACM, New York, NY, USA,
119–126.

SEDERBERG, T. W. AND PARRY, S. R. 1986. Free-form deformation of
solid geometric models. SIGGRAPH Comput. Graph. 20, 151–160.

SEO, H. AND THALMANN, N. M. 2000. Lod management on animating
face models. In Proceedings of the IEEE Virtual Reality 2000 Confer-
ence. VR ’00. IEEE Computer Society, Washington, DC, USA, 161–.

WEBER, O., BEN-CHEN, M., AND GOTSMAN, C. 2009. Complex
barycentric coordinates with applications to planar shape deformation.
Computer Graphics Forum 28, 2, 587–597.

ZHENG, Y., FU, H., COHEN-OR, D., AU, O. K.-C., AND TAI, C.-L.
2011. Component-wise controllers for structure-preserving shape manip-
ulation. In Computer Graphics Forum (In Proc. of Eurographics 2011).
Vol. 30. to appear.

Received September 2008; accepted March 2009

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

