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Abstract

Many ways of communications are used between human and computer, while using gesture is considered to be
one of the most natural way in a virtual reality system. Because of its intuitiveness and its capability of
helping the hearing impaired or speaking impaired, we develop a gesture recognition system. Considering
the world-wide use of ASL (American Sign Language), this system focuses on the recognition of a continuous
flow of alphabets in ASL to spell a word followed by the speech synthesis, and adopts a simple and efficient
windowed template matching recognition strategy to achieve the goal of a real-time and continuous
recognition. In addition to the abduction and the flex information in a gesture, we introduce a concept of
contact-point into our system to solve the intrinsic ambiguities of some gestures in ASL. Five tact switches,
served as contact-points and sensed by an analogue to digital board, are sewn on a glove cover to enhance the
functions of a traditional data glove.
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1. Introduction

The ways of communication have attracted much of interest for different reasons. Backtrack to the early
1900s, scientists had tried to solve the myth of communication among human beings and animals. In 1951,
Keith and Hayes [1] had conducted an experiment in which they tried to teach a chimpanzee, named Viki, to
speak English, however, only 4 words, papa, mama, cup, and up, could be uttered after more than six years of
training. In the 1960s, Lieberman[1] discovered that a chimpanzee is incapable of human speech for
anatomical reasons. Nevertheless, in 1976, Fouts, Chown, Kimble, and Couch[1] showed that a chimpanzee
could respond correctly to signed commands by teaching the subject Ali to learn ASL. This project also showed
that Ali could respond correctly to spatial arrangements and learn the grammar of the requested response
consisting of an ordered sequence during training. The results above reveal the possibility to communicate
with the chimpanzee and the human neonate by gestures rather than by other means.

Kunii [2] developed a system to translate natural language to sign language and then synthesised
through corresponding computer animation, making much effort on the analysis of the grammar of natural



language and the synthesis of the sign language. This system aimed at the goal of the visualisation of ASL
translated from English and facilitated communication between the hearing impaired and those with normal
speaking capabilities. To control a virtual arm by gestures, Papper and Gigante[3] used a self-defined set of
gestures to prove the usefulness in teleoperation in which interpreted gesture commands were used to control
a robotic arm. It is reasonable to use a specifically defined set of gestures in this system since it was designed
to facilitate experts to teleoperate. D. Thalmann[4] proposed a completely automatic grasping system for
synthetic actors, including solving many problems in hand control such as kinematics of the hand and
collision avoidance. V&ananen and Bohm[5] introduced GIVEN(Gesture driven Interaction as a human factor
in Virtual Environment) structure and suggested the gesture recognition approach with neural networks for
both static and dynamic gestures.

For the purpose of daily use of gestures, using ASL as Kunii did instead of a set of self-defined
gestures is much reasonable. As our goal is to recognise gestures in ASL, not to synthesise animated sign
language, the recognition approach using neural networks proposed by Vaanénen and Béhm[5] seems to be a
good candidate. However, the 10 input data(2x5 finger angles) of the input layer in the neural networks are not
enough to solve the intrinsic ambiguities of several alphabetic gestures in ASL(fig. 2) which are also
frequently used to compose a meaningful sentence. James Kramer[6] designed the Talking Glove with
twenty-two sensors, including one abduction sensor per finger and thumb, to convert a finger-spelled word
into synthesised speech. This system uses extremely thin strain gauges, instead of fibber-optic cables, to
measure how much the fingers bend. This Talking Glove is connected to a neural-network gesture recogniser
and the output is sent to a voice synthesiser for the hearing people. This award-winning product has received
much attention and could help the disabled in communication.

Instead of a spelling language, the ASL is constructed by some rules, iconicity, and symbolisation, to
form a mentally different horizon of linguistic logic. However, the implementation of all vocabulary in ASL is
very difficult and needs more study. Our current goal is to be able to recognise the set of alphabets continuously
using a simple windowed template matching method by thresholding the flex angles and retrieving the
abduction information in the recognition space. Meanwhile, in addition to the abduction and the flex
information, we introduce a concept of contact-point into our data glove, reducing the total number of sensors
to only fifteen.

2. Strategies for continuous ASL alphabets recognition

The VPL Data Glove™ can report on every finger what angle it bends, i.e., 0 to 90 degrees. However, the angle
combination of five fingers in ASL is limited, making determining the arbitrary angle in every dimension
unnecessary. Moreover, we notice that alphabets in ASL do not consist of those requiring a finger to bend a
precise angle, for example, bending all flex of four fingers to 90 degrees, metacarpophalangeal joint of the
thumb to 45 degrees and interphalangeal joint of the thumb to 90 degrees to produce alphabet *S’(fig. 2) in
ASL. When we gesture, what we keep in mind is to bend some finger or relax it, and bend some finger toward
a certain direction until stopped by some contact-point. According to this kind of behaviour, our strategy for
gesture recognition is simply to assign a binary state for every flexion, ‘1’ representing the bent state and *0’
the relaxed state. A flex is judged to be ‘1’ if the corresponding angle is over some threshold, and ‘0’
otherwise. Contact-points are added to solve the abduction ambiguity like ‘U’ and “V’(fig. 2) in ASL, and
intrinsic similarities such as ‘M’, ‘N’ and ‘S’, which are very difficult to distinct either using the original Data
Glove or combined with the neural networks approach.

We simply divide ASL alphabets into three groups: the ones needing the abduction or the contact-
point information, the ones involving motion detection or orientation, and the others.(fig. 2) All these gestures
are recognised by a template matching method using vectors received from the sensing glove as input data.



The ones needing the abduction or contact-point information: Alphabets in this group can be easily
recognised using the concept of contact-point since we have attached some tact switches on the Data
Glove(photo 1). For example, “M’, *‘N” and *S’ can be distinguished by determining whether the
switch near the interphalangeal joint of the little or the ring finger is touched(photo 2, 3, 4). ‘U’ and
‘V’ are different only in the abduction between the index and the middle finger, while adding a
switch close to the inter-phalangeal joint of the middle finger can meet the requirement(photo 5 and
6, fig. 2). Similarly, attaching a switch near the tip of the index finger can make ‘C’ and ‘O’ different
in this dimension(photo 7 and 8, fig. 2).

The ones involving motion detection or orientation: Two sets of alphabets are found identical if the
time-dependent information is not available. We simply add a motion detection module to see if the
whole hand has moved as a differentiating factor for ‘D’ and ‘Z’” and for ‘I’ and *J’(fig. 2). Two sets
of alphabets need the orientation information of hand: ‘P’ and ‘K’, ‘G’ and ‘Q’(fig. 2). This group
needs additional 3D information obtained from a 3D tracker(Polhemus Co.).

The basic ones: Since alphabets of this group do not require any additional information, we simply
use the binary outputs obtained from the flex for the recognition process.

The transit problem

Automatic and continuous gesture recognition is desirable, and the whole recognition process should not be
interrupted by a confirm-signal like key-pressing. However, if we want to input ‘B’ and ‘O’ sequentially, a ‘C’
will probably be recognised between them, that is, resulting a sequence: ‘B’, ‘C’ and ‘O’; this is called the
transit problem.

WAWWASSAAAAAAS\WWAAAAAAAS\\W\BBBBBBBB\\\\\B
BBBBBBBBBBBB\\CCCCCC\W\\\\\\\\\DDDDDDDDDDD
DDD\\EEEEEEEE\W\WE\WEEEEEEEEEEE\\\FFFFFF
FFFFFFFFFFFFFFFFF\\

Figure 1. Recognised intermediate data from the input sequence: A, A, B, B, B, C,
D, E, E, F, where “\”” is an unknown symbol.

Window concept to solve the transit problem

To achieve the goal of automatic and continuous recognition while one is gesturing, the transit problem must
be solved first; that is, to know where is the start point, the end point and a transit state of a character. We use
the following strategies based on the data in Figure 1.

1. Sliding window: A sliding window at every time instance is kept(fig. 1). This window can
memorise several characters that have been recognised in the past.

2. Template match: Using template matching, a vector can be recognised as a character or
identified as an unknown one. Every vector in a window is either a character or an unknown

symbol.



Figure 2. The American Manual Alphabet

3. Rule-based voting: VVote a most likely character according to the following rule: the majority
one(may be a character or an unknown one) in a window wins. A confidence factor for this
vector is kept and updated.



4. Accept when stable: A vector is accepted if it stably wins across several adjacent windows. The
confidence factor is used to determine the stability.
The strategies described above can work because a classification can be done for every sample,
resulting from template matching binary input data.
The situation described above is suitable for those completely matched vectors. When an input vector
is not completely matched, a most likely gesture may be found. Here we choose the alphabet that maximise the
inner product with the input vector.

3. System implementation

Figure 3 shows the relationship of several modules. The recognition module gets input data from two modules
of device driver, the Data Glove and tact switches, and output the recognised alphabet to the speech module
simultaneously. Not only a single alphabet but also a complete word can be pronounced by means of
accumulating alphabets until a “complete” sign being recognised, then the word formed from these alphabets
is sent to the speech module by the recognition module.

Recognition
Data Glove (Tact switches)
with a 3D Analog to Digatal Text to speech
tracker conversion
| | T
10 flex inputs 5 swith-inputs
Figure 3. The system diagram Figure 4. The ordering of the gesture vector

» Data Glove: Ten flex inputs are received from the Data Glove(VPL Co., DataGlove™ Model 4
System) module. It sends the first ten components of a gesture vector (Table 1.) by translating every
flexion’s value into a binary number according to some threshold which can be set at the registration
phase. This module also captures the information of motion with a Polhemus 3D tracker.

»  Tact switches: Five tact switches are sewn on another glove to put on the Data Glove. Each switch is
supplied with +5 voltage and grounded on the other end, and connected to the Analogue to Digital
board. Output is grounded as the switch is pressed, and high voltage otherwise. This module can



know whether a switch is triggered or not, representing whether a particular point on a finger is
touched.

»  Text to speech: Here we use a Sound Blaster Card(from Creative Lab.) to synthesise speech.

» Recognition: This module gets input data from the Data Glove, 3D tracker and tact switches, and
followed by pattern-matching according to Table 1. The ordering of the gesture vector is shown in
figure 4.

Table 1. The vectors of 26 alphabets, the numbers(in Hex.) in the first row indicate the ordering of the
corresponding vector component. The components of the vector are defined by values from fig. 4.

0123456789abcde 0123456789abcde 0123456789abcde 0123456789abcde
A111111111100010 B110000000000000 C010101010110000 D110011111100000
E110101011100000 F110100000000000 (G101011111110000 H100000111110000
1111111110000000 J111111110000000 K100000111100000 L000011111100000
M111111111100100 N111111111101000 0111101010110000 P110010111100000
Q001011111110000 R111000111100001 S111111111100000 T111111111110000
U110000111110000 V110000111100000 W110000001100000 X110111111100000
Y001111110000000 27110011111100000

This system uses an IBM compatible PC 486 as a platform. An analogue to digital board of 14-bit
precision is used and the text-to-speech is done by the Sound Blaster board. Five tact switches, sensed by the
AD board, are sewn on a glove cover to put on Data Glove(photo 1).

People observed that a Data Glove is not really necessary as a function control device in many virtual
reality systems because of the cost of this product, and also because of its associated computation complexity
of a neural-network recogniser or other recognition approach. In general, many tasks can be performed well
and efficiently using other methods like clicking buttons of a 3D mouse, since the amount of commands to
control a typical VR system is often limited to a small number. However, gesture recognition has its own
advantage that can not simply be replaced by a mouse or keyboard in a task such as ASL recognition. The
whole system can be made low cost if commercialisation is needed.

4, Results

Using the approach we have proposed, a continuous gesture recognition can be achieved, 15 to 20 samples can
be recognised per second, under 19200 baud rate from input devices via RS232 interface. To solve the transit
problem, we have tried windows of size 3, 4, and 5. It turns out that a window of size 4 is both stable and not
tardy for gesture response, therefore, the upper bond for accepted rate is 3 to 4 characters per second. We found
that the bottle-neck of input speed is not the sampling rate, but is limited by human gesture speed. Because our
approach is simple and efficient, the gesture recognition rate can meet the normal speed of gesturing.



5. Future work

As we have mentioned in Section 1, alphabetic sign language is not frequently used among those hearing
disabled. Therefore, the capability to recognise the common used vocabulary in ASL should be the final
solution. Realisation of the vocabulary in ASL is a very challenging goal and our next step toward this goal is
to recognise the iconic gestures which are the very first and the most natural way of gesture composition.

The difficulty of dynamic gesture recognition, which needs time-dependent information, involves not
only the complexity of windowed method, but also, again, the transit problem. A window of much larger size
is needed and the simple template matching method is not enough. Only if the transit problem can be solved
efficiently that the dynamic gestures can be solved to a certain degree.

Moreover, a recognition system for the Chinese Sign Language is certainly our future work. There
are estimated two million hearing impaired people in the US and according to this percentage, there may be
more than ten million in mainland China. An efficient and low cost sign language translation system is indeed
needed.

Currently our system has not been fully tested by a hearing disabled person, and part of the reason is
to wait for the recognition of dynamic gestures.

Short term wish list for a successful ASL to speech conversion system: (a) A predictive spelling
approach(e.g. typing “stude”,“student” will appear predictively) can be adopted that is very popular in a
contemporary electronic dictionary. (b) Simple word processing commands should be implemented such as
back space, delete, etc.
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Photo 1. Sensing Glove with five tact switches. Photo 2. Gesture “M”” with switch ¢ pressed.

Photo 3. Gesture “N’” with switch b pressed. Photo 4. Gesture “S™.



Photo 5. Gesture “U” with switch a pressed. Photo 6. Gesture “V”.

Photo 7. Gesture “C™. Photo 8. Gesture “O” with switch d pressed.

10



