Computer Graphics

Bing-Yu Chen National Taiwan University

Illumination and Shading

- Illumination Models
- Shading Models for Polygons
- Surface Detail
- Shadows
- Transparency
- Global Illumination
- Recursive Ray Tracing
- □ Radiosity
- The Rendering Pipeline

Why We Need Shading ?

Suppose we build a model of a sphere using many polygons and color it with only one color. We get something like

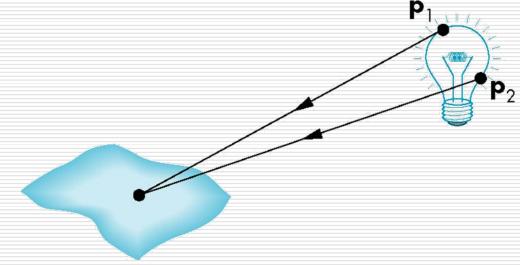
Shading

Why does the image of a real sphere look like

- Light-material interactions cause each point to have a different color or shade
- Need to consider
 - Light sources
 - Material properties
 - Location of viewer
 - Surface orientation

Light Sources

General light sources are difficult to work with because we must integrate light coming from all points on the source



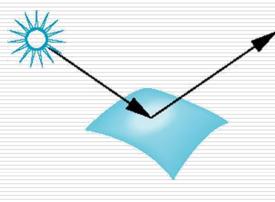
Simple Light Sources

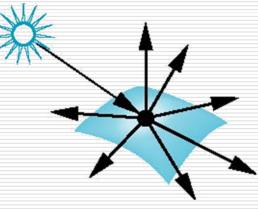
Point source

- Model with position and color
- Distant source = infinite distance away (parallel)
- Spotlight
 - Restrict light from ideal point source
- Ambient light
 - Same amount of light everywhere in scene
 - Can model contribution of many sources and reflecting surfaces

Surface Types

- The smoother a surface, the more reflected light is concentrated in the direction a perfect mirror would reflected the light
- A very rough surface scatters light in all directions

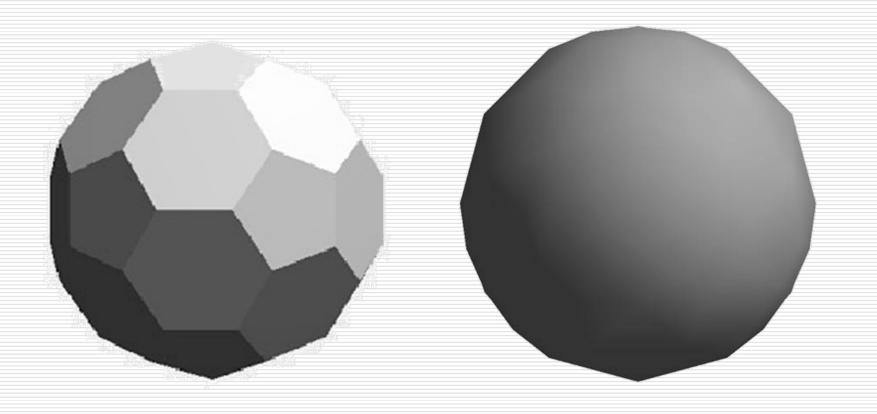




rough surface

smooth surface

What is Normal?

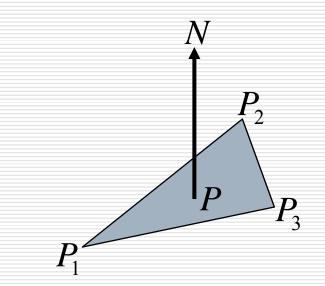


Recall: Normal for Triangle

 $\square Plane N \cdot (P - P_1) = 0$

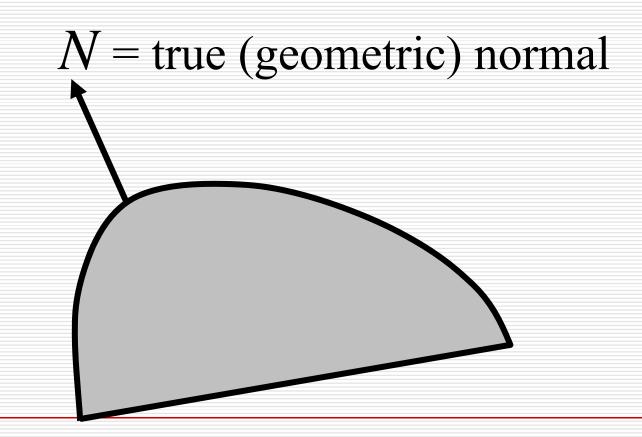
 $N = P_1 P_2 \times P_1 P_3$ = $(P_3 - P_1) \times (P_2 - P_1)$

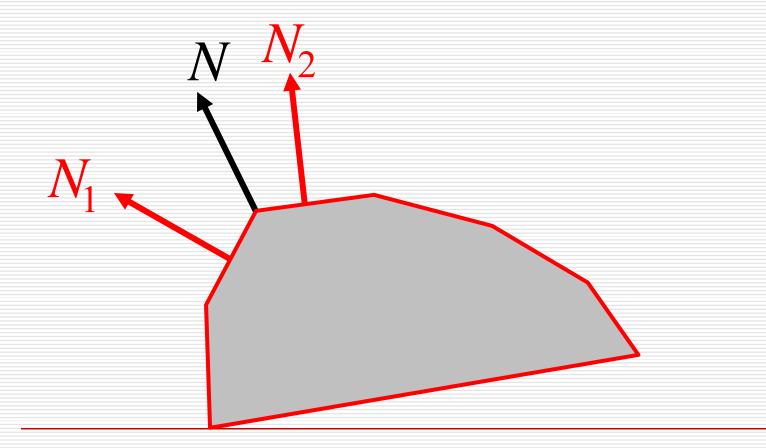
 \square Normalize $N \leftarrow N / |N|$

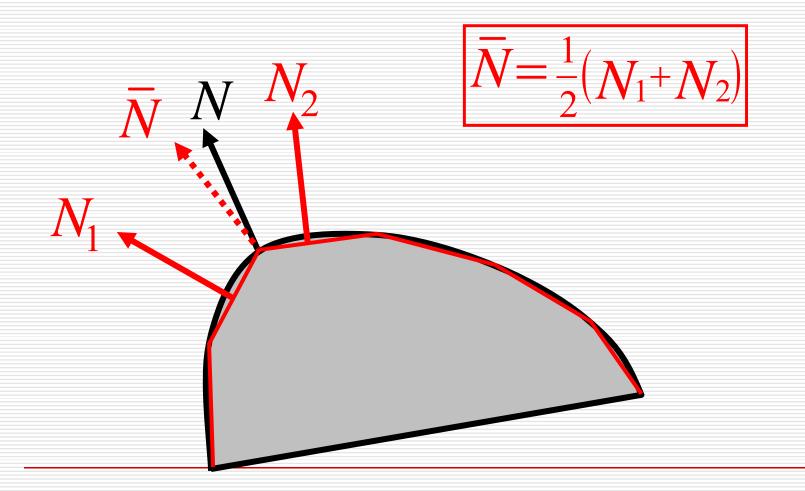


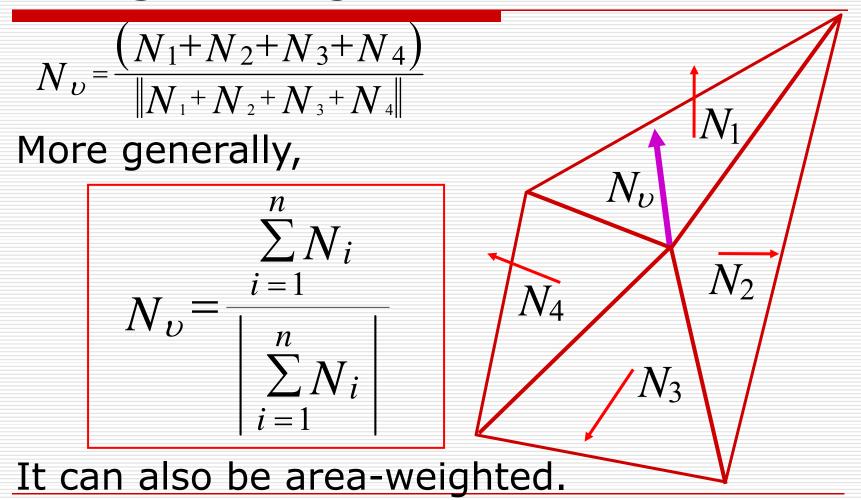
Note that

right-hand rule determines outward face

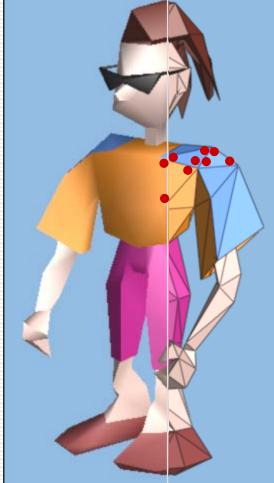








Definitions of Triangle Meshes



Copyright©1998, Microsoft

 $\begin{array}{c} \{f_1\}: \{ \ v_1 \ , \ v_2 \ , \ v_3 \ \} \\ \{f_2\}: \{ \ v_3 \ , \ v_2 \ , \ v_4 \ \} \end{array}$

 $\{v_1\}$: (x,y,z) $\{v_2\}$: (x,y,z)

6 6 A

. . .

 ${f_1}$: "skin material" ${f_2}$: "brown hair"

face attributes

corner attributes

connectivity

Illumination (Shading) Models

- Interaction between light sources and objects in scene that results in perception of intensity and color at eye
- □ Local vs. global models
 - Local: perception of a particular primitive only depends on light sources **directly** affecting that one primitive

□ Geometry

Material properties

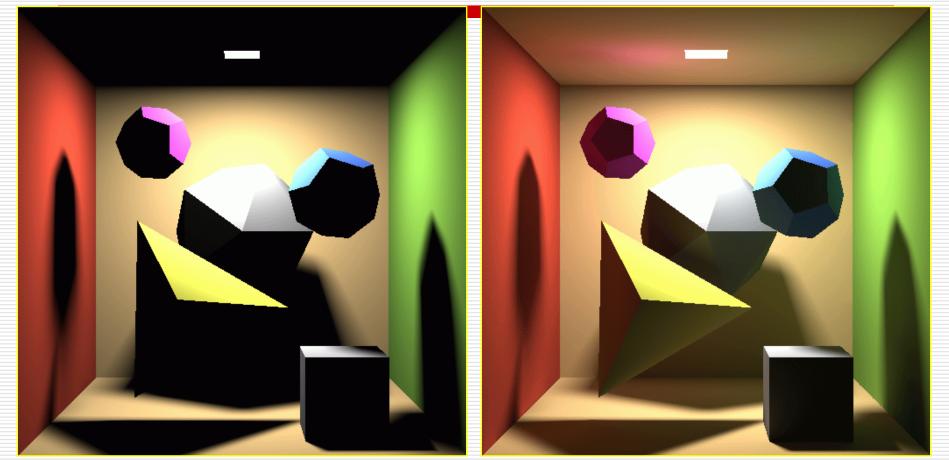
□ Shadows cast (global?)

Global: also take into account indirect effects on light of other objects in the scene

Light reflected/refracted

Indirect lighting

Local vs. Global Models

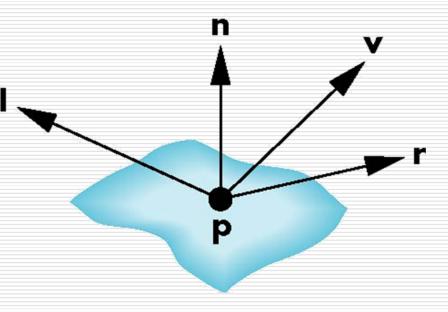


direct lighting

indirect lighting

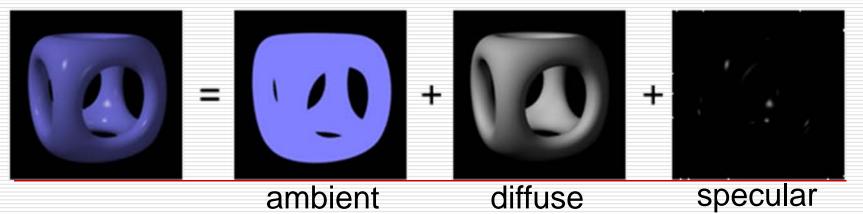
The Phong Illumination Model

- A simple model that can be computed rapidly
- Has three components
 - Diffuse
 - Specular
 - Ambient
- Uses four vectors
 - To source
 - To viewer
 - Normal
 - Perfect reflector



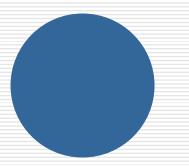
Basics of Local Shading

- Diffuse reflection
 - light goes everywhere; colored by object color
- Specular reflection
 - happens only near mirror configuration; usually white
- Ambient reflection
 - constant accounted for other source of illumination



Ambient Shading

add constant color to account for disregarded illumination and fill in black shadows; a cheap hack.



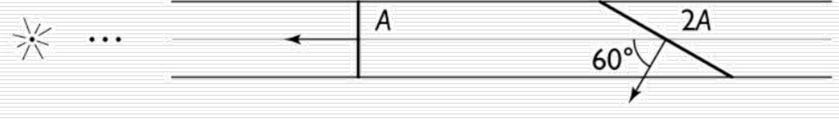
Diffuse Shading

- Assume light reflects equally in all directions
 - Therefore surface looks same color from all views; "view independent",

θ

Diffuse shading

Illumination on an oblique surface is less than on a normal one (Lambertian cosine law)



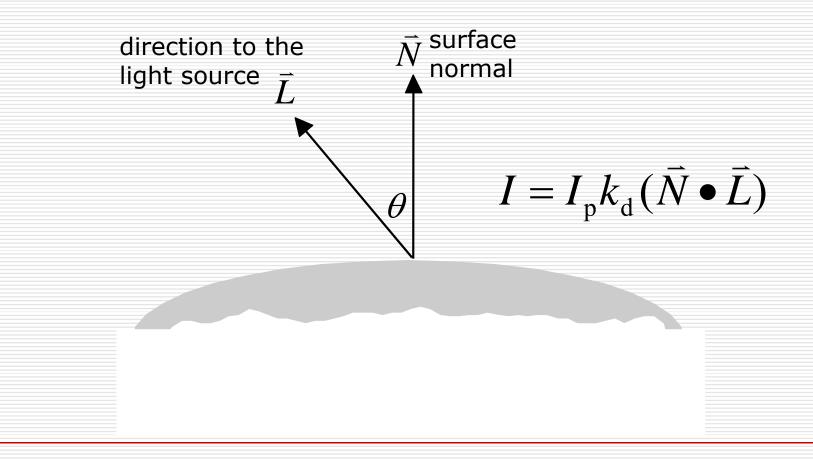
Generally, illumination falls off as $\cos\theta$

Illumination Models

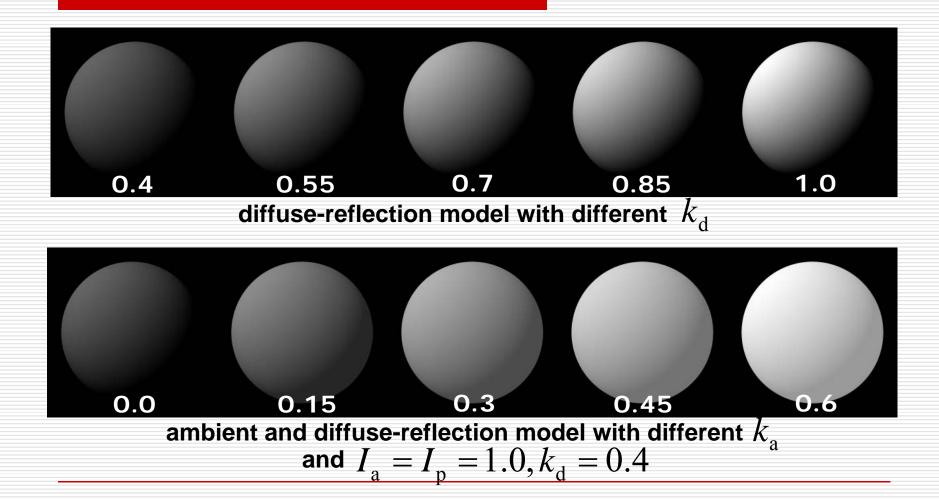
 \square Ambient Light: $I = I_a k_a$

- \blacksquare I_a : intensity of the ambient light
- **k**_a: ambient-reflection coefficient: $0 \sim 1$
- □ Diffuse Reflection: $I = I_p k_d \cos \theta$
 - *I*_p: point light source's intensity
 - **k**_d: diffuse-reflection coefficient: $0 \sim 1$
 - \bullet : angle: 0° ~ 90°

Diffuse Reflection



Examples



Light-Source Attenuation

$\Box I = I_{a}k_{a} + f_{att}I_{p}k_{d}(\vec{N} \bullet \vec{L})$

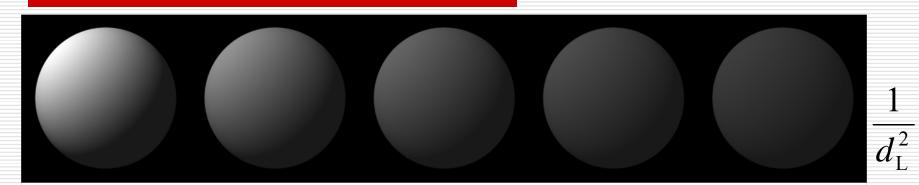
- f_{att} : light-source attenuation factor
- if the light is a point source

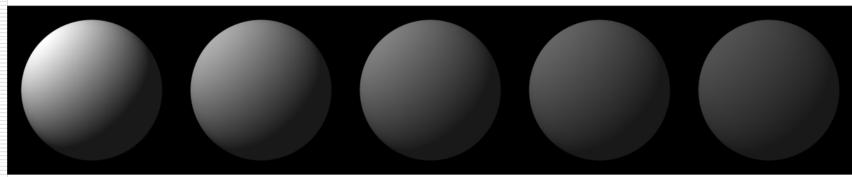
$$f_{\rm att} = \frac{1}{d_{\rm L}^2}$$

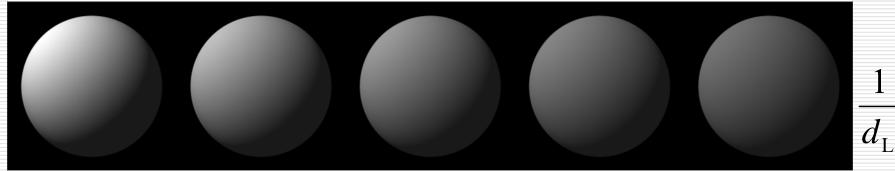
where d_L is the distance the light travels from the point source to the surface

$$f_{\text{att}} = \min(\frac{1}{c_1 + c_2 d_1 + c_3 d_1^2}, 1)$$

Examples





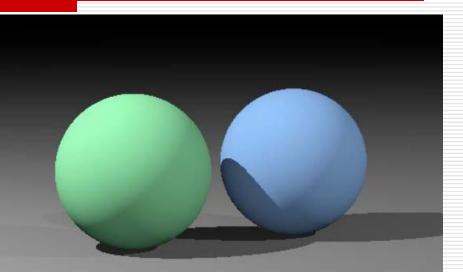


Colored Lights and Surfaces

If an object's diffuse color is $O_{\rm d} = (O_{\rm dR}, O_{\rm dG}, O_{\rm dR})$ then $I = (I_{\rm R}, I_{\rm G}, I_{\rm R})$ where for the red component $I_{\rm R} = I_{\rm aR} k_{\rm a} O_{\rm dR} + f_{\rm att} I_{\rm pR} k_{\rm d} O_{\rm dR} \left(\vec{N} \bullet \vec{L} \right)$ however, it should be $I_{\lambda} = I_{a\lambda}k_{a}O_{d\lambda} + f_{att}I_{p\lambda}k_{d}O_{d\lambda}(\bar{N}\bullet\bar{L})$ where λ is the **wavelength**

Diffuse Shading

For color objects, apply the formula for each color channel separately

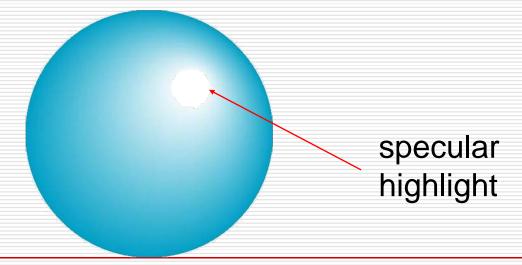


Specular Shading

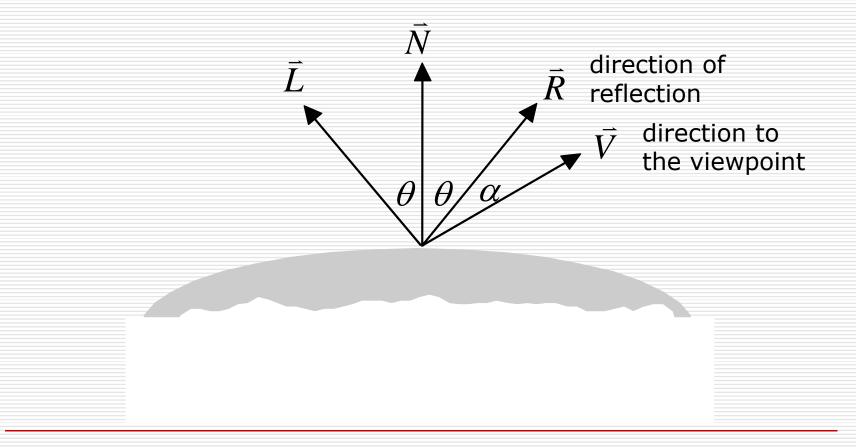
Some surfaces have highlights, mirror like reflection; view direction dependent; especially for smooth shinny surfaces

Specular Surfaces

- Most surfaces are neither ideal diffusers nor perfectly specular (ideal refectors)
- Smooth surfaces show specular highlights due to incoming light being reflected in directions concentrated close to the direction of a perfect reflection



Specular Reflection



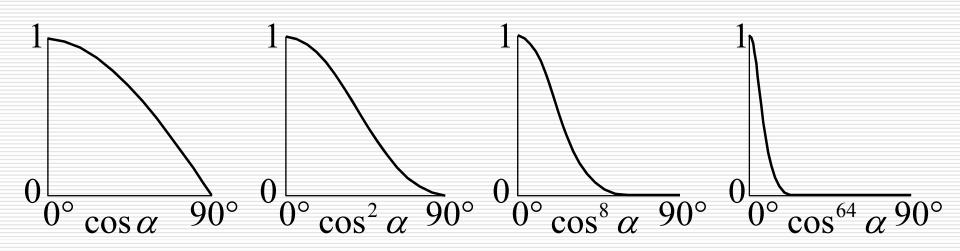
The Phong Illumination Model

 $\Box I_{\lambda} = I_{a\lambda}k_{a}O_{d\lambda} + f_{att}I_{p\lambda}[k_{d}O_{d\lambda}\cos\theta + W(\theta)\cos^{n}\alpha]$ $\blacksquare W(\theta) = k_{s}: \text{ specular-reflection coefficient: } 0 \sim 1$ $\Box \text{ so, the Eq. can be rewritten as}$ $I_{\lambda} = I_{a\lambda}k_{a}O_{d\lambda} + f_{att}I_{p\lambda}[k_{d}O_{d\lambda}(\vec{N} \bullet \vec{L}) + k_{s}(\vec{R} \bullet \vec{V})^{n}]$ $\Box \text{ consider the object's specular color}$

 $I_{\lambda} = I_{a\lambda}k_{a}O_{d\lambda} + f_{att}I_{p\lambda}[k_{d}O_{d\lambda}(\vec{N}\bullet\vec{L}) + k_{s}O_{s\lambda}(\vec{R}\bullet\vec{V})^{n}]$

 $\blacksquare O_{s\lambda}$: specular color

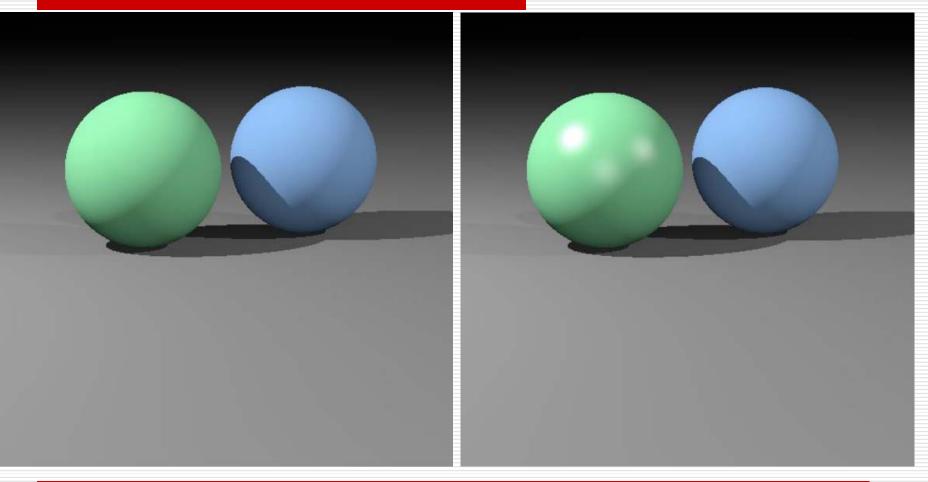
The Phong Illumination Model



Examples $k_{\rm s}$ 0.1 0.25 0.5 n = 200.0

n = 3.0*n* = 5.0 *n* = 10.0 *n* = 27.0

Specular Shading

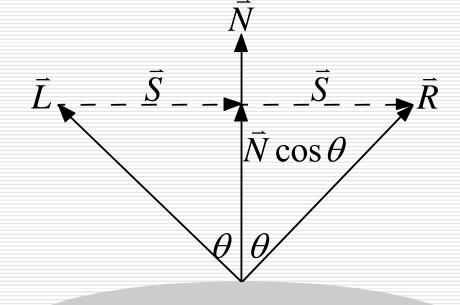


diffuse

diffuse + specular

Calculating the Reflection Vector

Fall off gradually from the perfect reflection direction



 $\vec{R} = \vec{N}\cos\theta + \vec{S}$ $= \vec{N}\cos\theta + \vec{N}\cos\theta - \vec{L}$ $= 2\vec{N}\cos\theta - \vec{L}$ $= 2\vec{N}(\vec{N} \bullet \vec{L}) - \vec{L}$

The Halfway Vector (Blinn-Phong)

 $\Rightarrow \cos \alpha \approx \bar{N} \bullet \bar{H}$

Rather than computing reflection directly; just compare to normal bisection property.

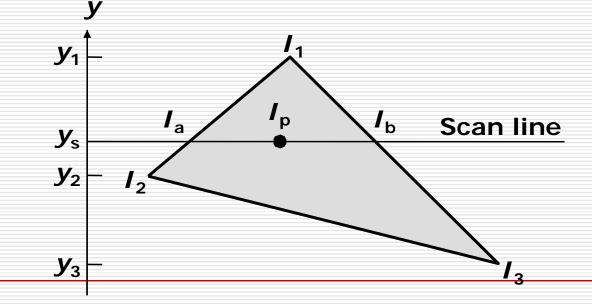
Multiple Light Sources

 \Box If there are *m* light sources, then

$$\begin{split} I_{\lambda} &= I_{a\lambda}k_{a}O_{d\lambda} + \sum_{1 \le i \le m} f_{att_{i}}I_{p\lambda_{i}}[k_{d}O_{d\lambda}(\vec{N} \bullet \vec{L}_{i}) + k_{s}O_{s\lambda}\cos^{n}\alpha_{i}] \\ &\approx I_{a\lambda}k_{a}O_{d\lambda} + \sum_{1 \le i \le m} f_{att_{i}}I_{p\lambda_{i}}[k_{d}O_{d\lambda}(\vec{N} \bullet \vec{L}_{i}) + k_{s}O_{s\lambda}(\vec{R}_{i} \bullet \vec{V})^{n}] \\ &\approx I_{a\lambda}k_{a}O_{d\lambda} + \sum_{1 \le i \le m} f_{att_{i}}I_{p\lambda_{i}}[k_{d}O_{d\lambda}(\vec{N} \bullet \vec{L}_{i}) + k_{s}O_{s\lambda}(\vec{N} \bullet \vec{H}_{i})^{n}] \end{split}$$

Computing Lighting at Each Pixel

- Most accurate approach: Compute component illumination at each pixel with individual positions, light directions, and viewing directions
- But this could be expensive...



Shading Models for Polygons

Flat Shading

- Faceted Shading
- Constant Shading
- Gouraud Shading
 - Intensity Interpolation Shading
 - Color Interpolation Shading
- Phong Shading
 - Normal-Vector Interpolation Shading

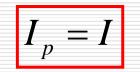
Flat Shading

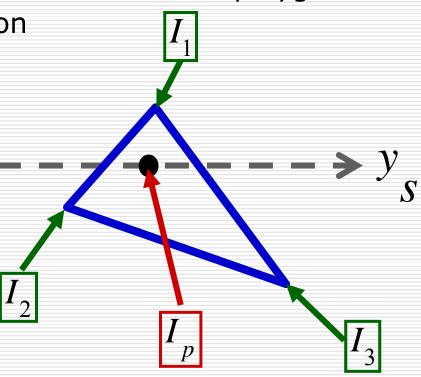
Assumptions

- The light source is at infinity
- The viewer is at infinity
- The polygon represents the actual surface being modeled and is not an approximation to a curved surface

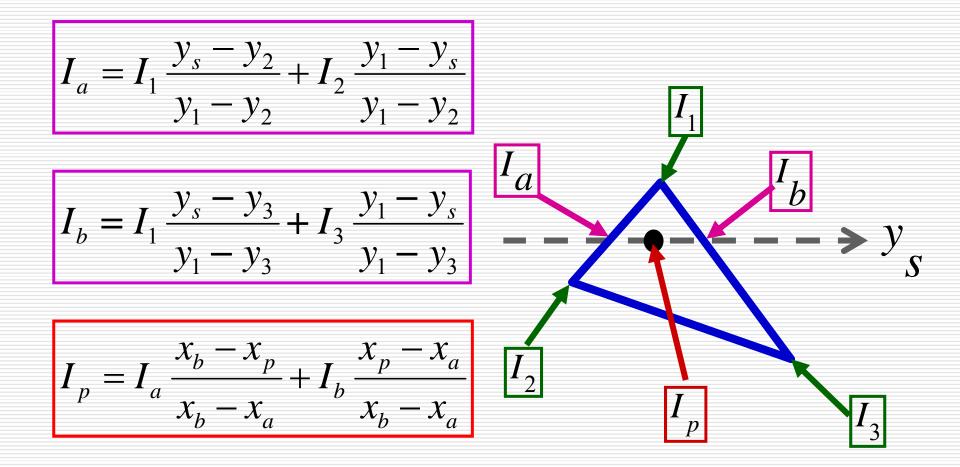
Flat Shading

- Compute constant shading function, over each polygon
- □ Same normal and light vector across whole polygon
- Constant shading for polygon

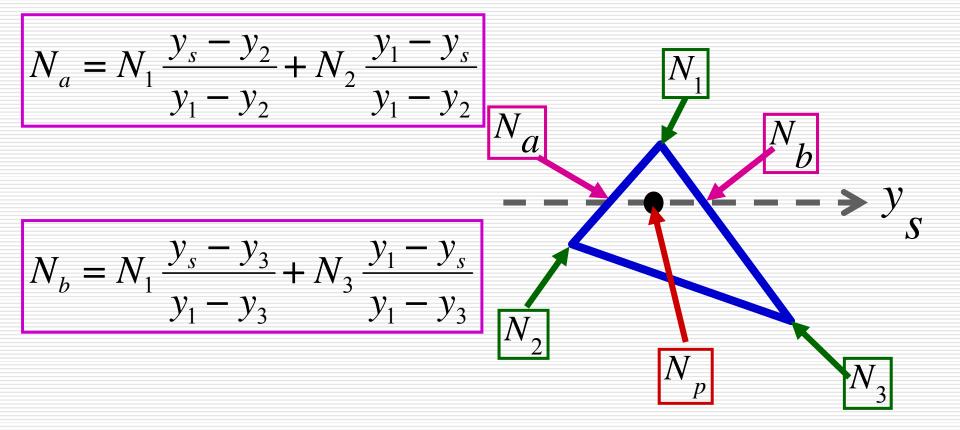




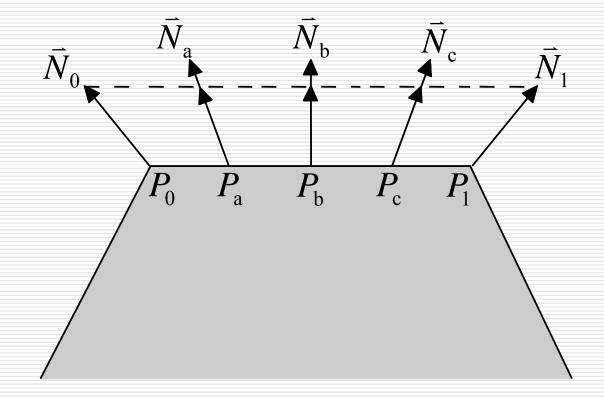
Intensity Interpolation (Gouraud)



Normal Interpolation (Phong)

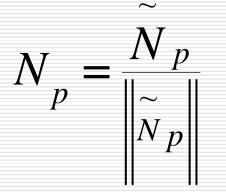


Normal Interpolation (Phong)



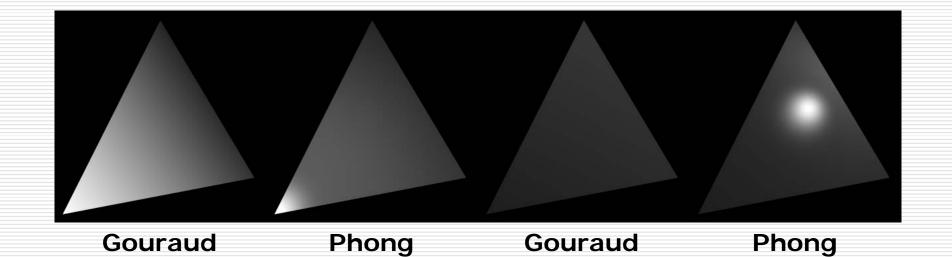
Normal Interpolation (Phong)

 $\widetilde{N}_{p} = \frac{N_{a}}{\|N_{a}\|} \left[\frac{x_{b} - x_{p}}{x_{b} - x_{a}} \right] + \frac{N_{b}}{\|N_{b}\|} \left[\frac{x_{p} - x_{a}}{x_{b} - x_{a}} \right]$

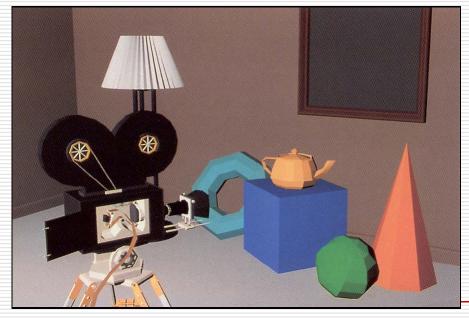


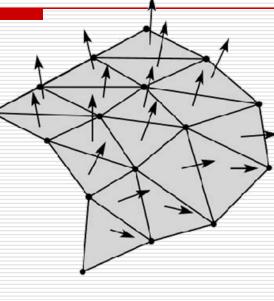
 $N_{p} = \frac{N_{p}}{\left\| \widetilde{N}_{p} \right\|}$ Normalizing makes this a unit vector

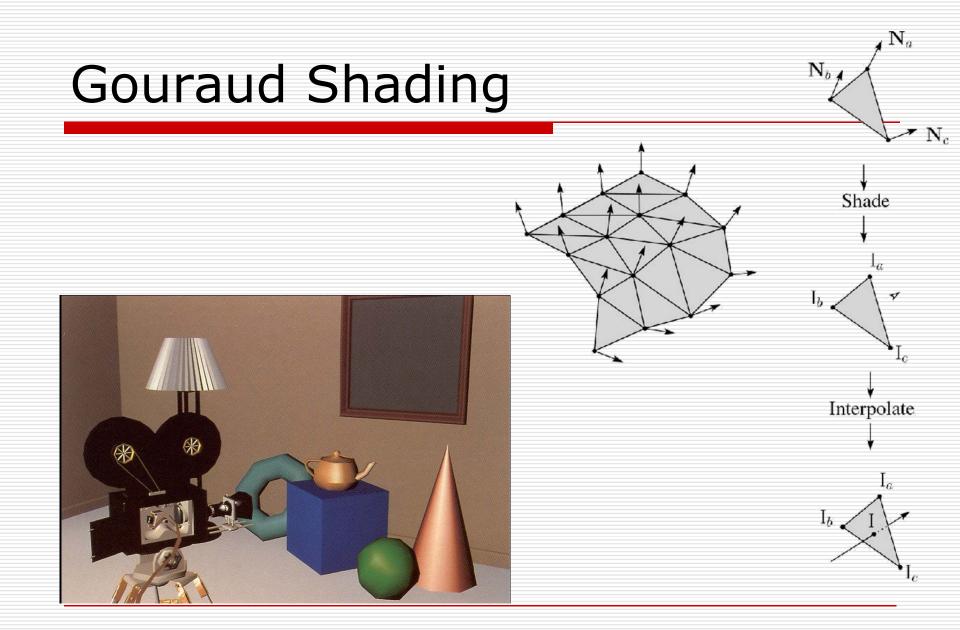
Gouraud v.s. Phong Shading

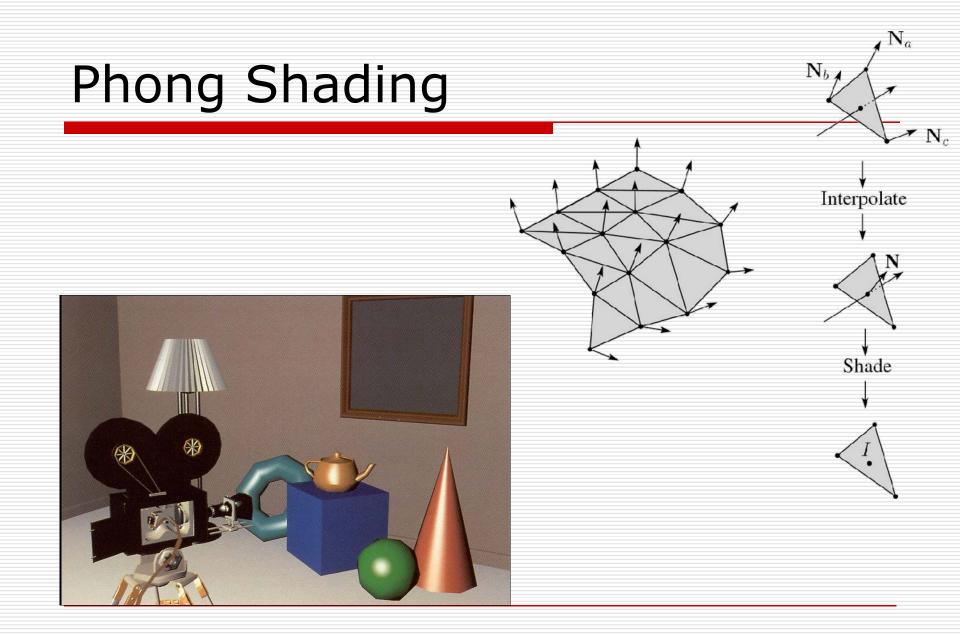


Flat Shading







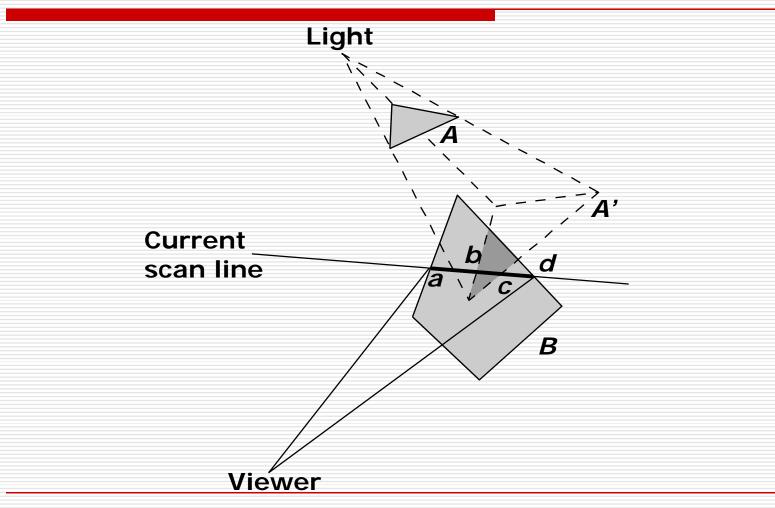


Shadows

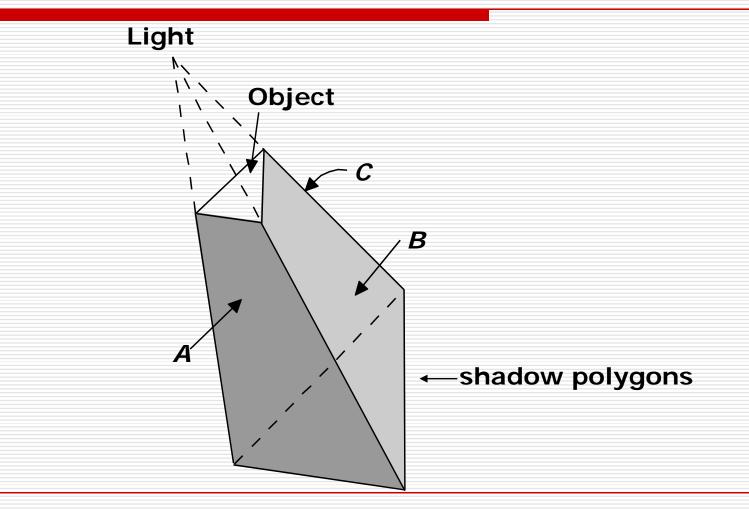
$$\square I_{\lambda} = I_{a\lambda}k_a O_{d\lambda} + \sum_{1 \le i \le m} S_i f_{att_i} I_{p\lambda_i} [k_d O_{d\lambda} (\vec{N} \bullet \vec{L}_i) + k_s O_{s\lambda} (\vec{R}_i \bullet \vec{V})^n]$$

• $S_i = \begin{cases} 0, \text{ if light } i \text{ is blocked at this point} \\ 1, \text{ if light } i \text{ is not blocked at this point} \end{cases}$

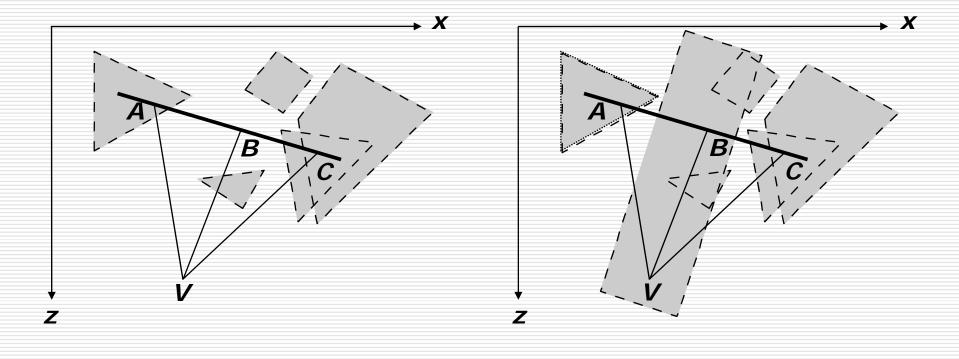
Scan-Line Generation of Shadows



Shadow Volumes



Shadow Volumes



Transparency

$\rightarrow x \square$	interpolated transparency
	$I_{\lambda} = (1 - k_{t1})I_{\lambda 1} + k_{t1}I_{\lambda 2}$
2	k _{t1} : transparency: 0 ~ 1
	filtered transparency
	$I_{\lambda} = I_{\lambda 1} + k_{t1} O_{t\lambda} I_{\lambda 2}$
	$\blacksquare O_{t\lambda}$: transparency color
↓	

Line of sight

Ζ

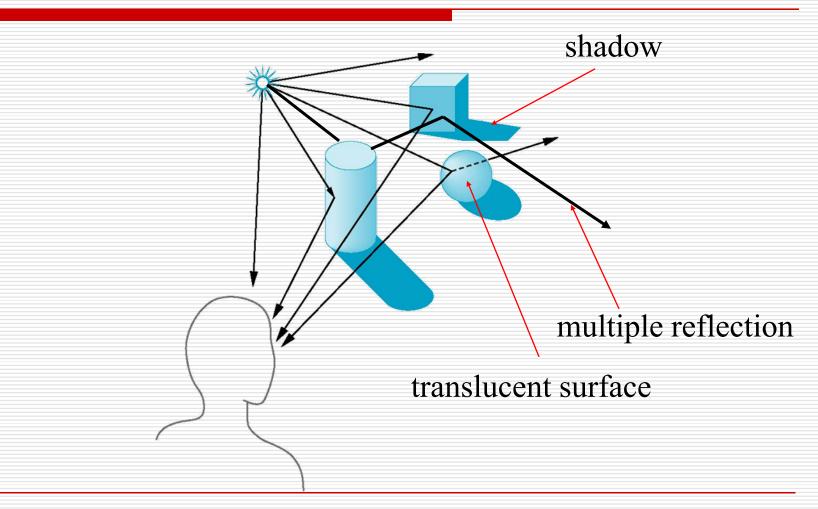
Scattering

- Light strikes A
 - Some scattered
 - Some absorbed
- Some of scattered light strikes B

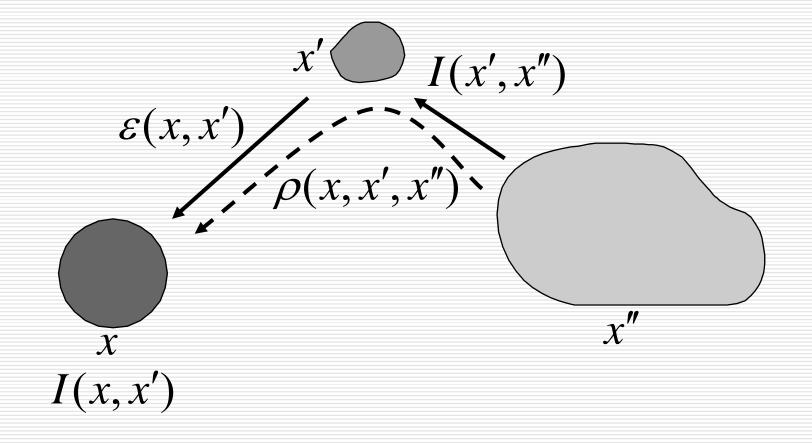
В

- Some scattered
- Some absorbed
- Some of this scattered light strikes A and so on

Global Effects



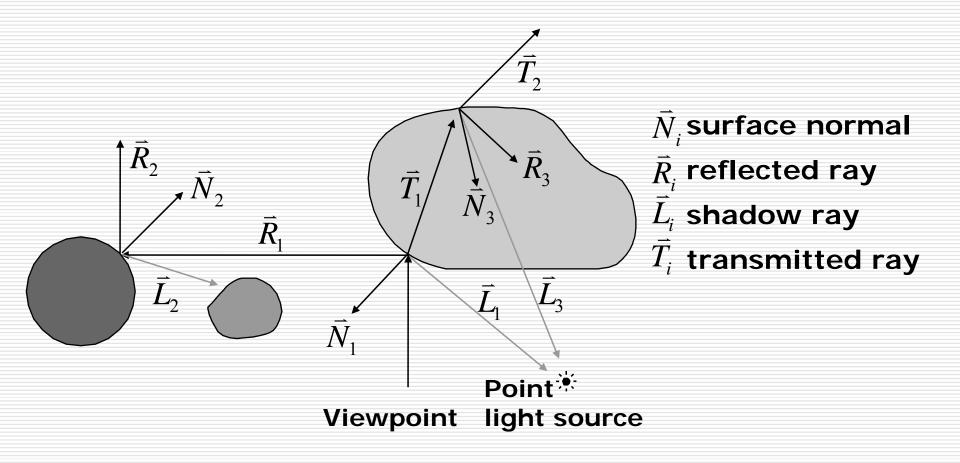
Global Illumination



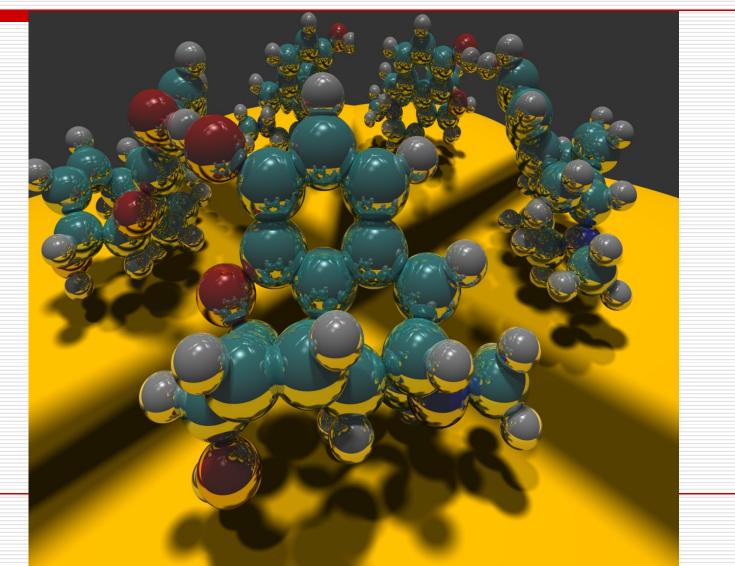
The Rendering Equation

- $\Box I(x, x') = g(x, x') \Big[\varepsilon(x, x') + \int_{S} \rho(x, x', x'') I(x', x'') dx'' \Big]$ \blacksquare I(x, x') : intensity passing from x'to x \mathbf{I} $\varepsilon(x, x')$: emitted light intensity from x' to x $\rho(x, x', x'')$: intensity of light reflected from x'' to x from the surface at x' $g(x, x') = \begin{cases} 0, & \text{if } x' \text{ is invisible from } x \\ 1/r^2, & \text{if } x' \text{ is visible from } x \end{cases}$ r: the distance between x'and x
 - S: all surfaces

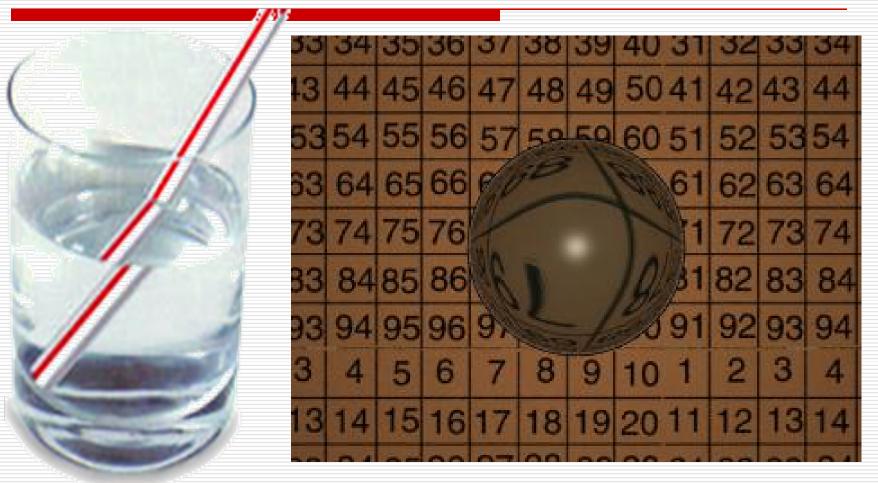
Recursive Ray Tracing



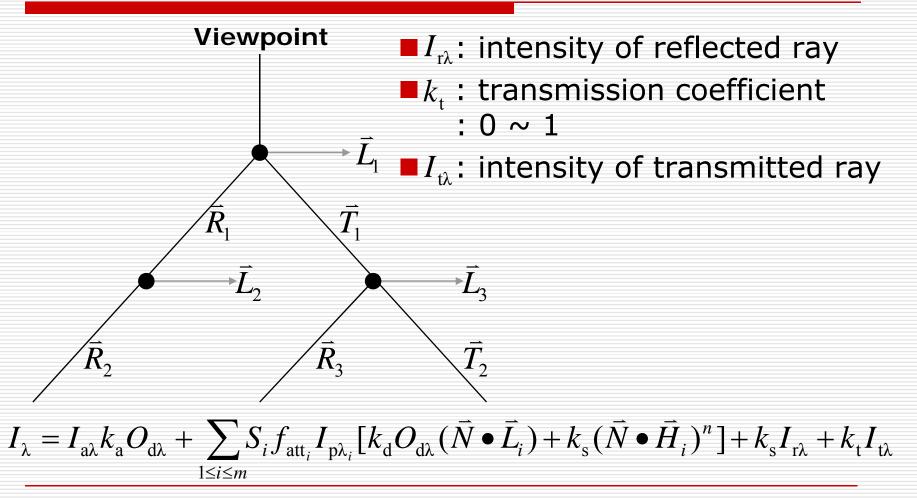
Reflection



Refraction



The Ray Tree



The Radiosity Equation

$\square B_i = E_i + \rho_i \sum_{1 \le j \le n} B_j F_{j-i} \frac{A_j}{A_i}$ $\blacksquare B_i: \text{ radiosity of patch } i$

 \blacksquare E_i : rate at which light is emitted from patch *i*

$\square \rho_i$: reflectivity of patch *i*

- \blacksquare F_{j-i} : form factor (configuration factor)
- \blacksquare A_i : area of patch *i*

$$\square \text{ since } A_i F_{i-j} = A_j F_{j-i}$$
$$\square \text{ thus } B_i = E_i + \rho_i \sum_{1 \le j \le n} B_j F_{i-j}$$

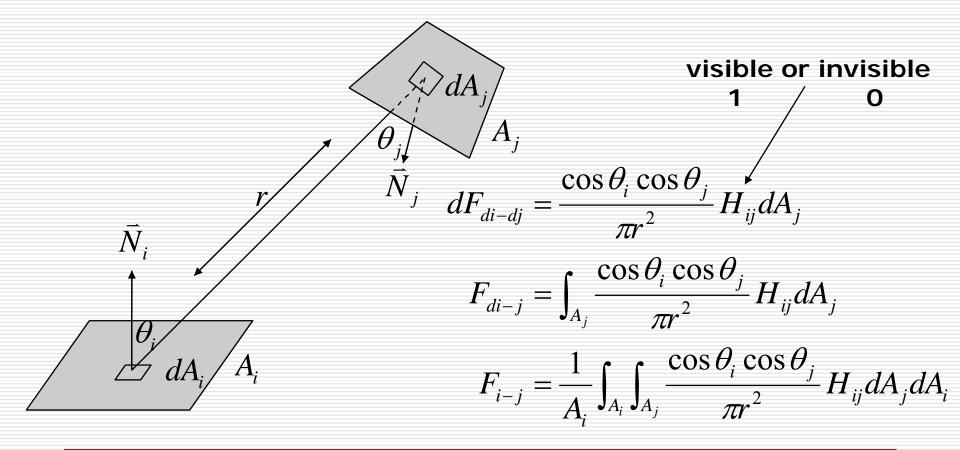
The Radiosity Equation

□ rearranging terms $B_i - \rho_i \sum_{1 \le j \le n} B_j F_{i-j} = E_i$ □ therefore

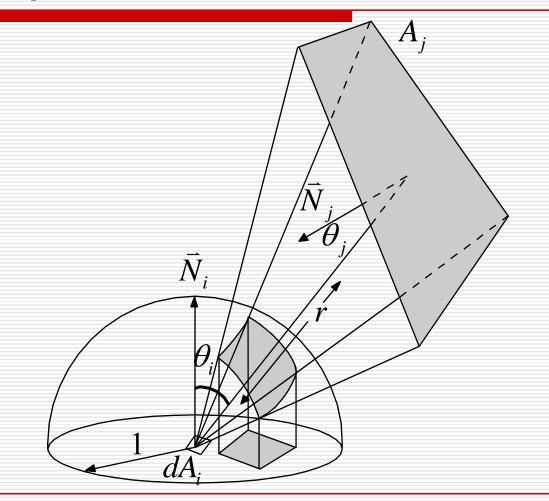
$$\begin{bmatrix} 1 - \rho_{1}F_{1-1} & -\rho_{1}F_{1-2} & \cdots & -\rho_{1}F_{1-n} \\ -\rho_{2}F_{2-1} & 1 - \rho_{2}F_{2-2} & \cdots & -\rho_{2}F_{2-n} \\ \vdots & \vdots & \cdots & \vdots \\ -\rho_{n}F_{n-1} & -\rho_{n}F_{n-2} & \cdots & 1 - \rho_{n}F_{n-n} \end{bmatrix} \begin{bmatrix} B_{1} \\ B_{2} \\ \vdots \\ B_{n} \end{bmatrix} = \begin{bmatrix} E_{1} \\ B_{2} \\ \vdots \\ B_{n} \end{bmatrix}$$

progressive refinement

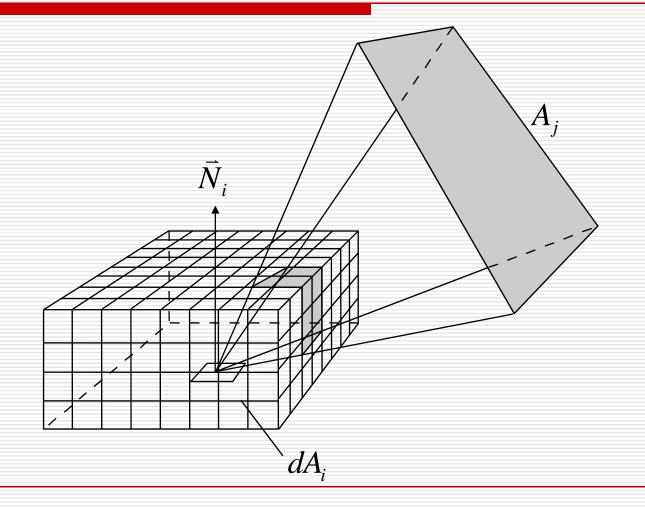
Computing Form Factors



Hemisphere



Hemicube

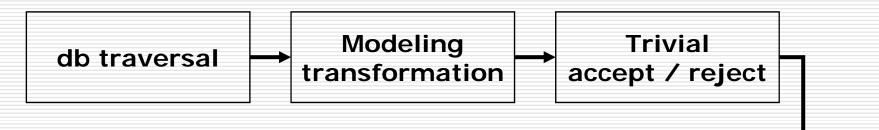


The Rendering Pipeline

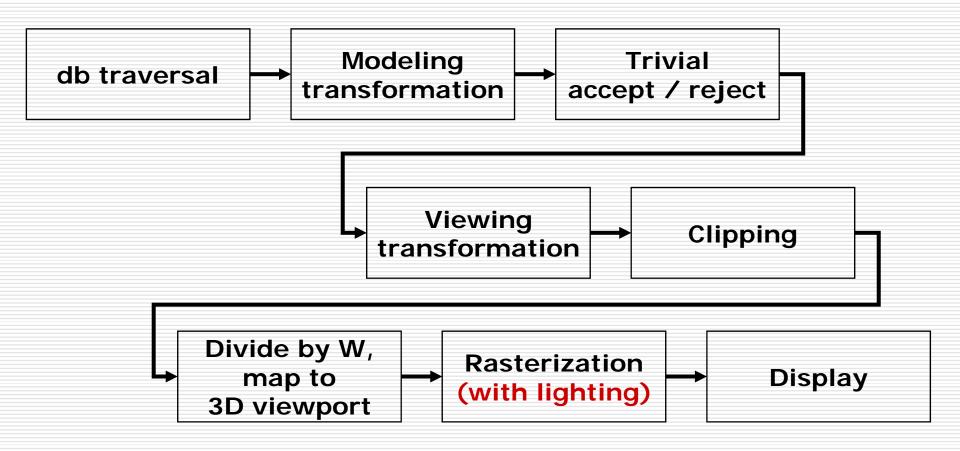
Local Illumination Pipelines

- z-buffer and Gouraud shading
- z-buffer and Phong shading
- Iist-priority algorithm and Phong shading
- Global Illumination Pipelines
 - radiosity
 - ray tracing

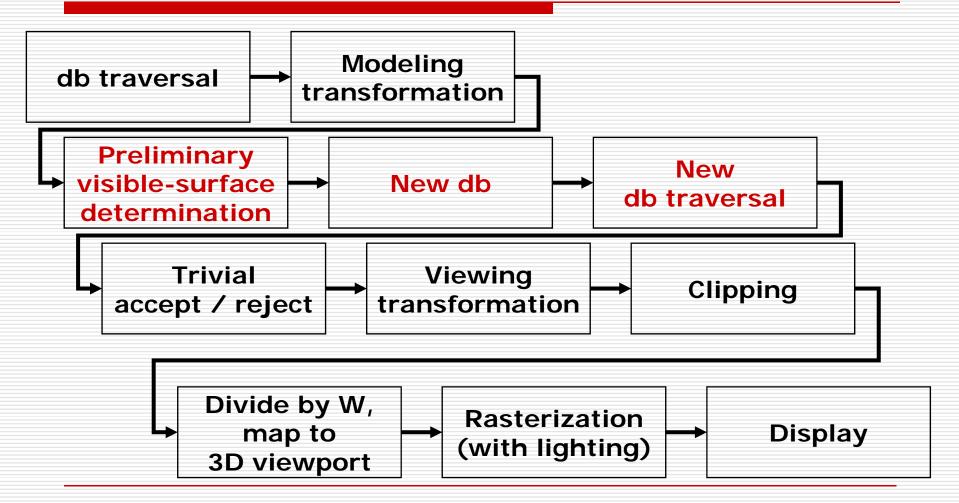
Rendering Pipeline for z-buffer & Gouraud shading



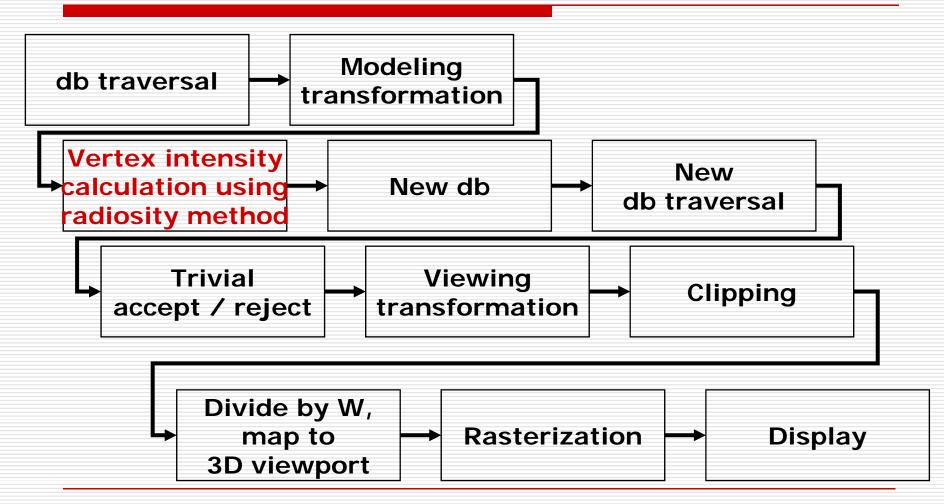
Rendering Pipeline for z-buffer & Phong shading



Rendering Pipeline for list-priority algorithm & Phong shading



Rendering Pipeline for radiosity & Gouraud shading



Rendering Pipeline for ray tracing

