
Computer Graphics

Bing-Yu Chen
National Taiwan University



Introduction to OpenGL
General OpenGL Introduction
An Example OpenGL Program
Drawing with OpenGL
Transformations
Animation and Depth Buffering
Lighting
Evaluation and NURBS
Texture Mapping
Advanced OpenGL Topics
Imaging modified from

Dave Shreiner, Ed Angel, and Vicki Shreiner.
An Interactive Introduction to OpenGL Programming.
ACM SIGGRAPH 2001 Conference Course Notes #54.

& ACM SIGGRAPH 2004 Conference Course Notes #29.



Lighting Principles

Lighting simulates how objects reflect light
material composition of object
light’s color and position
global lighting parameters

ambient light
two sided lighting

available in both color index
and RGBA mode



How OpenGL Simulates Lights

Phong lighting model
Computed at vertices

Lighting contributors
Surface material properties
Light properties
Lighting model properties



Surface
Normals

Normals define how a surface reflects light
glNormal3f( x, y, z )

Current normal is used to compute 
vertex’s color
Use unit normals for proper lighting

scaling affects a normal’s length
glEnable( GL_NORMALIZE )

or
glEnable( GL_RESCALE_NORMAL )

CPUCPU DLDL

Poly.Poly. Per
Vertex

Per
Vertex

RasterRaster FragFrag FBFB

PixelPixel
TextureTexture



Normal for Triangle

p0

p1

p2

n
plane n ·(p - p0 ) = 0

n = (p2 - p0 ) ×(p1 - p0 ) 

normalize n   ← n/ |n|
p

Note that right-hand rule determines outward face



Material Properties
Define the surface properties of a primitive
glMaterialfv( face, property, value );

separate materials for front and back

GL_DIFFUSE Base color

GL_SPECULAR Highlight Color

GL_AMBIENT Low-light Color

GL_EMISSION Glow Color

GL_SHININESS Surface Smoothness



Light Properties
glLightfv( light, property, value );

light specifies which light
multiple lights, starting with GL_LIGHT0
glGetIntegerv( GL_MAX_LIGHTS, &n );

properties
colors
position and type
attenuation



Light Sources (cont.)

Light color properties
GL_AMBIENT 
GL_DIFFUSE
GL_SPECULAR



Types of Lights

OpenGL supports two types of Lights
Local (Point) light sources
Infinite (Directional) light sources

Type of light controlled by w coordinate
( )

( )w
z

w
y

w
xw

zyxw
at  positionedLight  Local0

 along directedLight  Infinite0
≠
=



Turning on the Lights

Flip each light’s switch
glEnable( GL_LIGHTn );

Turn on the power
glEnable( GL_LIGHTING );



Light Material Tutorial



Controlling a Light’s Position

Modelview matrix affects a light’s position
Different effects based on when position 
is specified

eye coordinates
world coordinates
model coordinates

Push and pop matrices to uniquely 
control a light’s position



Light Position Tutorial



Advanced Lighting Features

Spotlights
localize lighting affects

GL_SPOT_DIRECTION
GL_SPOT_CUTOFF
GL_SPOT_EXPONENT



Spotlights

Use glLightv to set 
Direction GL_SPOT_DIRECTION
Cutoff GL_SPOT_CUTOFF

Attenuation
GL_SPOT_EXPONENT

Proportional to cosαφ

θ−θ φ



Advanced Lighting Features

Light attenuation
decrease light intensity with distance

GL_CONSTANT_ATTENUATION
GL_LINEAR_ATTENUATION
GL_QUADRATIC_ATTENUATION

2

1
dkdkk

f
qlc

i ++
=



Light Model Properties
glLightModelfv( property, value );
Enabling two sided lighting

GL_LIGHT_MODEL_TWO_SIDE

Global ambient color
GL_LIGHT_MODEL_AMBIENT

Local viewer mode
GL_LIGHT_MODEL_LOCAL_VIEWER

Separate specular color
GL_LIGHT_MODEL_COLOR_CONTROL



Front and Back Faces

The default is shade only front faces which 
works correct for convex objects
If we set two sided lighting, OpenGL will 
shaded both sides of a surface
Each side can have its own properties 
which are set by using GL_FRONT, GL_BACK, or 
GL_FRONT_AND_BACK in glMaterialf

back faces not visible back faces visible



Efficiency
Because material properties are part of the 
state, if we change materials for many 
surfaces, we can affect performance
We can make the code cleaner by defining 
a material structure and setting all 
materials during initialization

We can then select a material by a pointer

typedef struct materialStruct {
GLfloat ambient[4];
GLfloat diffuse[4];
GLfloat specular[4];
GLfloat shineness;

} MaterialStruct;



Tips for Better Lighting

Recall lighting computed only at vertices
model tessellation heavily affects lighting 
results

better results but more geometry to process

Use a single infinite light for fastest 
lighting

minimal computation per vertex



Steps in OpenGL shading

1. Enable shading and select model
2. Specify normals
3. Specify material properties
4. Specify lights



Transparency

Material properties are specified as 
RGBA values
The A value can be used to make the 
surface translucent
The default is that all surfaces are 
opaque regardless of A



Polygonal Shading

Shading calculations are done for 
each vertex

Vertex colors become vertex shades
By default, vertex colors are 
interpolated across the polygon

glShadeModel(GL_SMOOTH);

If we use glShadeModel(GL_FLAT); the 
color at the first vertex will determine 
the color of the whole polygon



Polygon Normals
Polygons have a single normal

Shades at the vertices as computed by 
the Phong model can be almost same 
Identical for a distant viewer (default) or 
if there is no specular component 

Consider model of sphere
Want different normals at
each vertex even though this
concept is not quite correct
mathematically



Smooth Shading

We can set a new 
normal at each vertex
Easy for sphere model 

If centered at origin n = p

Now smooth shading 
works
Note silhouette edge


	Computer Graphics
	Introduction to OpenGL
	Lighting Principles
	How OpenGL Simulates Lights
	Surface�Normals
	Normal for Triangle
	Material Properties
	Light Properties
	Light Sources (cont.)
	Types of Lights
	Turning on the Lights
	Light Material Tutorial
	Controlling a Light’s Position
	Light Position Tutorial
	Advanced Lighting Features
	Spotlights
	Advanced Lighting Features	
	Light Model Properties
	Front and Back Faces
	Efficiency
	Tips for Better Lighting
	Steps in OpenGL shading
	Transparency
	Polygonal Shading
	Polygon Normals
	Smooth Shading

