Computer Organization and Structure

Homework #3 Due: 2003/11/11

- 1. Convert 512_{ten}, -1,023_{ten}, and -4,000,000_{ten} into 32-bit two's complement binary numbers, respectively, and convert the following two's complement binary numbers to be decimal numbers:
- 2. The following MIPS instruction sequence could be used to implement a new instruction that has two register operands. Give the instruction a name and describe what it does. Note that register \$t0 is being used as a temporary.

```
srl $s1, $s1, 1 #
sll $t0, $s0, 31 # These 4 instructions accomplish "new $s0 $s1"
srl $s0, $s0, 1 #
or $s1, $s1, $t0 #
```

3. The ALU supported set on less than (slt) using just the sign bit of the adder. Let's try a set on less than operation using the values -7_{ten} and 6_{ten} . To make it simpler to follow the example, let's limit the binary representations to 4 bits: 1001_{two} and 0110_{two} .

$$1001_{two} - 0110_{two} = 1001_{two} + 1010_{two} = 0011_{two}$$

This result would suggest that $-7_{ten} > 6_{ten}$, which is clearly wrong. Hence we must factor in overflow in the decision. Modify the 1-bit ALU in the following figures to handle slt correctly.

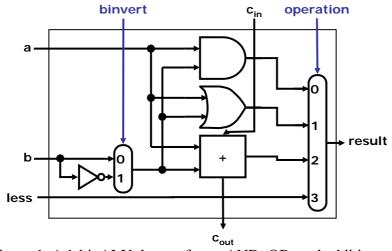


Figure 1: A 1-bit ALU that performs AND, OR, and addition on a and b or b'.

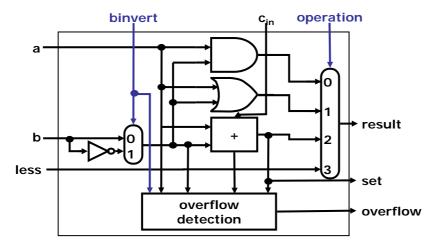


Figure 2: A 1-bit ALU for the most significant bit.

4. Show the IEEE 754 binary representation for the floating-point number 10_{ten} , 10.5_{ten} , 0.1_{ten} , and -2/3, respectively.