
Computer Organization and Structure

Homework #4

Due: 2010/12/21

1. Different instructions utilize different hardware blocks in the basic single-cycle

implementation. The next three problems refer to the following instruction:

 Instruction Interpretation

a. add Rd, Rs, Rt Reg[Rd]=Reg[Rs]+Reg[Rt]

b. lw Rt, Offs(Rs) Reg[Rt]=Mem[Reg[Rs]+Offs]

Figure 1: The basic implementation of the MIPS subset, including the necessary

multiplexors and control lines.

a. What are the values of control signals generated by the control in Figure 1 for this

instruction?

b. Which resources (blocks) perform a useful function for this instruction?

c. Which resources (blocks) produce outputs, but their outputs are not used for this

instruction? Which resources produce no outputs for this instruction?

Different execution units and blocks of digital logic have different latencies (time needed

to do their work). In Figure 1 there are seven kinds of major blocks. Latencies of blocks

along the critical (longest-latency) path for an instruction determine the minimum latency

of that instruction. For the following three problems, assume the following resource

latencies:

 I-Mem Add Mux ALU Regs D-Mem Control

a. 400ps 100ps 30ps 120ps 200ps 350ps 100ps

b. 500ps 150ps 100ps 180ps 220ps 1000ps 65ps

d. What is the critical path for a MIPS AND instruction?

e. What is the critical path for a MIPS load (LD) instruction?

f. What is the critical path for a MIPS BEQ instruction?

2. Assuming that logic blocks needed to implement a processor’s datapath have the

following latencies:

 I-Mem Add Mux ALU Regs D-Mem Sign-extend Shift-left-2

a. 400ps 100ps 30ps 120ps 200ps 350ps 20ps 2ps

b. 500ps 150ps 100ps 180ps 220ps 1000ps 90ps 20ps

Figure 2: A portion of the datapath used for fetching instructions and incrementing the

program counter. The fetched instruction is used by other parts of the datapath.

a. If the only thing we need to do in a processor is fetch consecutive instructions

(Figure 2), what would the cycle time be?

b. Consider a datapath similar to the one in Figure 3, but for a processor that only has

one type of instruction: unconditional PC-relative branch. What would the cycle time

be for this datapath?

c. Repeat the above problem, but this time we need to support only conditional

PC-relative branches.

The remaining three problems refer to the following logic block (resource) in the

datapath:

 Resource

a. Add 4 (to the PC)

b. Data Memory

Figure 3: The simple datapath for the MIPS architecture combines the elements required

by different instruction classes.This datapath can execute the basic instructions

(load-store word, ALU operations, and branches) in a single clock cycle.

d. Which kinds of instructions require this resource?

e. For which kinds of instructions (if any) is this resource on the critical path?

f. Assuming that we only support beq and add instructions, discuss how changes in

the given latency of this resource affect the cycle time of the processor. Assume that

the latencies of other resources do not change.

3. The following problems refer to the following sequence of instructions:

 Instruction sequence

a. lw $1, 40($6)

add $6, $2, $2

sw $6, 50($1)

b. lw $5, -16($5)

sw $5, -16($5)

add $5, $5, $5

a. Indicate dependences and their type.

b. Assume there is no forwarding in this pipelined processor. Indicate hazards and add

nop instructions to eliminate them.

c. Assume there is full forwarding. Indicate hazards and add nop instructions to

eliminate them.

The remaining problems assume the following clock cycle times:

 Without forwarding With full forwarding With ALU-ALU forwarding only

a. 300ps 400ps 360ps

b. 200ps 250ps 220ps

d. What is the total execution time of this instruction sequence without forwarding and

with full forwarding? What is the speed-up achieved by adding full forwarding to a

pipeline that had no forwarding?

e. Add nop instructions to this code to eliminate hazards if there is ALU-ALU

forwarding only (no forwarding from the MEM to the EX stage)?

f. What is the total execution time of this instruction sequence with only ALU-ALU

forwarding? What is the speed-up over a no-forwarding pipeline?

4. Assuming that the breakdown of dynamic instructions into various instruction categories

is as follows:

 R-Type beq jmp lw sw

a. 50% 15% 10% 15% 10%

b. 30% 10% 5% 35% 20%

Also, assume the following branch predictor accurancies:

 Always-taken Always not-taken 2-bit

a. 40% 60% 80%

b. 60% 40% 95%

a. Stall cycles due to mispredicted branches increase the CPI. What is the extra CPI

due to mispredicted branches with the always-taken predictor? Assume that branch

outcomes are determined in the EX stage, that there are no data hazards, and that no

delay slots are used.

b. Repeat the above problem for the “always not-taken” predictor.

c. Repeat the above problem for the “2-bit” predictor.

d. With the 2-bit predictor, what speed-up would be achieved if we could convert half

of the branch instructions in a way that replaces a branch instruction with an ALU

instruction? Assume that correctly and incorrectly predicted instructions have the

same chance of being replaced.

e. With the 2-bit predictor, what speed-up would be achieved if we could convert half

of the branch instructions in a way that replaced each branch instruction with two

ALU instructions? Assume that correctly and incorrectly predicted instructions have

the same chance of being replaced.

f. Some branch instructions are much more predictable than others. If we know that

80% of all executed branch instructions are easy-to-predict loop-back branches that

are always predicted correctly, what is the accuracy of the 2-bit predictor on the

remaining 20% of the branch instructions?

