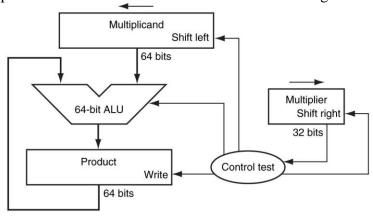
Computer Organization and Structure

Homework #3 Due: 2011/11/8

1. Hexadecimal (base 16) is also a commonly used numbering system for representing values in computers. The following table shows pairs of hexadecimal numbers.

	A	B
1	0D34	DD17
2	BA1D	3617

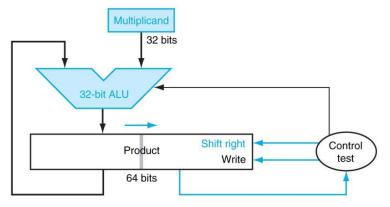
- a. What is the sum of A and B if they represent unsigned 16-bit hexadecimal numbers? The result should be written in hexadecimal. Show your work.
- b. What is the sum of A and B if they represent signed 16-bit hexadecimal numbers stored in sign-magnitude format? The result should be written in hexadecimal. Show your work.
- c. Convert A into a decimal number, assuming it is unsigned. Repeat assuming it stored in sign-magnitude format. Show your work.


The following table also shows pars of hexadecimal numbers.

	A	B
1	BA7C	241A
2	AADF	47BE

- d. What is A B if they represent unsigned 16-bit hexadecimal numbers? The result should be written in o hexadecimal. Show your work.
- e. What is A B if they represent signed 16-bit hexadecimal numbers stored in sign-magnitude format? The result should be written in hexadecimal. Show your work.
- f. Convert A into a binary number. What makes base 16 (hexadecimal) an attractive numbering system for representing values in computers.
- 2. Let's look in more detail at multiplication. We will use the numbers in the following table.

	A	B
1	50	23
2	66	04


a. Using a table similar to the following one, calculate the product of the octal unsigned 6-bit integers A and B using the hardware as shown in the right figure. You should

show the contents of each register on each step.

Iteration	<u>Step</u>	Multiplier	Multiplicand	Product
0	Initial values	0011	0000 0010	0000 0000
1	1a: 1 \Rightarrow Prod=Prod+Mcand	0011	0000 0010	0000 0010
	2: Shift left Multiplicand	0011	0000 0100	0000 0010
	3: Shift right Multiplier	0001	0000 0100	0000 0010
2	1a: $1 \Rightarrow$ Prod=Prod+Mcand	0001	0000 0100	0000 0110
	2: Shift left Multiplicand	0001	0000 1000	0000 0110
	3: Shift right Multiplier	0000	0000 1000	0000 0110
3	1: 0⇒No operation	0000	0000 1000	0000 0110
	2: Shift left Multiplicand	0000	0001 0000	0000 0110
	3: Shift right Multiplier	0000	0001 0000	0000 0110
4	1: 0⇒No operation	0000	0001 0000	0000 0110
	2: Shift left Multiplicand	0000	0010 0000	0000 0110
	3: Shift right Multiplier	0000	0010 0000	0000 0110

b. Using a table similar to the above one, calculate the product of the hexadecimal unsigned 8-bit integers A and B using the hardware as shown in the right figure. You should show the contents of each register on each step.

3. In a Von Neumann architecture, groups of bits have no intrinsic meanings by themselves. What a bit pattern represents depends entirely on how it is used. The following table shows bit patterns expressed in hexadecimal notation.

1	0x24A60004
2	0xAFBF0000

- a. What decimal number does the bit pattern represent if it is a two's-complement integer? An unsigned integer?
- b. If this bit pattern is placed into the Instruction Register, what MIPS instruction will be executed?
- c. What decimal number does the bit pattern represent if it is a floating point number? Use the IEEE 754 standard.

The following table shows decimal numbers.

1	-1609.5
2	-983.8125

- d. Write down the binary representation of the decimal number, assuming the IEEE 754 single precision format.
- e. Write down the binary representation of the decimal number, assuming the IEEE 754 double precision format.
- f. Write down the binary representation of the decimal number, assuming it was stored using the single precision IBM format (base 16, instead of base 2, with 7 bits of exponent).
- 4. Show a truth table for a multiplexor (inputs A, B, and S; output C), using don't cares to simplify the table where possible.