
Computer Organization and Structure

Homework #4
Due: 2011/12/20

1. We wish to add the instructions jr (jump register), sll (shift left logical), lui (load

upper immediate), and a variant of the lw (load word) instruction to the single-cycle
datapath. The variant of the lw instruction increments the index register after loading
word from memory. This instruction (l_inc) corresponds to the following two
instructions:

lw $rs, L($rt)
addi $rt, $rt, 1

Add any necessary datapaths and control signals to Figure 1 and show the necessary
additions to Table 1. You can photocopy Figure 1 and Table 1 to make it faster to show
the additions.

Figure 1: The simple datapath with the control unit.

Instruction RegDst ALUSrc
Memto
Reg

Reg
Write

Mem
Read

Mem
Write Branch ALUOp1 ALUOp0

R-format 1 0 0 1 0 0 0 1 0
lw 0 1 1 1 1 0 0 0 0
sw X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1

Table 1: The setting of the control lines is completely determined by the opcode fields of
the instruction.

2. Assuming the following latencies for logic blocks in the datapath:

 I-Mem Add Mux ALU Regs D-Mem Sign-extend Shift-left-2
a. 400ps 100ps 30ps 120ps 200ps 350ps 20ps 0ps
b. 500ps 150ps 100ps 180ps 220ps 1000ps 90ps 20ps

a. What is the clock cycle time if the only type of instructions we need to support are

ALU instructions (add, and, etc.)?
b. What is the clock cycle type if we only had to support lw instructions?
c. What is the clock cycle time if we must support add, beq, lw, and sw instructions?

For the remaining problems, assume that there are no pipeline stalls and that the
breakdown of executed instructions is as follows:

 add addi not beq lw sw
a. 30% 15% 5% 20% 20% 10%
b. 25% 5% 5% 15% 35% 15%

a. In what fraction of all cycles is the data memory used?
b. In what fraction of all cycles is the input of the sign-extend circuit needed? What is

this circuit doing in cycles in which its input is not needed?
c. If we can improve the latency of one of the given datapath components by 10%,

which component should it be? What is the speed-up from this improvement?

3. The following problems refer to the following fragment of MIPS code:

 Instruction sequence
a. lw $1, 40($6)

 beq $2, $0, Label ; Assume $2 = $0
 sw $6, 50($2)
Label: add $2, $3, $4
 sw $3, 50($4)

b. lw $5, -16($5)
 sw $4, -16($4)
 lw $3, -20($4)
 beq $2, $0, Label ; Assume $2 != $0
 add $5, $1, $4

a. For this problem, assume that all branches are perfectly predicted (this eliminates all

control hazards) and that no delay slots are used. If we only have one memory (for
both instructions and data), there is a structural hazard every time we need to fetch
an instruction in the same cycle in which another instruction accesses data. To
guarantee forward progress, this hazard must always be resolved in favor of the
instruction that accesses data. What is the total execution of this instruction sequence
in the five-stage pipeline that only has one memory? We have seen that data hazards
can be eliminated by adding nops to the code. Can you do the same with this
structural hazard? Why?

b. For this problem, assume that all branches are perfectly predicted (this eliminates all
control hazards) and that no delay slots are used. If we change load/store instructions
to use a register (without an offset) as the address, these instructions no longer need
to use the ALU. As a result, MEM and EX stages can be overlapped and the pipeline
has only four stages. Change this code to accommodate this changed ISA. Assuming
this change does not affect clock cycle time, what speed-up is achieved this
instruction sequence?

c. Assuming stall-on-branch and no delay slots, what speed-up is achieved on this code
if branch outcomes are determined in the ID stage, relative to the execution where
branch outcomes are determined in the EX stage?

The remaining problems assume that individual pipeline stages have the following
latencies:

 IF ID EX MEM WB
a. 100ps 120ps 90ps 130ps 60ps
b. 180ps 100ps 170ps 220ps 60ps

d. Given these pipeline stage latencies, repeat the speed-up calculation from

subquestion b., but take into account the (possible) change in clock cycle time. When
EX and MEM are done in a single stage, most of their work can be done in parallel.
As a result, the resulting EX/MEM stage has a latency that is the larger of the
original two, plus 20ps needed for the work that could not be done in parallel.

e. Given these pipeline stage latencies, repeat the speed-up calculation from
subquestion c., taking into account the (possible) change in clock cycle time.
Assume that the latency ID stage increases by 50% and the latency of the EX stage
decreases by 10ps when branch outcome resolution is moved from EX to ID.

f. Assuming stall-on-branch and no delay slots, what is the new clock cycle time and
execution time of this instruction sequence if beq address computation is moved to
the MEM stage? What is the speed-up from this change? Assume that the latency of
the EX stage is reduced by 20ps and the latency of the MEM stage is unchanged
when branch outcome resolution is moved from EX to MEM.

4. Assuming the following repeating pattern (e.g., in a loop) of branch outcomes:

 Branch outcomes
a. T, T, NT, T
b. T, T, T, NT, NT

a. What is the accuracy of always-taken and always-out-taken predictors for this

sequence of branch outcomes?
b. What is the accuracy of the two-bit predictor for the first four branches in this

pattern, assuming that the predictor starts off in the bottom left state from Figure 2
(predict not taken).

Figure 2: The states in a 2-bit prediction scheme.

c. What is the accuracy of the two-bit predictor if this pattern is repeated forever?
d. Design a predictor that would achieve a perfect accuracy if this pattern is repeated

forever. Your predictor should be a sequential circuit with one output that provides a
prediction (1 for taken, 0 for not taken) and no inputs other than the clock and the
control signal that indicates that the instruction is a conditional branch.

e. What is the accuracy of your predictor from the above subquestion if it is given a
repeating pattern that is the exact opposite of this one?

